

Cryptography Lecture 6

Dr. Panagiotis Rizomiliotis

PUBLIC KEY MODEL

Public Key cryptography

- 1976: «New Directions in Cryptography», in IEEE Transactions on information theory by Bailey Whitfield Diffie and Martin Hellman

Bailey Whitfield Diffie Martin Hellman

- 1977: RSA algorithm (Rivest - Shamir - Adleman)
- 1970: "Non-secret encryption" James Ellis
Government Communications Headquarters (GCHQ)

First step: generate a pair of keys

Private key

Public key
\checkmark Alice keeps the private key secret
\checkmark Reliably distributes the public key (Bob learns Alice's public key)

Symmetric key vs public key

Key Pair

Private Key

Public Key

Asymmetric key (Public key)

Data Integrity/Authenticity

Public key Cryptography

Public key infrastructure (PKI)

Applications of Public-Key Cryptosystems

> Digital signatures
\checkmark data authenticity and non-repudiation
$>$ Key agreement
\checkmark to agree on a session key
$>$ Encryption
\checkmark Provides data secrecy
\checkmark key encapsulation
> Entity Authentication
\checkmark Zero Knowledge Proof (ZKP)

Public Key History

- Some algorithms/mathematical problems
- Diffie-Hellman, 1976, key-exchange based on discrete logs
- Merkle-Hellman, 1978, based on "knapsack problem"
- McEliece, 1978, based on algebraic coding theory
- RSA, 1978, based on factoring
- Rabin, 1979, security can be reduced to factoring
- ElGamal, 1985, based on discrete logs
- Blum-Goldwasser, 1985, based on quadratic residues
- Elliptic curves, 1985, discrete logs over Elliptic curves
- Chor-Rivest, 1988, based on knapsack problem
- NTRU, 1996, based on Lattices
- XTR, 2000, based on discrete logs of a particular field

PUBLIC KEY MAIN SCHEMES

Main schemes

1. RSA and the Integer Factorization problem
2. El Gamal and the discrete logarithm problem

Factorization

- Prime Numbers
\Rightarrow prime numbers only have divisors of 1 and self
$>$ they cannot be written as a product of other numbers
$>$ eg. $2,3,5,7$ are prime, $4,6,8,9,10$ are not
- Prime Factorisation
$>$ to factor a number n is to write it as a product of other numbers:
-

$$
\mathrm{n}=\mathrm{a} \times \mathrm{b} \times \mathrm{c}
$$

$>$ note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
$>$ the prime factorisation of a number n is when its written as a product of primes

$$
\text { eg. } 91=7 \times 13 ; 3600=2^{4} \times 3^{2} \times 5^{2}
$$

Factorization

- Prime factorization is considered "hard problem"
\checkmark We now how to solve it
\checkmark We cannot do it efficiently
\checkmark It becomes harder as the size of the integer increases.
- Two types of factoring algorithms
\rightarrow General purpose
$>$ Special-purpose

RSA

- by Rivest, Shamir \& Adleman of MIT in 1977
- security due to cost of factoring large numbers
- The RSA algorithm involves three steps:

1. key generation,
2. encryption
3. decryption

RSA (textbook)

- SetUp (key pair generation)

- Choose two distinct random prime numbers p and q.
- Compute $n=p^{*} q$ (n is public)
- Compute $\varphi(n)=(p-1)^{*}(q-1)(\varphi(n)$ is kept secret)
- Choose an integer $e, 1<e<\varphi(n)$ and $\operatorname{gcd}(e, \varphi(n))=1$, (e is public)
- the most commonly chosen value for e is $2^{16}+1=65,537$.
- the smallest possible value for e is 3
- Compute d as $d e \equiv 1(\bmod \varphi(n))$ (d is kept secret)
- (efficiently by using the Extended Euclidean algorithm)
$\checkmark \quad$ Public key $=(\mathrm{e}, \mathrm{n})$
$\checkmark \quad$ Private key $=(\mathrm{d})$
\checkmark Secret or discarded $=(p, q, \varphi(n))$

RSA Use

- Encryption
- Let m be the plaintext, with $0 \leq \mathrm{m}<\mathrm{n}$.
- Compute $c=m^{e} \bmod n$
- Decryption
- Let c be the ciphertext, with $0 \leq \mathrm{c}<\mathrm{n}$.
- Compute $m=c^{d} \bmod n$

RSA Example

1. SetUp (key pair generation)

- Select primes: $\mathrm{p}=17$ \& $\mathrm{q}=11$
- Compute $\mathrm{n}=\mathrm{pq}=17 \times 11=187$
- Compute $\phi(\mathrm{n})=16 * 10=160$
- Select e : $\operatorname{gcd}(\mathrm{e}, 160)=1$; choose e=7
- Determine $d: d e=1$ mod 160 and $d<160$ Value is $d=23$ since $23 \times 7=161=1 \times 160+1$
- Publish public key $\mathrm{KU}=\{7,187\}$
- Keep secret private key KR=\{23,17,11\}

RSA Example cont

- Given message $M=88$ (nb. $88<187$)
- Encryption:
$-\mathrm{C}=88^{7} \bmod 187=11$
- Decryption:
$-\mathrm{M}=11^{23} \bmod 187=88$

IMPLEMENTATION AND SECURITY
ISSUES

Modular Exponentiation

- For efficiency, modular exponentiation uses some combination of
- Repeated squaring (or square and multiply)
- Chinese Remainder Theorem (CRT)
- Montgomery multiplication
- Sliding window
- Karatsuba multiplication

Algorithm: Square-and-Multiply (x, c, n)

Comment: compute $x^{c} \bmod n$, where $c=c_{k} c_{k-1} \ldots c_{0}$ in binary.
$z \leftarrow 1$
for $i \leftarrow k$ downto 0 do

$$
\left.\begin{array}{l}
z \leftarrow z^{2} \bmod n \\
\quad \text { if } c_{i}=1 \\
\text { then } z \leftarrow(z \times x) \bmod n
\end{array}\right\} \text { i.e., } z \leftarrow\left(z \times x^{c_{i}}\right) \bmod n
$$

return (z)

Note: At the end of iteration $i, z=x^{c_{k} \ldots c_{i}}$.

Example: $11^{23} \bmod 187$
$23=10111_{b}$
$z \leftarrow 1$
$z \leftarrow z^{2} \cdot 11 \bmod 187=11 \quad$ (square and multiply)
$z \leftarrow z^{2} \bmod 187=121 \quad$ (square)
$z \leftarrow z^{2} \cdot 11 \bmod 187=44 \quad$ (square and multiply)
$z \leftarrow z^{2} \cdot 11 \bmod 187=165$ (square and multiply)
$z \leftarrow z^{2} \cdot 11 \bmod 187=88 \quad$ (square and multiply)

Security of Square and multiply

- Simple Power analysis (we can use for public key exponentiation)

- Power trace from an RSA operation
- Uses standard square and multiply
- Square and multiply operations have visibly different power profiles
- ' 1 ' relates to squaring step followed by a multiplication step
- ' 0 ' in the exponent involves only a squaring step

Improving RSA's performance

- To speed up RSA decryption use

$$
C^{d}=M(\bmod N)
$$

small private key d.

- There are several attacks:
- 1987: Wiener showed,
- if $\mathrm{d}<\mathrm{N}^{0.25}$ then RSA is insecure.
- BD'98: if $d<N^{0.292}$ then RSA is insecure

$$
\text { (open: } d<N^{0.5} \text {) }
$$

Insecure: priv. key d can be found from (N, e).

Thus, small d should never be used.

RSA With Low public exponent

- To speed up RSA encryption and sig. verification

$$
\mathrm{C}=\mathrm{M}^{\mathrm{e}}(\bmod \mathrm{~N})
$$

use a small e.

- Minimal value: $e=3 \quad(\operatorname{gcd}(e, \varphi(N))=1)$
- Recommended value: $\mathrm{e}=65537=2^{16}+1$

Encryption: 17 mod. multiplies.

- Several weak attacks. Non known on RSA-OAEP.
- Asymmetry of RSA: fast encryption (sig. verification)/ slow decryption (signature).
- ElGamal: approx. same time for both.

RSA SECURITY

RSA Security

- 4 approaches of attacking on RSA
- brute force key search
- not feasible for large keys
- actually nobody attacks on RSA in that way
- mathematical attacks
- based on difficulty of factorization for large numbers as we shall see in the next slide
- side-channel attacks
- based on running time and other implementation aspects of decryption
- chosen-ciphertext attack
- Some algorithmic characteristics of RSA can be exploited to get information for cryptanalysis
- https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

Is RSA a one-way permutation?

- To invert the RSA one-way function (without d) attacker must compute:

$$
M \text { from } C=M^{e}(\bmod N) \text {. }
$$

- How hard is computing e'th roots modulo N ??
- Best known algorithm:
- Step 1: factor N. (hard)
- Step 2: Find e'th roots modulo p and q. (easy)

Factorization Problem

- 3 forms of mathematical attacks
- factor $n=p^{*} q$, hence find $\phi(n)$ and then d
- determine $\phi(n)$ directly and find d
- is equivalent of factoring n
- find d directly
- as difficult as factoring n
- So RSA cryptanalysis is focused on factorization of large n

Factoring techniques

- Most efficient
- Generalized Number Field Sieve
- Quadratic Sieve
- Lattice Sieve

Reasons of improvement in

 Factorization- increase in computational power
- biggest improvement comes from improved algorithm
- "Quadratic Sieve" to "Generalized Number Field Sieve"
- Then to "Lattice Sieve"

Implementation/side channel attacks

- Timing attack:
- Kocher 1997
- The time it takes to compute $C^{d}(\bmod N)$ can expose d.
- Systems that use repeated squaring but not CRT or Montgomery (smart cards)
- Schindler's attack
- Repeated squaring, CRT and Montgomery (no real systems are known)
- Brumley-Boneh attack
- CRT, Montgomery, sliding windows, Karatsuba (as used in openSSL)
- Power attack: (Kocher 99)

The power consumption of a smartcard while it is computing C^{d} $(\bmod N)$ can expose d.

- Faults attack: (BDL 97)

A computer error during $C^{d}(\bmod N)$ can expose d.

Textbook RSA is insecure

- Textbook RSA encryption:
- public key: (\mathbf{N}, \mathbf{e}) Encrypt: $\mathbf{C}=\mathbf{M}^{\mathbf{e}}(\bmod \mathrm{N})$
- private key: d Decrypt: $\mathbf{C}^{\mathrm{d}}=\mathbf{M}(\bmod \mathrm{N})$
- Completely insecure cryptosystem:
- Does not satisfy basic definitions of security.
- Many attacks exist.
- The RSA trapdoor permutation is not a cryptosystem!

Attack 1: small message space

- If the message space is small, the attacker can encrypt all the candidate massages (offline) and store the computed ciphertexts

Attack 1: small message space

- On-line phase. For a ciphertext c (eavesdropped) the attacker finds c in the table and the corresponding message.

Attack 1: small message space

- Why it works:
- The encryption key is known (public key)
- It doesn't offer semantic security
- The attacker can repeat all actions of the message owner
- CPA doesn't make sense
- CCA is more relevant.

Attack 2: Chosen ciphertext Attack

- The textbook RSA has multiplicative homomorphism.
- Let
- c1=m1e modn
$-\mathrm{c} 2=\mathrm{m} 2^{\mathrm{e}} \operatorname{modn} \mathrm{n}$
- Thus, for
$-\mathrm{c}=\mathrm{c} 1^{*} \mathrm{c} 2=m 1^{\mathrm{e} *} \mathrm{~m} 2^{\mathrm{e}} \bmod \mathrm{n}=\left(\mathrm{m} 1^{*} \mathrm{~m} 2\right)^{\mathrm{e}} \bmod \mathrm{n}$
i.e. c is the encryption of $m=m 1^{*} m 2$, when $\mathrm{m} 1^{*} \mathrm{~m} 2<\mathrm{n}$

Attack 2: Chosen ciphertext Attack

Attack scenario:

The private key owner can decrypt for us any ciphertext except a specific one (target of the attack) c_{t}. We want to compute the message m_{t}.

1. The attacker encrypts the message $r=2$.

- $\mathrm{c}_{\mathrm{r}}=2^{\mathrm{e}} \bmod \mathrm{n}$

2. The attacker computes - $c=c_{t}{ }^{*} c_{r} \bmod n$
3. The attacker asks for the decryption of c. Let m be the reply of the key owner.
4. The attacker computes $\mathrm{m}^{\prime}=\mathrm{m} / 2$ as m_{t}.

Proof: The attack works when $m_{t}<n / 2$, i.e. when $r^{*} m_{t}<n$.

Attack 3: A simple attack on textbook RSA

- Session-key K is 64 bits. View $\mathrm{K} \in\left\{0, \ldots, 2^{64}\right\}$
- Eavesdropper sees: $\mathrm{C}=\mathrm{K}^{\mathrm{e}}(\bmod \mathrm{N})$.
- Suppose $K=K_{1} \cdot K_{2}$ where $K_{1}, K_{2}<2^{34}$. (prob. $\approx 20 \%$) Then: $\mathbf{C} / K_{1}{ }^{e}=$ $K_{2}{ }^{e}(\bmod N)$
- Build table: $\mathrm{C} / 1^{\mathrm{e}}, \mathrm{C} / 2^{\mathrm{e}}, \mathrm{C} / 3^{e}, \ldots, \mathrm{C} / 2^{34 e}$. time: 2^{34}

For $\mathrm{K}_{2}=0, \ldots, 2^{34}$ test if $\mathrm{K}_{2}{ }^{\mathrm{e}}$ is in table. time: $2^{34} .34$

- Attack time: $\approx 2^{40} \ll 2^{64}$

Common RSA encryption

- Never use textbook RSA.
- RSA in practice:

- Main question:
- How should the preprocessing be done?
- Can we argue about security of resulting system?

In practice

- Public key encryption schemes are rarely used to actually encrypt messages
- They are usually used to encrypt a symmetric key
- Only
- RSA-PKCS\# 1 v1.5 and
- RSA-OAEP
can be considered as traditional public key encryption algorithms

PKCS\#1 V1.5

16 bits

- Resulting value is RSA encrypted.
- Widely deployed in web servers and browsers. used in the SSL/TLS protocol extensively
- no modern security proof

PKCS\#1 V2.0-OAEP

- New preprocessing function: OAEP (BR94).

Check pad on decryption.
Reject CT if invalid.

- Thm: RSA is trap-door permutation \Rightarrow OAEP is CCS when H,G are "random oracles".
- In practice: use SHA-1 or MD5 for H and G .

PKCS\#1 V2.0 - OAEP

- The preferred method of using the RSA primitive to encrypt a small message
- provably secure in the random oracle model
- SHA-2/SHA-3 for future applications

OAEP Improvements

- OAEP+: (Shoup’01)
\forall trap-door permutation F F-OAEP+ is CCS when H,G,W are "random oracles".

- SAEP+: (B’01)

RSA trap-door perm \Rightarrow RSA-SAEP+ is CCS when H,W are "random oracle".

Key lengths

- Security of public key system should be comparable to security of block cipher.
NIST:

Cipher key-size	Modulus size
	512 bits.
80 bits	1024 bits
128 bits	3072 bits.
256 bits (AES)	$\underline{15360}$ bits

- High security \Rightarrow very large moduli.

Not necessary with Elliptic Curve Cryptography (more details later)

Thanks to Kris Gaj for this figure

EL GAMAL

Discrete Logarithm

- $\mathrm{Z}_{\mathrm{n}}{ }^{*}=\{1,2,3, \ldots, \mathrm{n}-1\}$
- Definition. Let $b \in Z_{n}{ }^{*}$. The order of b is the smallest positive integer satisfying $b^{\mathrm{e}} \equiv 1(\bmod \mathrm{n})$.
- $Z_{p}{ }^{*}=\langle\alpha\rangle$, i.e. $\operatorname{ord}(\alpha)=p-1$. when $n=p=$ prime integer
- Example

$$
\begin{aligned}
& -Z_{7}^{*}=<3>3^{1}=3,3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=5,3^{6}=1 \\
& -Z_{13}^{*}=<2>2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=3,2^{5}=6,2^{6}=12,2^{7}=11, \\
& 2^{8}=9,2^{9}=5,2^{10}=10,2^{11}=7,2^{12}=1
\end{aligned}
$$

Discrete Logarithm

- If g is a generator of $Z_{n}{ }^{*}$, then for all y there is a unique $x(\bmod \phi(n))$ such that

$$
-y=g^{x} \bmod n
$$

- This is called the discrete logarithm of y and we use the notation

$$
-x=\log _{g}(y)
$$

- The discrete logarithm is conjectured to be hard as factoring.
- Example
$-Z_{13}^{*}=<2>2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=3,2^{5}=6,2^{6}=12,2^{7}=11,2^{8}=9,2^{9}=5$, $2^{10}=10,2^{11}=7,2^{12}=1$
$-\log _{2}(5)=9$.

ElGamal

$>$ Invented in 1985
$>$ Designed by Dr. Taher Elgamal
$>$ Based on the difficulty of the discrete log

- problem
$>$ No patents

$>$ Digital signature and Key-exchange variants
- Works over various groups
$\checkmark Z_{p}$,
\checkmark Multiplicative group GF(p^{n}),
\checkmark Elliptic Curves

ElGamal Public-key Cryptosystem

- SetUp (Ring of integers)
- Choose a prime number p (selected so that it is hard to solve the discrete log problem)
- All operations in the ring $Z^{*}{ }_{p}$

1. Randomly select a generator g for $\mathrm{Z}^{*}{ }_{\mathrm{p}}$
2. Randomly select an element $a \in Z^{*}{ }_{p}$
3. Compute $\beta=g^{\mathrm{a}} \bmod \mathrm{p}$
$>$ Public Key: (g, β) and the prime p (some description of the ring)
> Private Key: a

EIGamal Public-key Cryptosystem

- Encryption
- Encryption of the message m
- Randomly select an element $k \in Z^{*}{ }_{p}$
- Compute the ciphertext:
- $\mathrm{C}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)$

$$
=\left(\mathrm{g}^{\mathrm{k}}, \mathrm{~m} * \beta^{\mathrm{k}}\right)
$$

- Delete k!
- Decryption of C
- Decryption of the ciphertext $\mathrm{C}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)$
- Compute
- $c_{2}{ }^{*}\left(c_{1}{ }^{a}\right)^{-1}=\left(m^{*} \beta^{k}\right)^{*}\left(g^{k a}\right)^{-1}=m^{*} \beta^{k} *\left(\beta^{k}\right)^{-1}=m$
- Randomly select an element $k \in Z^{*}{ }_{p}$

Known k, $=>\beta^{k}=>c 2 / \beta^{k}=m 1$

- Repeat k
- C1 = ($\mathrm{c}_{1}, \mathrm{c}_{2}$)

$$
=\left(\mathrm{g}^{\mathrm{k}}, \mathrm{~m} 1^{*} \beta^{\mathrm{k}}\right)
$$

- $\mathrm{C} 1=\left(\mathrm{c}_{1}, \mathrm{c}_{2}{ }_{2}\right)$
$=\left(\mathrm{g}{ }^{\mathrm{k}}, \mathrm{m} 2{ }^{*} \beta^{\mathrm{k}}\right)$
- $c_{2} / c^{\prime}{ }_{2}=m 1 / m 2$

ElGamal: Example

- SetUp (Ring of integers)
- Choose a prime number $\mathrm{p}=11$.
- $\mathrm{g}=2$
- $a=8$
- Compute $\beta=2^{8}(\bmod 11)=3$
- Public key: $(2,3), \mathrm{Z}_{11}{ }^{*}$
- Private key: 8
- Encryption:
- For $m=7, k=4$, we compute $C=\left(2^{4}, 7^{*} 3^{4}\right)=(5,6)$
- Decryption:
- $6 *\left(5^{8}\right)^{-1}=6 * 4^{-1}=6 * 3(\bmod 11)=7$

RSA vs El GAMAL

>A disadvantage of ElGamal encryption is that there is message expansion by a factor of 2 . That is, the ciphertext is twice as long as the corresponding plaintext.
$>$ El Gamal is by design probabilistic.
$>$ RSA is more mature and has better marketing
>El Gamal can achieve much better performance.

Questions?

Fermat's Theorem

- $a^{p-1} \bmod p=1$
- where p is prime and $\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1$
- also known as Fermat's Little Theorem
- useful in public key and primality testing

Euler Totient Function $\varphi(\mathrm{n})$

- when doing arithmetic modulo n
- complete set of residues is: $0 . . n-1$
- reduced set of residues is those numbers (residues) which are relatively prime to n
- eg for $\mathrm{n}=10$,
- complete set of residues is $\{0,1,2,3,4,5,6,7,8,9\}$
- reduced set of residues is $\{1,3,7,9\}$
- number of elements in reduced set of residues is called the Euler Totient Function $\varphi(\mathbf{n})$

Euler's Theorem

A generalisation of Fermat's Theorem

- $\mathrm{a}^{\varphi(\mathrm{N})} \bmod \mathrm{N}=1$
- where $\operatorname{gcd}(a, N)=1$
eg.
$-a=3 ; n=10 ; \varphi(10)=4 ;$
- hence $3^{4}=81=1 \bmod 10$
$-a=2 ; n=11 ; \varphi(11)=10$;
- hence $2^{10}=1024=1 \bmod 11$

Why RSA Works

- because of Euler's Theorem:
- $a^{\varphi(\mathrm{N})} \bmod \mathrm{N}=1$
- where $\operatorname{gcd}(a, N)=1$
- in RSA have:
$-\mathrm{N}=\mathrm{p} . \mathrm{q}$
$-\varphi(N)=(p-1)(q-1)$
- carefully chosen e \& d to be inverses $\bmod \varphi(N)$
- hence $\mathrm{e}^{*} \mathrm{~d}=1+\mathrm{k} . \varphi(\mathrm{N})$ for some k
- hence :
$\mathrm{C}^{\mathrm{d}}=\left(\mathrm{M}^{\mathrm{e}}\right)^{\mathrm{d}}=\mathrm{M}^{1+\mathrm{k} \cdot \varphi(\mathrm{N})}=\mathrm{M}^{1} .\left(\mathrm{M}^{\varphi(\mathrm{N})}\right)^{\mathrm{k}}=\mathrm{M}^{1} .(1)^{\mathrm{k}}$
$=\mathrm{M}^{1}=\mathrm{M} \bmod \mathrm{N}$

