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SYMMETRIC ENCRYPTION SCHEMES 
 

Confidentiality 



Security  

• perfect security,  
– an information-theoretic notion introduced by Shannon 

and showed by him to be met by the one-time pad 
scheme. 

– regardless of the computing power available to the 
adversary, the ciphertext provides it no information about 
the plaintext beyond the a priori information it had prior to 
seeing the ciphertext 

– it requires a key as long as the total amount of data 
encrypted 

• computational security 
– The security will only hold with respect to adversaries of limited 

computing power. 



Shannon’s perfect secrecy definition 

Let (E,D) be a cipher over (K,M,C)  

 

(E,D) has perfect secrecy if      ∀ m0, m1 ∈ M    (  |m0| = |m1| ) 

         { E(k,m0) }     =    { E(k,m1) }       where   k⟵K 

 



Perfect Secrecy 

Theorem 
One time pad has perfect secrecy 
• Proof: easily… 

 
Theorem 
Perfect secrecy implies that the size of the key K 

greater or equal to plaintext M 
 
Impractical! 
  



Can a stream cipher have perfect secrecy? 

Yes, if the PRG is really “secure”  

No, there are no ciphers with perfect secrecy 

No, since the key is shorter than the message 

Yes, every cipher has perfect secrecy 

Quiz 



Can a stream cipher have perfect secrecy? 

Yes, if the PRG is really “secure”  

No, there are no ciphers with perfect secrecy 

No, since the key is shorter than the message 

Yes, every cipher has perfect secrecy 

Quiz 



Two times padding/ re-using the IV 
(attack 1)   

• Let  
• c1 = m1 ⊕ k 

• c2 = m2 ⊕ k 

• Eve eavesdrops c1,c2 
 

1st attack: Know Plaintext Attack 
Let m1 be a known plaintext to Eve. Then trivially: 

 

c1 ⊕c2 ⊕m1= m1 ⊕ k ⊕ m2 ⊕ k ⊕m1=m2 

 



Example 

• Alice (two times the same keystream) 

 

 

 

•        Bob 
      

m1: 0  1  1  0  1  1  1 

k: 1  0  1  1  0  1  0 

c1:     1  1  0  1  1  0  1 

⊕ 
m2: 1  0  0  1  0  1  1 

k: 1  0  1  1  0  1  0 

c2:     0  0  1  0  0  0  1 

⊕ 



Example 

• Eve 

 

 

 

•         
     

m1: 0  1  1  0  1  1  1 

c2: 0  0  1  0  0  0  1 

c1:     1  1  0  1  1  0  1 

m2: 1  0  0  1  0  1  1 

 

⊕ 



Stream Ciphers 

• One time padding is also a stream cipher 
requirement 

• Remember that: 

• The generator PRG produces a pseudorandom 
sequence PRS 

• PRS=PRG(K,IV) 

• c = m ⊕ PRS 

 

 



Stream Ciphers (synchronous) 

 

 

 

 

 

 
• PRS=PRG(K,IV) 

• c = m ⊕ PRS 

 

Plaintext m Plaintext m Ciphertext c 

Alice 
Bob 

Pseudo Random 

Generator (PRG) 

+ + 

K=secret key 

Pseudo Random 

Generator (PRG) 

IV=public 

PRS PRS 



Stream Ciphers 

• When the same key/IV pair is used the 
generator produces the same PRS 

• Thus, we have 

– c1 = m1 ⊕ PRS 

– c2 =m2 ⊕ PRS 

• The same attach. The IV must never repeat 
for the same key. 

 

 



Example 

• Alice (two times the same IV) 

 

 

 

•        Bob 
      

m1: 0  1  1  0  1  1  1 

PRS: 1  0  1  1  0  1  0 

c1:     1  1  0  1  1  0  1 

⊕ 
m2: 1  0  0  1  0  1  1 

PRS: 1  0  1  1  0  1  0 

c2:     0  0  1  0  0  0  1 

⊕ 



Example 

• Eve 

 

 

 

•         
     

m1: 0  1  1  0  1  1  1 

c2: 0  0  1  0  0  0  1 

c1:     1  1  0  1  1  0  1 

m2: 1  0  0  1  0  1  1 

 

⊕ 



Two times padding/ re-using the IV 
(attack 2)  

• Let  
• c1 = m1 ⊕ k 
• c2 = m2 ⊕ k 

• Eve eavesdrops c1,c2 
 
2nd attack: Known Plaintext Statistics 
• Eve computes: 

c=c1 ⊕c2=m1 ⊕ k ⊕ m2 ⊕ k =m1⊕m2 
 

– Eve combines the (most probable) values of m1 and m2 until 
she produces c 

– It is an efficient way to find candidate pairs (m1,m2) 
 



Example 

• Alice (two times the same keystream) 

 

 

 

•        Bob 
      

m1: 0  1  1  0  1  1  1 

k: 1  0  1  1  0  1  0 

c1:     1  1  0  1  1  0  1 

⊕ 
m2: 1  0  0  1  0  1  1 

k: 1  0  1  1  0  1  0 

c2:     0  0  1  0  0  0  1 

⊕ 



Example 

• Eve 

 

 

 

•         
     

c1:     1  1  0  1  1  0  1 

c2: 0  0  1  0  0  0  1 

c: 1  1  1  1  1  0  0 

 

⊕ 

Trivial leakage:  
 
When the bits of c are zero 
then the corresponding 
bits of m1 and m2 are the 
same 



Example 

• Eve 

 

 

 

•         
     

c1:     1  1  0  1  1  0  1 

c2: 0  0  1  0  0  0  1 

c: 1  1  1  1  1  0  0 

 

⊕ 

Scenario:  
Let any m used by Alice be of the form 

m=X||D 
where X is one of {100, 000,011}. 
 
Then, m1 = X1|D1 and m2= X2|D2 
 
We have that for the different possible X:  

100⊕000= 100 
100⊕011= 111 
000⊕011= 011 

 
Since the first 3 bits of c are 111, then 
the first 3 of m1, m2 are {100,011}/ we 
don’t know which is which.  
 
We can improve the attack we more 
ciphertexts 



WEP - SECURITY 



Wired Equivalent Privacy (WEP) 

• WEP - Part of original 802.11 specification 
published in 1999. 

• Confidentiality 
– Uses RC4 Stream cipher 
– Has static 40-bit base key (common for all the clients) 
– A 64-bit per-packet key 
– A 24-bit Initialization Vector (IV) 

• Integrity 
– Uses Integrity Check Value (ICV) to verify integrity 
– No key!! 



Characteristics - notes 

• Stateless protocol 
– Mobile stations and access points are not required 

to keep past state 

• Encrypted CRC-32 used as integrity check 
– Fine for random errors, but not deliberate ones 

– Linear 
• CRC(X+Y) = CRC(X)+CRC(Y) 

• RC4 keystream should not be reused 
– One-time pad 



Shared-Key Authentication 

beacon 

Prior to communicating data, access point may require client to authenticate 

Access Point Client 

association 
request 

association 

response 

probe request 
OR 

challenge 

challengeRC4(IV,K) 

unauthenticated & 
unassociated 

authenticated & 
unassociated 

authenticated & 
associated 



Shared-Key Authentication 

beacon 

Prior to communicating data, access point may require client to authenticate 

Access Point Client 

association 
request 

association 

response 

probe request 
OR 

challenge 

challengeRC4(IV,K) 

unauthenticated & 
unassociated 

authenticated & 
unassociated 

authenticated & 
associated 

Passive eavesdropper recovers RC4(IV,K),  
can respond to any subsequent challenge  
without knowing K 



Attack on Access Control 

• It is possible to get authenticated without knowing the secret key!  
(shown in blue) 

• We only need a plaintext, ciphertext pair of a legitimate authentication.  
(shown in black) 

client 

server 

Request.Authentication 

128 nonce 

nonce+RC4(IV, key)   IV 

Request received 

nonce+RC4(IV, key) 

Decrypt the packet 
and verify nonce 

Request.Authentication 

128 nonce 

nonce+RC4(IV, key)   IV 

Request received 

nonce+RC4(IV, key) 

Decrypt the packet 
and verify nonce 
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How WEP “Privacy” Works 

24 bits 40 bits 

(IV, shared key) used as RC4 seed 
 Must never be repeated (why?) 
 There is no key update protocol, so 
   security relies on never repeating IV 

IV sent in the clear 
Worse: changing IV with 

each packet is optional! 

CRC-32 checksum is linear in :  
if attacker flips some plaintext bits, he knows which 
bits of CRC to flip to produce the same checksum 

no integrity! 



WEP 

 

IV 

RC4 
key 

IV encrypted packet 

original unencrypted packet checksum 



WEP 

– Share a single cryptographic key among all devices 

– Encrypt all packets sent over the air, using the shared key 

– Use a checksum to prevent injection of spoofed packets 

(encrypted traffic) 



WEP - A Little More Detail 

• WEP uses the RC4 stream cipher to encrypt a TCP/IP 
packet (P) by xor-ing it with keystream (RC4(K, IV)) 

 

IV,     P  RC4(K, IV) 



A Property of RC4 

• Keystream leaks, under known-plaintext attack 

– Suppose we intercept a ciphertext C, and suppose 
we can guess the corresponding plaintext P 

– Let Z = RC4(K, IV) be the RC4 keystream 

– Since C = P  Z, we can derive the RC4 keystream Z 
by P  C = P  (P  Z) = Z 

• This is not a problem ... unless keystream is 
reused! 



A Risk of Keystream Reuse 

• If IV’s repeat, confidentiality is at risk 
– If we send two ciphertexts (C, C’) using the same IV, then the xor of 

plaintexts leaks (P  P’ = C  C’), which might reveal both plaintexts 

 Lesson: If RC4 isn’t used carefully, it becomes insecure 

IV,     P  RC4(K, IV) 

IV,     P’  RC4(K, IV) 



A note on IVs 

• What if random IVs were used?  

• IV space – 224 possibilities  

• Collision after 4000 packets  

• Rough estimate: a busy AP sends 1000 
packets/sec  

• Collision every 4s!  

• Even with counting IV (best case), rollover 
every few hours 



So.. 

• If we have 224 known plaintexts, can decrypt 
every packet!!!!  

 



Attack #1: Keystream Reuse 

• WEP didn’t use RC4 carefully 
• The problem: IV’s frequently repeat 

– The IV is often a counter that starts at zero 
– Hence, rebooting causes IV reuse 
– Also, there are only 16 million possible IV’s, so after 

intercepting enough packets, there are sure to be 
repeats 

 Attackers can eavesdrop on 802.11 traffic 
– An eavesdropper can decrypt intercepted 

ciphertexts even without knowing the key 



Attack #2: Spoofed Packets 

• Attackers can inject forged 802.11 traffic 

– Learn RC4(K, IV) using previous attack 

– Since the checksum is unkeyed, you can then 
create valid ciphertexts that will be accepted by the 
receiver 

 

 



Attack #2: Spoofed Packets 

• Attackers can inject forged 802.11 traffic 
– Learn Z = RC4(K, IV) using previous attack 

– Since the CRC checksum is unkeyed, you can then create valid 
ciphertexts that will be accepted by the receiver 

 

 Attackers can bypass 802.11b access control 
– All computers attached to wireless net are exposed 

 

IV, (P, CRC(P))  Z 



Attack #3: Packet Modification 

• CRC is linear 
   CRC(P  ) = CRC(P)  CRC()  
     the modified packet (P  ) has a valid checksum 

 Attacker can tamper with packet (P) without breaking RC4 

 

(P, CRC(P))  RC4(K) 

(P, CRC(P))  RC4(K)  (, CRC()) 



Attack #4: Replay Attacks 

 Attacker can replay plaintext (P) without breaking RC4 

 Stateless!! 

 

P  RC4(K) P  RC4(K) 

P  RC4(K) 



Attacks 

• Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in WEP's cofin. In IEEE Symposium on Security and 
Privacy, pages 386-400. IEEE Computer Society, 2006. 

• 2. Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile communications: the insecurity of 802.11. 
In ACM MobiCom 2001, pages 180-189. ACM Press, 2001. 

• 3. Rafik Chaabouni. Break WEP faster with statistical analysis. Technical report, EPFL, LASEC, June 2006. 
http://lasecwww.epfl.ch/pub/lasec/doc/cha06.pdf. 

• Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling algorithm of RC4. In Serge 
Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography 2001, volume 2259 of Lecture Notes in 
Computer Science, pages 1-24. Springer, 2001. 

• Andreas Klein. Attacks on the RC4 stream cipher. submitted to Designs, Codes and Cryptography, 2007. 
• KoreK. chopchop (experimental WEP attacks). http://www.netstumbler.org/showthread.php?t=12489, 2004. 
• KoreK. Next generation of WEP attacks? http://www.netstumbler.org/showpost.php?p=93942&postcount=35, 

2004. 
• Subhamoy Maitra and Goutam Paul. Many keystream bytes of RC4 leak secret key information. Cryptology ePrint 

Archive, Report 2007/261, 2007. http://eprint.iacr.org/. 
• Toshihiro Ohigashi, Hidenori Kuwakado, and Masakatu Morii. A key recovery attack on WEP with less packets. to 

be published, 2007. 
• Yuko Ozasa, Yoshiaki Fujikawa, Toshihiro Ohigashi, Hidenori Kuwakado, and Masakatu Morii. A study on the Tews, 

Weinmann, Pyshkin attack against WEP. In IEICE Tech. Rep., volume 107 of ISEC2007-47, pages 17{21, Hokkaido, 
July 2007. Thu, Jul 19, 2007 - Fri, Jul 20 : Future University-Hakodate (ISEC, SITE, IPSJ-CSEC). 

• Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. A key recovery attack on the 802.11b wired equivalent 
privacy protocol (WEP). ACM Transactions on Information and System Security, 7(2):319{332, May 2004. 

• Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin, ‘Breaking 104 bit WEP in less than 60 seconds’, Cryptology 
ePrint Archive, Report 2007/120, 2007. http://eprint.iacr.org/. 
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Recall Shannon’s perfect secrecy 

Let (E,D) be a cipher over (K,M,C)  

(E,D) has perfect secrecy if      ∀ m0, m1 ∈ M    (  |m0| = |m1| ) 

         { E(k,m0) }     =    { E(k,m1) }       where   k⟵K 

 

(E,D) has perfect secrecy if      ∀ m0, m1 ∈ M    (  |m0| = |m1| ) 

         { E(k,m0) }   ≈p   { E(k,m1) }       where   k⟵K 

… but also need adversary to exhibit  m0, m1 ∈ M explicitly 



Semantic Security/ IND-CPA 
For   b=0,1   define experiments EXP(0) and EXP(1) as: 

 
 
 

 

  

for b=0,1:   Wb := [ event that EXP(b)=1  ] 

 AdvSS[A,E] := | Pr[ W0 ] −  Pr[ W1 ] |     ∈ [0,1] 

Chal. 

b 

Adv. A 

kK 

m0 , m1   M :    |m0| = |m1| 

c  E(k, mb) 

b’  {0,1} 



Semantic Security (one-time key) 

Def:   E is semantically secure if for all efficient  
A 
         AdvSS[A,E]    is negligible. 

 - Indistinguishability under chosen-plaintext 
attack (IND-CPA) 

⇒   for all explicit m0 , m1   M :   

    { E(k,m0) }   ≈p   { E(k,m1) }  

 



Adv. B  (us) 

Example 1 

Suppose efficient A can always deduce LSB of PT from CT.      

⇒     E = (E,D) is not semantically secure.   

Chal. 

b{0,1} 

Adv.  A 
(given) 

kK 

C E(k, mb) 

m0, LSB(m0)=0  

m1, LSB(m1)=1  

C 

LSB(mb)=b 

Then  AdvSS[B, E] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1  



Example 1 

• When algorithm A works with probability p 
(not certain) then the attack is the same, only 
the advantage changes. 

• Example, p = 0.8 

 
Then  AdvSS[B, E] = | 0,8 − 0,2 |= |0,6| = 0,6  



Example 2  

• Έστω ότι ο (E,D) είναι ένας semantically secure cipher όπου ο χώρος του 
μηνύματος και του ciphertext είναι {0,1}n. Εϊναι το ακόλουθο σχήμα 
κρυπτογράφησης είναι semantically secure? 

 E′(k,m)=E(k,m)∥∥(LSB(m)⊕ ΜSB(m)) 

Proof (sketch):  

1. Use the definition to evaluate the scheme 

2. We are looking for two messages such that LSB(m)⊕ ΜSB(m) gives 
different output 

3. Two such messages, for any m, are 

– m0 = (0||m||0) 

– m1 = (1||m||0) 

(there are also other choices of course.) 

• The advantage is 1. 

 

 



Adv. B  (us) 

Example 2 

Suppose efficient A can always deduce LSB⊕ LSB of PT from CT.      

⇒     E = (E,D) is not semantically secure.   

Chal. 

b{0,1} 

Adv.  A 
(given) 

kK 

C E(k, mb) 

m0,LSB(m0)=0, MSB(m0)=0  

m1,LSB(m1)=1, MSB(m1)=0  

C 

LSB(mb)⊕ MSB(mb) =b 

Then  AdvSS[B, E] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1  



HASH FUNCTIONS 



Cryptographic properties  



Exercise 1 

Let H:{0,1}*→T  be a collision resistant hash function. Is the following hash 
function collision resistant? 

 H′(m)=H(m)⨁H(m⊕1|m|) 
Where |m| is length of m and 1x is a string of x 1’s.  
For instance, let m=10101. Then, |m|=5 and 1|m|=15=11111 
   

Proof 
As a general rule of thumb,  when you a hash function is not secure, you need to 
provide the attack. Otherwise, you must craft a proof. 
 
Clearly, it is easy to show that any two message m, m’ such that m’= m⊕1|m|, 
they have that same hash value: 

H′(m’)=H(m’)⨁H(m’⊕1|m’|)= H(m⊕1|m|)⨁H(m⊕1|m| ⊕1|m|)= 

= H(m⊕1|m|)⨁H(m)=H’(m) 

Thus, it is not collision resistant.  
 

 
 



Exercise 2 

1. Let H:{0,1}*→{0,1}n  be a collision resistant hash function. 

Is the following hash function collision resistant? 

   H′(m)=H(H(m)) 

 

 

 

H H 

m H’(m) 



Proof (sketch) 

• Let H′(m)=H(H(m)) and let’s assume that H’(m) is not collision resistant. 
Thus, there is a polynomial algorithm A that can compute a pair of 
messages m1 and m2, more efficiently than O(2n/2), such that:  

H’(m1)=H’(m2) 

Thus, it holds H(H(m1))=H(H(m2)). We distinguish two cases: 

1. H(m1)=H(m2). Then, the algorithm A can compute collisions for H(m), 
more efficiently than O(2n/2). This is a contradiction. 

2. H(m1)≠H(m2). Then,  the messages y1=H(m1) and  y2=H(m2)  

H(H(m1))=H(H(m2)) <=> H(y1)=H(y2) 

are collisions for H(m). That is that, the algorithm A can compute collisions for 
H(m), more efficiently than O(2n/2).  This is a contradiction. 

 

 

 



MAC SECURITY 



 Strong Unforgeability 
under Chosen Message Attack (SUF-CMA) 

• For a MAC   I=(S,V)  and adv.  A  define a MAC game as: 
 
 
 
 
 
 
 

 

 

 

Def:  I=(S,V)  is a secure MAC if for all “efficient”  A: 

          AdvMAC[A,I]  =  Pr[Chal. outputs 1]    is “negligible.” 

Chal. Adv. 

kK 

(m,t) 

m1  M 

t1  S(k,m1) 

b=1    if  V(k,m,t) = `yes’   and  (m,t)    { (m1,t1) , … , (mq,tq) } 

b=0   otherwise 

b 

m2 , …, mq 

t2 , …, tq 



(RAW) CBC-MAC security 

 

F(k,) F(k,) F(k,) 

D1 D2 …. Dq 

  

F(k,) 

 

H1 Hq-1 H2 Hq 



(RAW) CBC-MAC security 

• Let m = D0  

(size single block) 

F(k,) 

D0 

tag 

• Let m’ = D0||D0⊕tag  

(size two blocks) 

F(k,) 

D0 

tag 

F(k,) 

D1=D0⊕tag 

tag 

 



 Strong Unforgeability 
under Chosen Message Attack (SUF-CMA) 

 
 
 
 
 
 
 
 

          AdvMAC[A,I]  =  Pr[Chal. outputs 1]=1 

Chal. Adv. 

kK 

(m’,tag) 

m 

tag  S(k,m) 

b=1 

b 



Ασκηση 

• Έστω ότι το ECBC-MAC επιλέγει ένα τυχαίο IV 
για κάθε μήνυμα που προστατεύεται και 
περιλαμβάνει το IVστο tag. Δηλαδή, 
S(k,m):=(r,  ECBCr(k,m)) όπου το ECBCr(k,m) 
αναφέρεται στο ECBC χρησιμοποιώντας το r 
ως IV. Ο αλγόριθμος επιβεβαίωσης V με το 
κλειδί k, το μήνυμα m, και το tag (r,t) 
επιστρέφει ``1'', όταν t=ECBCr(k,m) και ``0'', 
διαφορετικά. Ο αλγόριθμος MAC δεν είναι 
ασφαλής. Γιατί; 

 



raw CBC 

Modified encrypted CBC-MAC (EMAC) 

 

F(k,) F(k,) F(k,) 

D0 D1 … Dq 

  

F(k,) 

 

F(k’,) 
tag 

Hq 

 IV 



Modified encrypted CBC-MAC (EMAC) 

F(k,) 

D0 

 

F(k’,) 
tag 

Hq 

IV 

• Let m1= D0. Then,  
 tag=(IV,  ECBCIV(k,m1)) 
and IV ⊕ D0 is the input of F() 



Modified encrypted CBC-MAC (EMAC) 

F(k,) 

D 

 

F(k’,) 
tag 

Hq 

IV’ 

• It is easy to verify that for any message 
(for any D) 
• m2= D, and 
• IV’ = IV ⊕ D ⊕ D0 

The input of F() is again 
 IV’ ⊕ m2 =IV ⊕ D ⊕ D0 ⊕D=IV ⊕ D0 

 
It holds that  
 tag=(IV’,  ECBCIV’(k,m2)), 



ECBC-MAC and HMAC analysis 

Theorem:     For any L>0, 

For every eff. q-query PRF adv. A attacking FECBC or FNMAC 

there exists an eff. adversary B  s.t.: 

     AdvPRF[A, FECBC]   AdvPRP[B, F]  +  2 q2 / |X| 

   AdvPRF[A, FHMAC]   q⋅L⋅AdvPRF[B, F]  +  q2 / 2|K| 

CBC-MAC is secure as long as   q  <<  |X|1/2 

HMAC is secure as long as   q  <<  |K|1/2  (264 for AES-128) 



An example 

q = # messages MAC-ed with k     

Suppose we want   AdvPRF[A, FECBC] ≤  1/232          ⇐    q2 /|X| < 1/ 232  

• AES:     |X| = 2128    ⇒   q < 248 

 So, after  248  messages must, must change key 

 

• 3DES:    |X| = 264    ⇒   q < 216 

 

AdvPRF[A, FECBC]   AdvPRP[B, F]  +  2 q2 / |X| 





IND-CPA 

• We define an oracle 
 
 
 

• We define a world 
 
 
 

• The problem for the adversary is, after talking to its 
oracle for some time, to tell which of the two oracles it 
was given. 



Security definition 

• Let SE = (K, E,D) be a symmetric encryption 
scheme, and let A be an algorithm that has 
access to an oracle. We consider the following 
experiments: 

 

 

 

The IND-CPA advantage of A is defined as 



Security definition 

• IND-CPA is a very strong notion of security and 
covers all our security goals 

 

• Easy to check… 

– Recover the secret key 

– Distinguish the ciphertext from a random message 

– Create a valid plaintext-ciphertext pair 

– Recover the plaintext from the ciphertext 

 



ECB mode is NOT IND-CPA  

 



Attack ECB mode 

• We now construct such an adversary A. 

 

 

 

 

• We claim that  

 



Why? 

• In world 1,  
– b = 1,  

– the oracle returns C[1]C[2] = EK(0n)||EK(0n),  

– so C[1] = C[2] and A returns 1.  

• In world 0,  
– b = 0,  

– the oracle returns C[1]C[2] = EK(0n)||EK(1n).  

– Since EK is a permutation, C[1],C[2] are different.  So A 
returns 0 in this case. 

• Thus, 



That is… 

• ECB is an insecure encryption scheme even if 
the underlying block cipher E is highly 
secure!!! 

• The weakness is not in the tool being used 
(here the block cipher) but in the manner we 
are using it.!!!  

• It is the ECB mechanism that is at fault!!! 

 

• Maybe it is a more generic problem… 



Any deterministic, stateless schemes is 
insecure 

• Let SE = (K,E,D) be a deterministic, stateless 
symmetric encryption scheme. Assume there is 
an integer m such that the plaintext space of 
the scheme contains two distinct strings of 
length m. Then there is an adversary A such 
that: 

 

Adversary A runs in time O(m) and asks just two 
queries, each of length m. 



Proof 

• We must describe the adversary A 
• A is given an lr-encryption oracle f = EK(LR( , , b)) 
• The goal of A is to determine the value of b (the 

world…) 
 
 
 
 

• It is easy to show that 
 

• That it 


