
Cryptography
Lecture 6

Dr. Panagiotis Rizomiliotis

PUBLIC KEY MODEL

Public Key cryptography

• 1976: «New Directions in Cryptography», in

IEEE Transactions on information theory by

Bailey Whitfield Diffie and Martin Hellman

• 1977: RSA algorithm (Rivest – Shamir – Adleman)

• 1970: “Non-secret encryption”

James Ellis

Government Communications Headquarters (GCHQ)

Bailey Whitfield Diffie
Martin Hellman

First step: generate a pair of keys

 Alice keeps the private key secret
 Reliably distributes the public key (Bob learns Alice’s public key)

Private key

Public key

Symmetric key vs public key

Secret key

Key Pair

Private Key

Public Key

Asymmetric key (Public key)

Encryption

Data Integrity/Authenticity

Public key Cryptography

Public key infrastructure (PKI)

Applications of Public-Key Cryptosystems

 Digital signatures

 data authenticity and non-repudiation

 Key agreement

 to agree on a session key

 Encryption

 Provides data secrecy

 key encapsulation

 Entity Authentication

 Zero Knowledge Proof (ZKP)

Public Key History

• Some algorithms/mathematical problems
– Diffie-Hellman, 1976, key-exchange based on discrete logs
– Merkle-Hellman, 1978, based on “knapsack problem”
– McEliece, 1978, based on algebraic coding theory
– RSA, 1978, based on factoring
– Rabin, 1979, security can be reduced to factoring
– ElGamal, 1985, based on discrete logs
– Blum-Goldwasser, 1985, based on quadratic residues
– Elliptic curves, 1985, discrete logs over Elliptic curves
– Chor-Rivest, 1988, based on knapsack problem
– NTRU, 1996, based on Lattices
– XTR, 2000, based on discrete logs of a particular field

PUBLIC KEY MAIN SCHEMES

Main schemes

1. RSA and the Integer Factorization problem

2. El Gamal and the discrete logarithm problem

Factorization

• Prime Numbers
 prime numbers only have divisors of 1 and self

 they cannot be written as a product of other numbers
 eg. 2,3,5,7 are prime, 4,6,8,9,10 are not

• Prime Factorisation
 to factor a number n is to write it as a product of other numbers:

• n=a × b × c

 note that factoring a number is relatively hard compared to multiplying the factors
together to generate the number

 the prime factorisation of a number n is when its written as a product of primes
– eg. 91=7×13 ; 3600=24×32×52

Factorization

• Prime factorization is considered “hard problem”

We now how to solve it
We cannot do it efficiently
 It becomes harder as the size of the integer

increases.

• Two types of factoring algorithms
General purpose
Special-purpose

RSA

• by Rivest, Shamir & Adleman of MIT in 1977
• security due to cost of factoring large numbers

• The RSA algorithm involves three steps:
1. key generation,
2. encryption
3. decryption

RSA (textbook)

• SetUp (key pair generation)
• Choose two distinct random prime numbers p and q.

• Compute n = p*q (n is public)

• Compute φ(n) = (p − 1)*(q − 1) (φ(n) is kept secret)

• Choose an integer e, 1 < e < φ(n) and gcd(e, φ(n)) = 1, (e is public)

• the most commonly chosen value for e is 216 + 1 = 65,537.

• the smallest possible value for e is 3

• Compute d as d e≡1 (mod φ(n)) (d is kept secret)

• (efficiently by using the Extended Euclidean algorithm)

 Public key = (e, n)

 Private key = (d)

 Secret or discarded = (p, q, φ(n))

RSA Use

• Encryption
• Let m be the plaintext, with 0 ≤ m < n.

• Compute c = me mod n

• Decryption
• Let c be the ciphertext, with 0 ≤ c < n.

• Compute m = cd mod n

RSA Example

1. SetUp (key pair generation)

– Select primes: p=17 & q=11
– Compute n = pq =17×11=187
– Compute φ(n)=16*10=160

– Select e : gcd(e,160)=1; choose e=7

– Determine d: de=1 mod 160 and d < 160 Value is d=23 since

23×7=161= 1×160+1

• Publish public key KU={7,187}
• Keep secret private key KR={23,17,11}

RSA Example cont

• Given message M = 88 (nb. 88<187)

• Encryption:

– C = 887 mod 187 = 11

• Decryption:

– M = 1123 mod 187 = 88

 IMPLEMENTATION AND SECURITY
ISSUES

Modular Exponentiation

• For efficiency, modular exponentiation uses some
combination of

– Repeated squaring (or square and multiply)

– Chinese Remainder Theorem (CRT)

– Montgomery multiplication

– Sliding window

– Karatsuba multiplication

1 0

2

 Comment: compute mod , where in binary.

 1

 for downto 0 do

 mod

if 1

then mod

Algorithm: Square-and-Multiply(, ,)

c

k k

i

x n c c c c

z

i k

z z n

c

z z x

x c n

...
Note: At

 i.e.,

 the e

 mod

nd of

 retu

 iteratio

rn

n , .

 ()

k

i

i

c

c c
i

z z x n

z

z

n

x

2

2

2

2

3

2

 23 10111

 1

 11 mod 187 11 (square and multiply)

 mod 187 121 (square)

 11 mod 187 44 (square and multiply)

 11 mod 187 165 (square and

11 mod187

 mu

Example:

b

z

z z

z z

z z

z z

2

ltiply)

 11 mod 187 88 (square and multiply)z z

• Simple Power analysis (we can use for public
key exponentiation)

Security of Square and multiply

Improving RSA’s performance

• To speed up RSA decryption use

 C
d
 = M (mod N)

small private key d.
• There are several attacks:

– 1987: Wiener showed,
• if d < N0.25 then RSA is insecure.

– BD’98: if d < N0.292 then RSA is insecure
 (open: d < N0.5)

Insecure: priv. key d can be found from (N,e).

Thus, small d should never be used.

RSA With Low public exponent

• To speed up RSA encryption and sig. verification

 C = Me (mod N)

 use a small e.

• Minimal value: e=3 (gcd(e, (N)) = 1)

• Recommended value: e=65537=216+1

 Encryption: 17 mod. multiplies.

• Several weak attacks. Non known on RSA-OAEP.

• Asymmetry of RSA: fast encryption (sig. verification)/ slow decryption

(signature).
– ElGamal: approx. same time for both.

RSA SECURITY

RSA Security

• 4 approaches of attacking on RSA
– brute force key search

• not feasible for large keys

• actually nobody attacks on RSA in that way

– mathematical attacks
• based on difficulty of factorization for large numbers as we shall see in the

next slide

– side-channel attacks
• based on running time and other implementation aspects of decryption

– chosen-ciphertext attack
• Some algorithmic characteristics of RSA can be exploited to get

information for cryptanalysis

• https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

Is RSA a one-way permutation?

• To invert the RSA one-way function (without d)

attacker must compute:

 M from C = Me (mod N).

• How hard is computing e’th roots modulo N ??

• Best known algorithm:
– Step 1: factor N. (hard)

– Step 2: Find e’th roots modulo p and q. (easy)

Factorization Problem

• 3 forms of mathematical attacks
– factor n=p*q, hence find φ(n) and then d

– determine φ(n) directly and find d

• is equivalent of factoring n

– find d directly

• as difficult as factoring n

• So RSA cryptanalysis is focused on
factorization of large n

Factoring techniques

• Most efficient

– Generalized Number Field Sieve

– Quadratic Sieve

– Lattice Sieve

Reasons of improvement in
Factorization

• increase in computational power

• biggest improvement comes from improved
algorithm

– “Quadratic Sieve” to “Generalized Number Field
Sieve”

– Then to “Lattice Sieve”

Implementation/side channel attacks

• Timing attack:

– Kocher 1997

• The time it takes to compute Cd (mod N) can expose d.

• Systems that use repeated squaring but not CRT or Montgomery (smart cards)

– Schindler’s attack
• Repeated squaring, CRT and Montgomery (no real systems are known)

– Brumley-Boneh attack
• CRT, Montgomery, sliding windows, Karatsuba (as used in openSSL)

• Power attack: (Kocher 99)
 The power consumption of a smartcard while it is computing Cd
(mod N) can expose d.

• Faults attack: (BDL 97)
 A computer error during Cd (mod N) can expose d.

Textbook RSA is insecure

• Textbook RSA encryption:
– public key: (N,e) Encrypt: C = Me (mod N)

– private key: d Decrypt: Cd = M (mod N)

• Completely insecure cryptosystem:
– Does not satisfy basic definitions of security.

– Many attacks exist.

• The RSA trapdoor permutation is not a
cryptosystem !

Attack 1: small message space

• If the message space is small, the attacker can
encrypt all the candidate massages (offline)
and store the computed ciphertexts

M1

M2

M3

…

Mδ-1

Mδ

Enc

pk

C1

C2

C3

…

Cδ-1

Cδ

Attack 1: small message space

• On-line phase. For a ciphertext c (eavesdropped) the
attacker finds c in the table and the corresponding
message.

 M1

M2

M3

…

Mδ-1

Mδ

C1

C2

C3

…

Cδ-1

Cδ

Attack 1: small message space

• Why it works:

– The encryption key is known (public key)

– It doesn’t offer semantic security

– The attacker can repeat all actions of the message
owner

• CPA doesn’t make sense

• CCA is more relevant.

Attack 2: Chosen ciphertext Attack

• The textbook RSA has multiplicative
homomorphism.

• Let
– c1=m1e mod n

– c2=m2e mod n

• Thus, for
– c=c1*c2=m1e*m2e mod n=(m1*m2) e mod n

i.e. c is the encryption of m=m1*m2, when
m1*m2<n

Attack 2: Chosen ciphertext Attack

Attack scenario:
The private key owner can decrypt for us any ciphertext except a specific one
(target of the attack) ct. We want to compute the message mt.

1. The attacker encrypts the message r = 2.

– cr=2e mod n

2. The attacker computes
– c=ct*cr mod n

3. The attacker asks for the decryption of c. Let m be the reply of the key
owner.

4. The attacker computes m’=m/2 as mt.

Proof: The attack works when mt<n/2, i.e. when r* mt<n.

Attack 3: A simple attack on textbook
RSA

• Session-key K is 64 bits. View K {0,…,264}

• Eavesdropper sees: C = Ke (mod N) .

• Suppose K = K1K2 where K1, K2 < 234 . (prob. 20%) Then: C/K1
e =

K2
e (mod N)

• Build table: C/1e, C/2e, C/3e, …, C/234e . time: 234

 For K2 = 0,…, 234 test if K2
e is in table. time: 23434

• Attack time: 240 << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) d

C=RSA(K)

Random
session-
key K

Common RSA encryption

• Never use textbook RSA.
• RSA in practice:

• Main question:
– How should the preprocessing be done?
– Can we argue about security of resulting system?

msg
Preprocessing

cip
h

ertext

RSA

In practice

• Public key encryption schemes are rarely used to
actually encrypt messages

• They are usually used to encrypt a symmetric key
• Only

– RSA-PKCS# 1 v1.5 and
– RSA-OAEP

can be considered as traditional public key encryption
algorithms

PKCS#1 V1.5

• Resulting value is RSA encrypted.

• Widely deployed in web servers and browsers. used in the SSL/TLS protocol
extensively

• no modern security proof

02 random pad FF msg

1024 bits

16 bits

PKCS#1 V2.0 - OAEP

• New preprocessing function: OAEP (BR94).

• Thm: RSA is trap-door permutation OAEP is CCS
 when H,G are “random oracles”.

• In practice: use SHA-1 or MD5 for H and G.

H +

G +

Plaintext to encrypt with RSA

rand. M 01 00..0

Check pad
on decryption.
Reject CT if invalid.

{0,1}n-1

PKCS#1 V2.0 - OAEP

• The preferred method of using the RSA
primitive to encrypt a small message

• provably secure in the random oracle model

• SHA-2/SHA-3 for future applications

OAEP Improvements

• OAEP+: (Shoup’01)

 trap-door permutation F
F-OAEP+ is CCS when
H,G,W are “random oracles”.

• SAEP+: (B’01)

 RSA trap-door perm

RSA-SAEP+ is CCS when

H,W are “random oracle”.

R

H +

G +

M W(M,R)

R

H +

M W(M,R)

Key lengths

• Security of public key system should be comparable to security of
block cipher.

NIST:

 Cipher key-size Modulus size

 64 bits 512 bits.

 80 bits 1024 bits

 128 bits 3072 bits.

 256 bits (AES) 15360 bits

• High security very large moduli.

Not necessary with Elliptic Curve Cryptography (more details later)

Thanks to Kris Gaj for this figure

EL GAMAL

Discrete Logarithm

• Zn*={1,2,3,…,n-1}

• Definition. Let b Zn* . The order of b is the smallest positive
integer satisfying be 1 (mod n).

• Zp* = <>, i.e. ord() = p-1. when n=p=prime integer

• Example
– Z7* = <3> 31=3, 32=2, 33=6, 34=4, 35=5, 36=1

– Z13* = <2> 21=2, 22=4, 23=8, 24=3, 25=6, 26=12, 27=11,
28=9, 29=5, 210=10, 211=7, 212=1

Discrete Logarithm

• If g is a generator of Zn
*, then for all y there is a unique x (mod (n))

such that
– y = gx mod n

• This is called the discrete logarithm of y and we use the notation
– x = logg(y)

• The discrete logarithm is conjectured to be hard as factoring.

• Example

– Z13* = <2> 21=2, 22=4, 23=8, 24=3, 25=6, 26=12, 27=11, 28=9, 29=5,
210=10, 211=7, 212=1

– Log2(5) = 9.

ElGamal

 Invented in 1985

 Designed by Dr. Taher Elgamal

 Based on the difficulty of the discrete log

• problem
 No patents

 Digital signature and Key-exchange variants

• Works over various groups

 Zp,

 Multiplicative group GF(pn),

 Elliptic Curves

ElGamal Public-key Cryptosystem

• SetUp (Ring of integers)

• Choose a prime number p (selected so that it is hard to
solve the discrete log problem)

• All operations in the ring Z*p

1. Randomly select a generator g for Z*p
2. Randomly select an element a Z*p
3. Compute = ga mod p

 Public Key: (g,) and the prime p (some description of the

ring)
 Private Key: a

ElGamal Public-key Cryptosystem

• Encryption
• Encryption of the message m

o Randomly select an element k Z*p
• Compute the ciphertext:
o C = (c1, c2)

 = (g k, m * k)
o Delete k!

• Decryption of C
• Decryption of the ciphertext C = (c1, c2)
• Compute
o c2 * (c1

a)-1 = (m * k) * (gka)-1= m * k * (k)-1= m

o Randomly select an element k Z*p

Known k, => k =>c2/ k =m1

• Repeat k

o C1 = (c1, c2)
 = (g k, m1 * k)

• C1 = (c1, c’2)
 = (g k, m2 * k)

• c2 / c’2= m1/m2

ElGamal: Example

• SetUp (Ring of integers)

• Choose a prime number p=11.

o g = 2

o a = 8

o Compute β= 28 (mod 11) = 3

• Public key: (2,3), Z11
*

• Private key: 8

• Encryption:

• For m=7, k=4, we compute C= (24, 7 * 34)= (5, 6)

• Decryption:

• 6 * (58)-1= 6 * 4-1= 6 * 3 (mod 11)= 7

RSA vs El GAMAL

A disadvantage of ElGamal encryption is that
there is message expansion by a factor of 2. That
is, the ciphertext is twice as long as the
corresponding plaintext.

El Gamal is by design probabilistic.

RSA is more mature and has better marketing

El Gamal can achieve much better performance.

Fermat's Theorem

• ap-1 mod p = 1

– where p is prime and gcd(a,p)=1

• also known as Fermat’s Little Theorem

• useful in public key and primality testing

Euler Totient Function φ(n)

• when doing arithmetic modulo n

• complete set of residues is: 0..n-1

• reduced set of residues is those numbers
(residues) which are relatively prime to n

– eg for n=10,

– complete set of residues is {0,1,2,3,4,5,6,7,8,9}

– reduced set of residues is {1,3,7,9}

• number of elements in reduced set of residues
is called the Euler Totient Function φ(n)

Euler's Theorem

Α generalisation of Fermat's Theorem

• aφ(N)mod N = 1

– where gcd(a,N)=1

eg.

– a=3;n=10; φ(10)=4;

– hence 34 = 81 = 1 mod 10

– a=2;n=11; φ(11)=10;

– hence 210 = 1024 = 1 mod 11

Why RSA Works

• because of Euler's Theorem:
• aφ(N)mod N = 1

– where gcd(a,N)=1

• in RSA have:
– N=p.q
– φ(N)=(p-1)(q-1)
– carefully chosen e & d to be inverses mod φ(N)
– hence e*d=1+k.φ(N) for some k

• hence :
Cd = (Me)d = M1+k.φ(N) = M1.(Mφ(N))k = M1.(1)k
= M1 = M mod N

