Ποσοστημόρια – Θηκόγραμμα

Δ. Κουλουμπού

Μέτρα Σχετικής Θέσης

Εκατοστημόρια (ή Εκατοστιαίες Θέσεις)

•Τα εκατοστημόρια (percentiles) αποτελούν γενίκευση της έννοιας της διαμέσου.

Μέτρα Σχετικής Θέσης

Εκατοστημόρια (ή Εκατοστιαίες Θέσεις)

•Το k — εκατοστημόριο ενός συνόλου μετρήσεων είναι εκείνη η τιμή, η οποία, όταν οι τιμές διαταχθούν κατ' αύξουσα σειρά, έχει από αριστερά της το k% του συνόλου των μετρήσεων και από δεξιά της το υπόλοιπο (100 — k)%.

Προσδιορισμός του k - Εκατοστημόριου

pth Εκατοστημόριο – Ερμηνεία

Ερμηνεία:

Το p^{th} εκατοστημόριο ενός συνόλου στοιχείων είναι μία τιμή τέτοια ώστε **τουλάχιστον το** p% **των παρατηρήσεων** είναι ίσα ή μικρότερα με την τιμή αυτή και τουλάχιστον (100 - p)% είναι ίσα ή μεγαλύτερα.

pth Εκατοστημόριο – Υπολογισμός

Υπολογισμός:

Για τον υπολογισμό του p^{th} εκατοστημορίου ενός δείγματος μέγεθος n

>Ταξινομούμε τις τίμές του δείγματος σε αύξουσα σειρά.

Υπολογίζουμε τη θέση i που είναι η θέση του p^{th} εκατοστημορίου

$$i=\frac{p}{100}n$$

pth Εκατοστημόριο

Αν το i δεν είναι ακέραιος, στρογγυλοποιούμε προς τα πάνω. Το pth εκατοστημόριο είναι η τιμή στη θέση i.

Αν το iείναι ακέραιος το p^{th} εκατοστημόριο είναι ο μέσος όρος των θέσεων i και i + 1.

Παράδειγμα

 Για το ενενηκοστό εκατοστημόριο στα δεδομένα του πίνακα, τα οποία είναι τοποθετημένα σε αύξουσα σειρά,

$$i=rac{p}{100}n=rac{90}{100}70=63.$$

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Παράδειγμα

Εφόσον το i είναι ακέραιος το ενενηκοστό εκατοστημόριο είναι ο μέσος όρος των θέσεων 63 και 64.

Άρα

90° εκατοστημόριο =
$$\frac{580+590}{2}$$
 = 585

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Τεταρτημόρια

Τα τεταρτημόρια (quartiles) είναι συγκεκριμένα εκατοστημόρια. **1**^o Τεταρτημόριο: $Q_1 = 25^{\circ}$ Εκατοστημόριο

2^o Τεταρτημόριο: $Q_2 = 50^o$ Εκατοστημόριο = Διάμεσος (δ)

3° Τεταρτημόριο: $Q_3 = 75^\circ$ Εκατοστημόριο

Τεταρτημόρια

Τα τεταρτημόρια Q₁, Q₂, Q₃ χωρίζουν ένα ταξινομημένο σύνολο παρατηρήσεων (από τη μικρότερη στη μεγαλύτερη τιμή) σε 4 μέρη με (περίπου) ίδιο αριθμό παρατηρήσεων στο καθένα.

Τεταρτημόρια – Ερμηνεία

Τουλάχιστον το 25% των παρατηρήσεων είναι μικρότερες
ή ίσες από την τιμή Q_1 .

•Το Q_2 είναι η διάμεσος.

Τουλάχιστον το 25% των παρατηρήσεων είναι μεγαλύτερες ή ίσες από την τιμή Q_3 .

-Η τιμή του τεταρτημόριου Q_i , (i = 1, 2, 3) υπολογίζεται από τον τύπο

$$Q_i = x_A + \Delta(x_{A+1} - x_A)$$

Όπου

Α: το ακέραιο μέρος του i(n + 1)/4Δ: το δεκαδικό μέρος του i(n + 1)/4

Τεταρτημόρια – Παράδειγμα

14 φοιτητές έλαβαν τις ακόλουθες βαθμολογίες στις εξετάσεις ενός μαθήματος (με άριστα το 100).

47, 48, 56, 57, 59, 67, 67, 78, 80, 89, 89, 89, 89, 94

Εφόσον τα δεδομένα είναι ταξινομημένα σε αύξουσα σειρά προχωράμε απευθείας στον υπολογισμό.

Τεταρτημόρια

 \succ Για το Q_1 :

$$\frac{i(n+1)}{4} = \frac{1(14+1)}{4} = 3,75 = 3 + 0,75,$$

'A\rho\alpha A = 3, \Delta = 0,75

$$Q_1 = x_3 + \Delta(x_4 - x_3) = 56 + 0,75(57 - 56) = 56,75$$

47, 48, 56, 57, 59, 67, 67, 78, 80, 89, 89, 89, 89, 94

Τεταρτημόρια \succ Για το Q_3 :

$$\frac{i(n+1)}{4} = \frac{3(14+1)}{4} = 11,25, = 11+0,25$$

Apa A = 11, $\Delta = 0,25$

$$Q_3 = x_{11} + \Delta(x_{12} - x_{11}) = 89 + 0,25(89 - 89) = 89$$

Για να υπολογίσουμε τα εκατοστημόρια στο SPSS είναι βασικό να γνωρίζουμε τις εξής δυνατότητες του SPSS:

-Η Επιλογή Quartiles εμφανίζει τα τεταρτημόρια $Q_1(25\%), Q_2(50\%), Q_3(75\%).$

Η επιλογή Cut points for δίνει την δυνατότητα, στα ταξινομημένα κατά αύξουσα σειρά δεδομένα της μεταβλητής, να τα χωρίσει σε k ίσα μέρη και να δώσει τα αποτελέσματα (ποσοστημόρια των κομβικών σημείων).

■Πχ:

Αν χωρίσουμε το δείγμα μας σε 10 ίσα μέρη θα πάρουμε σαν αποτέλεσμα τα ποσοστημόρια 10%, 20%, ..., 90%.

Αν χωρίσουμε το δείγμα μας σε 5 ίσα μέρη θα πάρουμε σαν αποτέλεσμα τα ποσοστημόρια 20%, 40%, 60%, 80%.

 Τέλος η επιλογή
 Percentiles δίνει την δυνατότητα εμφάνισης
 ενός ή περισσοτέρων
 συγκεκριμένων
 ποσοστημορίων.

π.χ. το ποσοστημόριο85%.

Dispersion Characterize Posterior Dist Std. deviation Minimum Mainers Keteria	Frequencies: Statistics	Central Tendency
	Dispersion Minimum	Characterize Posterior Dist
Range S.E. mean	Variance Maximum Range S. <u>E</u> . mean	Kurtosis

Για παράδειγμα στα δεδομένα του αρχείου 01_Άσκηση DATA.sav, θα υπολογίσουμε για την μεταβλητή βαθμολογία

- Τα τεταρτημόρια,
- Τα ποσοστημόρια 10%, 20%, ..., 90%
- Καθώς και τα ποσοστημόρια 2%, 23% και 85%.

>Αρχικά ακολουθούμε την διαδρομή

Analyze \rightarrow Descriptive Statistics \rightarrow Frequencies

📔 01 - Άσκηση_Data.sav [DataSet1] - IBM SPSS		Po <u>w</u> er Analysis	>				
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>D</u> ata	Transfo	rm	Meta Analysis	>	<u>W</u> indow <u>H</u> elp
					Reports	>	📲 📑 💁 🦲 💽 🔍 See
					Δ		
20 : Φ	ύλο	2			Descriptive Statistics	>	Frequencies
	🚜 Φύλο	🧳 Ba	θμολογία	s and a second s	Bayesian Statistics	>	
1	1	9		2	-		<u>D</u> escriptives
2	1	8		1	lables	>	Population Descriptives
3	2	7		2	Compare Means and Proportions	>	N Percentiles
4	2	6		2	General Linear Model	>	

> Στην συνέχεια στο παράθυρο frequencies μεταφέρουμε στο δεξιό παράθυρο variables την μεταβλητή της οποίας θέλουμε να υπολογίσουμε εκατοστημόρια και στην συνέχεια επιλέγουμε το statistics.

Frequencies		×
∂a Φύλο ∳ Έτος_Σπουδών	<u>V</u> ariable(s):	Statistics Charts Eormat Style Bootstrap
☑ Display frequency tables OK	Cre <u>a</u> te APA style tab	les

Από το αναδυόμενο παράθυρο Frequency Statistics:

Ενεργοποιούμε την επιλογή Quartiles (Για εμφάνιση τεταρτημορίων).

Ενεργοποιούμε την επιλογή Cut points for και αναγράφουμε τον αριθμό 10, έτσι ώστε να εμφανίσει τα τεταρτημόρια 10%, 20%, ..., 90%.

herequencies: Statistics	×				
Percentile Values Quartiles Quartiles Cut points for Percentile(s):	Central Tendency				
Dispersion Std. deviation Minimum Variance Maximum Range S.E. mean	Characterize Posterior Dist Ske <u>w</u> ness Kurtosis				
Cancel Help					

Ενεργοποιούμε την επιλογή Percentile(s)

Για το ποσοστημόριο 2% στο κενό πλαίσιο δίπλα γράφω 2 και στην συνέχεια επιλέγω add. Παρατηρούμε ότι η επιλογή μεταφέρθηκε στο κάτω μεγάλο πλαίσιο.

Frequencies: Statistics	×	
Percentile Values Quartiles Cut points for: 10 equal groups Percentile(s): 2 Add Change ove	Central Tendency Mean Median Mode Sum	
Dispersion	Characterize Posterior Dist	
Std. deviation Minimum	Ske <u>w</u> ness	
🕅 <u>V</u> ariance 🕅 Ma <u>x</u> imum	🕅 <u>K</u> urtosis	
Ra <u>ng</u> e S. <u>E</u> . mean		
Continue Cancel	Help	

Frequencies: Statistics	×
Percentile Values	Central Tendency
✓ Cut points for: 10 equal groups ✓ Percentile(s):	Median Mode
Add 2,0 Change Remove	<u>S</u> um
Dispersion	Characterize Posterior Dist
 Sign deviation ■ Minimum Variance Maximum Range S.E. mean 	<u>Kurtosis</u>
Cancel Cancel	Help

Με τον ίδιο τρόπο προσθέτω τα τεταρτημόρια 23% και 85%.

herequencies: Statistics	×				
Percentile Values ✓ Quartiles ✓ Cut points for: 10 Percentile(s): 85,0 Add 2,0 23,0 Remove	Central Tendency				
Dispersion Std. deviation Minimum Variance Maximum Range S.E. mean	 Values are group midpoints Characterize Posterior Dist Skewness Kurtosis 				
Cancel Help					

Αλλαγές ή διαγραφές από το μεγάλο πλαίσιο γίνετε επιλέγοντας τα και πατώντας αντίστοιχα Change ή Remove.

Frequencies: Statistics	×	
Percentile Values	Central Tendency Mean Me <u>d</u> ian Mode Sum	
	Values are group midpoints	
Dispersion	Characterize Posterior Dist	
🔝 Std. deviation 🛅 Minimum	Ske <u>w</u> ness	
🔲 Variance 📄 Maximum	🔲 <u>K</u> urtosis	
🖪 Ra <u>ng</u> e 📄 S. <u>E</u> . mean		
Cancel Cancel	Help	

Στην συνέχεια πατάμε Continue και μετά ok.

Frequencies: Statistics ×							
Percentile Values Quartiles Quartiles Cut points for: 10 equal groups Percentile(s): 85,0 Add 2,0 Change 85,0 Remove 85,0	Central Tendency Mean Median Mode Sum						
	Values are group midpoints						
Dispersion	Characterize Posterior Dist						
🔲 Std. deviation 🥅 Minimum	Ske <u>w</u> ness						
🔄 Variance 📄 Maximum	🔲 <u>K</u> urtosis						
🗖 Ra <u>ng</u> e 📄 S. <u>E</u> . mean							
Continue Cancel Help							

•Το output του SPSS μας δίνει τα παρακάτω αποτελέσματα.

S	tatistics						
Βαθμολογία Στατιστική / Άριστα 10							
N	Valid	20					
	Missing	0					
Percentiles	2	2,00					
	10	3,10					
	20	5,20					
	23	5,83					
	25	6,00					
	30	6,00					
	40	7,00					
	50	8,00					
	60	8,00					
	70	9,00					
	75	9,00					
	80	9,00					
	85	9,85					
	90	10,00					

Ερμηνεία Αποτελεσμάτων:

Για παράδειγμα, ο πίνακας μας
 πληροφορεί ότι το εκατοστημόριο
 30 είναι 6.

Αυτό σημαίνει ότι τουλάχιστον το 30%
των φοιτητών πέτυχαν βαθμολογία στην στατιστική το πολύ 6.

αθμολογία Στατιστική / Άριστα 10				
	Valid	20		
	Missing	0		
ercentiles	2	2,00		
	10	3,10		
	20	5,20		
	23	5,83		
	25	6,00		
	30	6,00		
	40	7,00		
	50	8,00		
	60	8,00		
	70	9,00		
	75	9,00		
	80	9,00		
	85	9,85		
	90	10,00		

Ερμηνεία Αποτελεσμάτων:

Παρόμοια συμπεράσματα μπορούμε να βγάλουμε και για τα υπόλοιπα ποσοστημόρια.

Statis	stics
--------	-------

Вα

Pe

θμολογία Στατιστική / Άριστα 10				
	Valid	20		
	Missing	0		
rcentiles	2	2,00		
	10	3,10		
	20	5,20		
	23	5,83		
	25	6,00		
	30	6,00		
	40	7,00		
	50	8,00		
	60	8,00		
	70	9,00		
	75	9,00		
	80	9,00		
	85	9,85		
	90	10,00		

Στο θηκόγραμμα παριστάνονται περιγραφικά μέτρα όπως η διάμεσος, το 25° και 75° ποσοστιαίο σημείο και οι ακραίες τιμές («αντιφατικές» τιμές σε σχέση με τις υπόλοιπες παρατηρούμενες τιμές του συνόλου δεδομένων).

•Το κάτω άκρο του κουτιού είναι το 25° ποσοστιαίο σημείο και το πάνω άκρο το 75°.

Η διάμεσος παριστάνεται από μία οριζόντια γραμμή μέσα στο κουτί.

Στην αρχή και στην κορυφή του σχήματος σημειώνονται δύο οριζόντιες γραμμές, που αναφέρονται ως φράχτες (whiskers, τιμές δηλαδή που εκτείνονται εκατέρωθεν των ορίων της θήκης σε μήκος 1, 5 φορές του ενδοτεταρτημοριακού πλάτους).

•Το θηκόγραμμα μας βοηθά στο να δούμε αν υπάρχουν ακραίες τιμές (τιμές πέρα από τους whiskers, επισημαίνονται με «o» και είναι ακραίες, ενώ με « * » επισημαίνονται οι extreme).

Το θηκόγραμμα μας βοηθάει επίσης στο να εντοπίσουμε πιθανές αποκλίσεις από την κανονική κατανομή (αν η διάμεσος είναι πιο κοντά στην κορυφή ή στην αρχή του κουτιού και όχι στο κέντρο).

Ο κάτω και άνω φράκτης καθορίζονται από τις εξής σχέσεις:

Κάτω φράχτης = $max\{x_{min}, Q_1, -1, 5(Q_3 - Q_1)\}$ Άνω Φράχτης = $min\{x_{max}, Q_3 + 1, 5(Q_3 - Q_1)\}$

Αν δεν υπάρχουν ακραίες χαμηλές τιμές τότε ο κάτω φράχτης απεικονίζει την ελάχιστη τιμή της μεταβλητής.

Αν δεν υπάρχουν ακραίες υψηλές τιμές τότε ο άνω φράχτης απεικονίζει την μέγιστή τιμή της μεταβλητής.

<u>Παρατήρηση:</u>

Ο όρος ακραία τιμή αναφέρεται σε μία παρατήρηση η οποία κατά μία έννοια είναι «αντιφατική» σε σχέση με τις υπόλοιπες παρατηρούμενες τιμές του συνόλου δεδομένων.

Οι ακραίες τιμές αρχικά θα πρέπει να επισημαίνονται και αφού διαπιστωθεί ότι δεν πρόκειται για λάθη κατά την πληκτρολόγηση των δεδομένων να μελετώνται.

Δε συνιστάται ο αυτόματος αποκλεισμός τους από την έρευνα χωρίς καμία διάκριση, καθώς πολλές φορές και οι ακραίες τιμές περικλείουν εξίσου σημαντικές πληροφορίες.

Θα δημιουργήσουμε το θηκόγραμμα της μεταβλητής «βαθμολογία» από τα δεδομένα του αρχείου 01_Άσκηση DATA.sav

Ακολουθούμε την διαδρομή

Graphs \rightarrow **Boxplot**

<u>D</u> ata <u>T</u> ransf	orm <u>A</u> nalyze	Graphs	<u>U</u> tilities	Extensions	Wind
		n <u>C</u> hart	Builder		
2		Graph	board Tem	plate Chooser.	
🖉 Βαθμολογία	Έτος_Σποι	Relati	onship Ma	p	
9	2	🛨 Weibu	III Plot		
8	1	- Comp	are Subgro	oups	
7	2	Degro	acion Varia	able Diete	
6	2	Regre	SSION Valla	able Flots	
4	2	🚹 <u>B</u> ar			
10	3	3-D Bar			
9	2				
10	3	<u>L</u> ine			
9	2	Area	•)		
8	4	Pie Pie			
7	2	- <u> </u>			
5	1	High-L	.ow		
2	2	Boxpl	ot		

- Στο νέο αναδυόμενο παράθυρο Boxplot
- Επιλέγουμε το Simple

και

 Από τις επιλογές Data in Chart Are την Summaries of separate variables.

Στην συνέχεια πατάμε Define.

Στο επόμενο παράθυρο Define Simple Boxplot Summaries of Separate Variables που εμφανίζεται.

Μεταφέρουμε στο παράθυρο Boxes
 Represent την μεταβλητή της οποίας
 θέλουμε να δημιουργήσουμε το
 θηκόγραμμα.

Στην συνέχεια πατάμε ΟΚ.

🔄 Define Simple Boxplot: Su	ummaries	for Groups of Cases	>
βα Φύλο & Έτος_Σπουδών	*	<u>V</u> ariable:	Options
	\$	La <u>b</u> el Cases by :	
	Panel	by	
		Ro <u>w</u> s:	
	\$		
		Nest variables (no empty rows)	
		Columns:	
	\$		
Filter b <u>y</u> :]	Nest variables (no empty columns)	
O	K <u>P</u> a	ste <u>R</u> eset Cancel Help	

Στο Output του SPSS εμφανίζεται το ζητούμενο θηκόγραμμα.

Βαθμολογία Στατιστική / Άριστα 10

- Από το θηκόγραμμα
 βλέπουμε ότι δεν
 υπάρχουν ακραίες τιμές.
- Το κάτω και το άνω μέρος
 του μπλε ορθογωνίου
 είναι οι τιμές των
 τεταρτημόριών
 Q₁, Q₃ αντίστοιχα.

- Η μαύρη γραμμή εντός του μπλε ορθογωνίου εμφανίζεται στο ύψος της διαμέσου.
- Τέλος η κάτω και η άνω γραμμή, εφόσον δεν υπάρχουν ακραίες τιμές, απεικονίζουν την ελάχιστη και την μέγιστη παρατήρηση αντίστοιχα.

Βιβλιογραφία

ΠΑΔΑ - ΣΔΟΚΕ - ΤΜΉΜΑ ΛΟΓΙΣΤΙΚΉΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ

Βιβλιογραφία

Χαλικιάς Μ. Ποσοτική Ανάλυση και Στοιχεία Θεωρίας Αποφάσεων στη Διοίκηση και Οικονομία με Χρήση Λογισμικών EXCEL, ISALOS και SPSS, Εκδόσεις Broken Hill Publishers Ltd, 2021

David Williams, Weighing the Odds, A course in Probability and Statistics, Cambridge University Press, 2001 Alder, H. L. and Roessler, E. B. Introduction to Probability and Statistics. 6th edition, W. H. Freeman & Company.