

Cryptography Lecture 6

Dr. Panagiotis Rizomiliotis

PUBLIC KEY MODEL

Public Key cryptography

 1976: «New Directions in Cryptography», in IEEE Transactions on information theory by Bailey Whitfield Diffie and Martin Hellman

1970: "Non-secret encryption"
 James Ellis
 Government Communications Headquarters (GCHQ)

Bailey Whitfield Diffie Martin Hellman

First step: generate a pair of keys

- ✓ Alice keeps the private key secret
- ✓ Reliably distributes the public key (Bob learns Alice's public key)

Symmetric key vs public key

Asymmetric key (Public key)

Public key Cryptography

Public key infrastructure (PKI)

Applications of Public-Key Cryptosystems

- Digital signatures
 - √ data authenticity and non-repudiation
- Key agreement
 - √ to agree on a session key
- > Encryption
 - ✓ Provides data secrecy
 - √ key encapsulation
- > Entity Authentication
 - ✓ Zero Knowledge Proof (ZKP)

Public Key History

- Some algorithms/mathematical problems
 - Diffie-Hellman, 1976, key-exchange based on discrete logs
 - Merkle-Hellman, 1978, based on "knapsack problem"
 - McEliece, 1978, based on algebraic coding theory
 - RSA, 1978, based on factoring
 - Rabin, 1979, security can be reduced to factoring
 - ElGamal, 1985, based on discrete logs
 - Blum-Goldwasser, 1985, based on quadratic residues
 - Elliptic curves, 1985, discrete logs over Elliptic curves
 - Chor-Rivest, 1988, based on knapsack problem
 - NTRU, 1996, based on Lattices
 - XTR, 2000, based on discrete logs of a particular field

PUBLIC KEY MAIN SCHEMES

Main schemes

- 1. RSA and the Integer Factorization problem
- 2. El Gamal and the discrete logarithm problem

Factorization

Prime Numbers

- > prime numbers only have divisors of 1 and self
- > they cannot be written as a product of other numbers
- eg. 2,3,5,7 are prime, 4,6,8,9,10 are not

Prime Factorisation

- > to factor a number n is to write it as a product of other numbers:
- $n=a \times b \times c$
- > note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- > the prime factorisation of a number n is when its written as a product of primes

$$-$$
 eg. $91=7\times13$; $3600=2^4\times3^2\times5^2$

Factorization

- Prime factorization is considered "hard problem"
- ✓ We now how to solve it
- ✓ We cannot do it efficiently
- ✓ It becomes harder as the size of the integer increases.
- Two types of factoring algorithms
- General purpose
- ➤ Special-purpose

RSA

- by Rivest, Shamir & Adleman of MIT in 1977
- security due to cost of factoring large numbers

- The RSA algorithm involves three steps:
- 1. key generation,
- 2. encryption
- 3. decryption

RSA (textbook)

SetUp (key pair generation)

- Choose two distinct random prime numbers p and q.
- Compute n = p*q (n is public)
- Compute $\varphi(n) = (p-1)^*(q-1)(\varphi(n))$ is kept secret)
- Choose an integer e, $1 < e < \varphi(n)$ and $gcd(e, \varphi(n)) = 1$, (e is public)
 - the most commonly chosen value for e is $2^{16} + 1 = 65,537$.
 - the smallest possible value for e is 3
- Compute d as d e≡1 (mod φ(n)) (d is kept secret)
 - · (efficiently by using the Extended Euclidean algorithm)
- ✓ Public key = (e, n)
- ✓ Private key = (d)
- ✓ Secret or discarded = $(p, q, \phi(n))$

RSA Use

Encryption

- Let m be the plaintext, with $0 \le m < n$.
- Compute c = m^e mod n

Decryption

- Let c be the ciphertext, with $0 \le c < n$.
- Compute $m = c^d \mod n$

RSA Example

- 1. SetUp (key pair generation)
 - Select primes: p=17 & q=11
 - Compute $n = pq = 17 \times 11 = 187$
 - Compute $\phi(n)=16*10=160$
 - Select e : gcd(e,160)=1; choose e=7
 - Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23×7=161= 1×160+1
- Publish public key KU={7,187}
- Keep secret private key KR={23,17,11}

RSA Example cont

• Given message M = 88 (nb. 88<187)

• Encryption:

$$-C = 88^7 \mod 187 = 11$$

• Decryption:

$$-M = 11^{23} \mod 187 = 88$$

IMPLEMENTATION AND SECURITY ISSUES

Modular Exponentiation

- For efficiency, modular exponentiation uses some combination of
 - Repeated squaring (or square and multiply)
 - Chinese Remainder Theorem (CRT)
 - Montgomery multiplication
 - Sliding window
 - Karatsuba multiplication

Algorithm: Square-and-Multiply(x, c, n)

Comment: compute $x^c \mod n$, where $c = c_k c_{k-1} \dots c_0$ in binary.

$$z \leftarrow 1$$
for $i \leftarrow k$ downto 0 do
$$z \leftarrow z^2 \mod n$$
if $c_i = 1$
then $z \leftarrow (z \times x) \mod n$

$$i.e., z \leftarrow (z \times x^{c_i}) \mod n$$
return (z)

Note: At the end of iteration i, $z = x^{c_k \dots c_i}$.

Example: $11^{23} \mod 187$

$$23 = 10111_b$$

 $z \leftarrow 1$
 $z \leftarrow z^2 \cdot 11 \mod 187 = 11$ (square and multiply)
 $z \leftarrow z^2 \mod 187 = 121$ (square)
 $z \leftarrow z^2 \cdot 11 \mod 187 = 44$ (square and multiply)
 $z \leftarrow z^2 \cdot 11 \mod 187 = 165$ (square and multiply)
 $z \leftarrow z^2 \cdot 11 \mod 187 = 88$ (square and multiply)

Security of Square and multiply

 Simple Power analysis (we can use for public key exponentiation)

- Power trace from an RSA operation
- Uses standard square and multiply
- Square and multiply operations have visibly different power profiles
- '1' relates to squaring step followed by a multiplication step
- '0' in the exponent involves only a squaring step

Improving RSA's performance

To speed up RSA decryption use

$$C^d = M \pmod{N}$$

small private key d.

- There are several attacks:
 - 1987: Wiener showed,
 - if $d < N^{0.25}$ then RSA is insecure.
 - BD'98: if $d < N^{0.292}$ then RSA is insecure

```
(open: d < N^{0.5})
```

Insecure: priv. key d can be found from (N,e).

Thus, small d should <u>never</u> be used.

RSA With Low public exponent

To speed up RSA encryption and sig. verification
 C = M^e (mod N)
 use a small e.

- Minimal value: e=3 ($gcd(e, \phi(N)) = 1$)
- Recommended value: e=65537=2¹⁶+1
 Encryption: 17 mod. multiplies.
- Several weak attacks. Non known on RSA-OAEP.
- <u>Asymmetry of RSA:</u> fast encryption (sig. verification)/ slow decryption (signature).
 - ElGamal: approx. same time for both.

RSA SECURITY

RSA Security

- 4 approaches of attacking on RSA
 - brute force key search
 - not feasible for large keys
 - actually nobody attacks on RSA in that way
 - mathematical attacks
 - based on difficulty of factorization for large numbers as we shall see in the next slide
 - side-channel attacks
 - based on running time and other implementation aspects of decryption
 - chosen-ciphertext attack
 - Some algorithmic characteristics of RSA can be exploited to get information for cryptanalysis
- https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

Is RSA a one-way permutation?

 To invert the RSA one-way function (without d) attacker must compute:

```
M from C = M^e \pmod{N}.
```

- How hard is computing e'th roots modulo N ??
- Best known algorithm:
 - Step 1: factor N. (hard)
 - Step 2: Find e'th roots modulo p and q. (easy)

Factorization Problem

- 3 forms of mathematical attacks
 - factor n=p*q, hence find $\varphi(n)$ and then d
 - determine $\phi(n)$ directly and find d
 - is equivalent of factoring n
 - find d directly
 - as difficult as factoring n
- So RSA cryptanalysis is focused on factorization of large n

Factoring techniques

- Most efficient
 - Generalized Number Field Sieve
 - Quadratic Sieve
 - Lattice Sieve

Reasons of improvement in Factorization

- increase in computational power
- biggest improvement comes from improved algorithm
 - "Quadratic Sieve" to "Generalized Number Field Sieve"
 - Then to "Lattice Sieve"

Implementation/side channel attacks

- Timing attack:
 - Kocher 1997
 - The time it takes to compute C^d (mod N) can expose d.
 - Systems that use repeated squaring but not CRT or Montgomery (smart cards)
 - Schindler's attack
 - Repeated squaring, CRT and Montgomery (no real systems are known)
 - Brumley-Boneh attack
 - CRT, Montgomery, sliding windows, Karatsuba (as used in openSSL)
- Power attack: (Kocher 99)
 The power consumption of a smartcard while it is computing C^d
 (mod N) can expose d.
- Faults attack: (BDL 97)
 A computer error during C^d (mod N) can expose d.

Textbook RSA is insecure

- Textbook RSA encryption:
 - public key: (N,e) Encrypt: $C = M^e \pmod{N}$
 - private key: \mathbf{d} Decrypt: $\mathbf{C}^{\mathbf{d}} = \mathbf{M}$ (mod N)
- Completely insecure cryptosystem:
 - Does not satisfy basic definitions of security.
 - Many attacks exist.
- The RSA trapdoor permutation is not a cryptosystem!

Attack 1: small message space

 If the message space is small, the attacker can encrypt all the candidate massages (offline) and store the computed ciphertexts

Attack 1: small message space

 On-line phase. For a ciphertext c (eavesdropped) the attacker finds c in the table and the corresponding message.

Attack 1: small message space

- Why it works:
 - The encryption key is known (public key)
 - It doesn't offer semantic security
 - The attacker can repeat all actions of the message owner
- CPA doesn't make sense
- CCA is more relevant.

Attack 2: Chosen ciphertext Attack

- The textbook RSA has multiplicative homomorphism.
- Let
 - c1=m1^e mod n
 - c2=m2^e mod n
- Thus, for
 - c=c1*c2=m1^e*m2^e mod n=(m1*m2) ^e mod n i.e. c is the encryption of m=m1*m2, when m1*m2<n

Attack 2: Chosen ciphertext Attack

Attack scenario:

The private key owner can decrypt for us any ciphertext except a specific one (target of the attack) c_t. We want to compute the message m_t.

- 1. The attacker encrypts the message r = 2.
 - $-c_r=2^e \mod n$
- 2. The attacker computes
 - $c=c_t^*c_r \mod n$
- 3. The attacker asks for the decryption of c. Let m be the reply of the key owner.
- 4. The attacker computes m'=m/2 as m_t .

Proof: The attack works when $m_t < n/2$, i.e. when $r^* m_t < n$.

Attack 3: A simple attack on textbook RSA

- Session-key K is 64 bits. View $K \in \{0,...,2^{64}\}$
- Eavesdropper sees: C = K^e (mod N).
- Suppose $K = K_1 \cdot K_2$ where K_1 , $K_2 < 2^{34}$. (prob. $\approx 20\%$) Then: $C/K_1^e = K_2^e$ (mod N)
- Build table: $C/1^e$, $C/2^e$, $C/3^e$, ..., $C/2^{34e}$. time: 2^{34} For $K_2 = 0,..., 2^{34}$ test if K_2^e is in table. time: $2^{34} \cdot 34$
- Attack time: ≈2⁴⁰ << 2⁶⁴

Common RSA encryption

- Never use textbook RSA.
- RSA in practice:

- Main question:
 - How should the preprocessing be done?
 - Can we argue about security of resulting system?

In practice

- Public key encryption schemes are rarely used to actually encrypt messages
- They are usually used to encrypt a symmetric key
- Only
 - RSA-PKCS# 1 v1.5 and
 - RSA-OAEP

can be considered as traditional public key encryption algorithms

PKCS#1 V1.5

- Resulting value is RSA encrypted.
- Widely deployed in web servers and browsers. used in the SSL/TLS protocol extensively
- no modern security proof

PKCS#1 V2.0 - OAEP

New preprocessing function: OAEP (BR94).

Check pad on decryption. Reject CT if invalid.

- Thm: RSA is trap-door permutation \Rightarrow OAEP is CCS when H,G are "random oracles".
- In practice: use SHA-1 or MD5 for H and G.

PKCS#1 V2.0 - OAEP

- The preferred method of using the RSA primitive to encrypt a *small* message
- provably secure in the random oracle model
- SHA-2/SHA-3 for future applications

OAEP Improvements

• OAEP+: (Shoup'01)

∀ trap-door permutation F F-OAEP+ is CCS when H,G,W are "random oracles".

SAEP+: (B'01)

RSA trap-door perm ⇒
RSA-SAEP+ is CCS when
H,W are "random oracle".

Key lengths

 Security of public key system should be comparable to security of block cipher.

NIST:

<u>Cipher key-size</u>	<u>Modulus size</u>
≤ 64 bits	512 bits.
80 bits	1024 bits
128 bits	3072 bits.
256 bits (AES)	15360 bits

High security ⇒ very large moduli.

Not necessary with Elliptic Curve Cryptography (more details later)

Thanks to Kris Gaj for this figure

EL GAMAL

Discrete Logarithm

- $Z_n^* = \{1,2,3,...,n-1\}$
- Definition. Let $b \in Z_n^*$. The order of b is the smallest positive integer satisfying $b^e \equiv 1 \pmod{n}$.
- $Z_p^* = \langle \alpha \rangle$, i.e. ord(α) = p-1. when n=p=prime integer
- Example
 - $-Z_7^* = <3> 3^1=3, 3^2=2, 3^3=6, 3^4=4, 3^5=5, 3^6=1$
 - $-Z_{13}^* = <2> 2^1=2, 2^2=4, 2^3=8, 2^4=3, 2^5=6, 2^6=12, 2^7=11, 2^8=9, 2^9=5, 2^{10}=10, 2^{11}=7, 2^{12}=1$

Discrete Logarithm

• If g is a generator of Z_n^* , then for all y there is a unique x (mod $\phi(n)$) such that

$$-y=g^x mod n$$

- This is called the discrete logarithm of y and we use the notation $-x = log_a(y)$
- The discrete logarithm is conjectured to be hard as factoring.
- Example
 - Z_{13}^{-*} = <2> Z_{1}^{1} =2, Z_{1}^{2} =4, Z_{1}^{3} =8, Z_{1}^{4} =3, Z_{1}^{5} =6, Z_{1}^{6} =12, Z_{1}^{7} =11, Z_{1}^{8} =9, Z_{1}^{9} =5, Z_{1}^{10} =10, Z_{1}^{11} =7, Z_{1}^{12} =1
 - $Log_2(5) = 9.$

ElGamal

- Invented in 1985
- Designed by Dr. Taher Elgamal
- Based on the difficulty of the discrete log
- problem
- No patents
- Digital signature and Key-exchange variants

- Works over various groups
- ✓ Z_p,
- ✓ Multiplicative group GF(pⁿ),
- ✓ Elliptic Curves

ElGamal Public-key Cryptosystem

- SetUp (Ring of integers)
- Choose a prime number p (selected so that it is hard to solve the discrete log problem)
- All operations in the ring Z*_p
- 1. Randomly select a generator g for Z^*_p
- 2. Randomly select an element $a \in Z^*_p$
- 3. Compute $\beta = g^a \mod p$
- \triangleright Public Key: (g, β) and the prime p (some description of the ring)
- > Private Key: a

ElGamal Public-key Cryptosystem

- Encryption
- Encryption of the message m
- Randomly select an element $k \in Z^*_p$
- Compute the ciphertext:

$$C = (c_1, c_2)$$

= $(g^k, m * \beta^k)$

- O Delete k!
- Decryption of C
- Decryption of the ciphertext C = (c₁, c₂)
- Compute
- $c_2 * (c_1^a)^{-1} = (m * \beta^k) * (g^{ka})^{-1} = m * \beta^k * (\beta^k)^{-1} = m$

- Randomly select an element $k \in Z^*_p$ Known k, => β^k =>c2/ β^k =m1
- Repeat k

$$\circ$$
 C1 = (c₁, c₂)
= (g^k, m1 * β ^k)

- C1 = (c_1, c'_2) = $(g^k, m2 * \beta^k)$
- $c_2/c_2'=m1/m2$

ElGamal: Example

- SetUp (Ring of integers)
- Choose a prime number p=11.
- \circ g = 2
- \circ a = 8
- O Compute $β = 2^8 \text{ (mod 11)} = 3$
- Public key: (2,3), Z₁₁*
- Private key: 8
- Encryption:
- For m=7, k=4, we compute $C=(2^4, 7*3^4)=(5, 6)$
- Decryption:
- $6*(5^8)^{-1}=6*4^{-1}=6*3 \pmod{11}=7$

RSA vs El GAMAL

- ➤ A disadvantage of ElGamal encryption is that there is message expansion by a factor of 2. That is, the ciphertext is twice as long as the corresponding plaintext.
- ➤ El Gamal is by design probabilistic.
- > RSA is more mature and has better marketing
- > El Gamal can achieve much better performance.

Fermat's Theorem

- $a^{p-1} \mod p = 1$
 - where p is prime and gcd(a,p)=1
- also known as Fermat's Little Theorem
- useful in public key and primality testing

Euler Totient Function φ (n)

- when doing arithmetic modulo n
- complete set of residues is: 0..n-1
- reduced set of residues is those numbers (residues) which are relatively prime to n
 - eg for n=10,
 - complete set of residues is $\{0,1,2,3,4,5,6,7,8,9\}$
 - reduced set of residues is $\{1,3,7,9\}$
- number of elements in reduced set of residues is called the Euler Totient Function φ(n)

Euler's Theorem

A generalisation of Fermat's Theorem

- $a^{\phi(N)} \mod N = 1$
 - where gcd(a,N)=1

eg.

- $-a=3; n=10; \varphi(10)=4;$
- hence $3^4 = 81 = 1 \mod 10$
- $-a=2; n=11; \varphi(11)=10;$
- hence $2^{10} = 1024 = 1 \mod 11$

Why RSA Works

- because of Euler's Theorem:
- $a^{\phi(N)} \mod N = 1$
 - where gcd(a,N)=1
- in RSA have:
 - -N=p.q
 - $\varphi(N) = (p-1)(q-1)$
 - carefully chosen e & d to be inverses mod $\varphi(N)$
 - hence $e^*d=1+k.\phi(N)$ for some k
- hence:

$$C^d = (M^e)^d = M^{1+k.\phi(N)} = M^1.(M^{\phi(N)})^k = M^1.(1)^k$$

= $M^1 = M \mod N$