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DIGITAL SIGNATURES 



Digital Signature 

• Schemes used to provide  
– authentication,  

– integrity and  

– non-repudiation services (difficult, strong bidding, 
legal force) 

• Asymmetric analogue of MACs 

• Consist of three algorithms:  
– KeyGen(λ)(sk,vk)  

– Sign(sk,m)σ 

– Verify(vk,σ){0,1} 



DSS VS MAC 

 

• 𝐺𝑒𝑛 1𝑛   →   (𝑠𝑘, 𝑣𝑘) 

 

• 𝑆𝑖𝑔𝑛𝑠𝑘 𝑚  →   𝑠𝑖𝑔 

 

• 𝑉𝑒𝑟𝑣𝑘 𝑚, 𝑠𝑖𝑔 →   {0,1} 

 

 

 

• 𝐺𝑒𝑛 1𝑛   →   𝑘 

 

• 𝑚𝑎𝑐𝑘 𝑚  →   𝑡 

 

• v𝑒𝑟𝑘 𝑚, 𝑡 →   {0,1} 

 

 



Security definition 

• Similar to MAC: 

1. Many pairs (m1, σ1),(m2, σ2), . . . produced by 
Sign (chosen) 

2. Produce an new one (m,σ) that verifies under 
the key vk. 

• The formal security notion is called Strong 
Unforgeability under Chosen Message 
Attack (SUF-CMA)  



Mac forgery game 

M ← {} 

𝑚′ 

𝑡′ 

k ∈𝑅 0,1 𝑠 

(𝑚, 𝑡) 
Wins if  
• 𝑚 ∉ 𝑀 
• 𝑣𝑒𝑟𝑖𝑓𝑦 𝑚, 𝑡 = 1  

𝑡′  ← 𝑚𝑎𝑐𝑘(𝑚′) 

       M ← 𝑀 ∪ {𝑚′} Repeat as many times  
as the adversary 
wants 



Signature forgery game 

 

M ← {} 

𝑚′ 

𝑠𝑖𝑔′ 

𝑠𝑘, 𝑣𝑘 ← 𝐺𝑒𝑛(1𝑠) 

(𝑚, 𝑠𝑖𝑔) 
Wins if  
• 𝑚 ∉ 𝑀 
• 𝑉𝑒𝑟𝑖𝑓𝑦𝑣𝑘 𝑚, 𝑠𝑖𝑔 = 1  

𝑠𝑖𝑔′  ← 𝑆𝑖𝑔𝑛𝑠𝑘(𝑚′) 

       M ← 𝑀 ∪ {𝑚′} Repeat as many times  
as the adversary 
wants 

𝑣𝑘 



Definition of signature scheme 

 

• Correctness:  

– Pr 𝑉𝑒𝑟𝑣𝑘 𝑚, 𝑆𝑖𝑔𝑛𝑠𝑘 𝑚 = 1   𝑠𝑘, 𝑣𝑘 ← 𝐺𝑒𝑛 1𝑠 = 1  

 

 

• Unforgeability 
– For all PPT adversary 𝐴, there exists negligible function 𝜇,   

• Pr  𝐴  𝑤𝑖𝑛𝑠 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑓𝑜𝑟𝑔𝑒𝑟𝑦 𝑔𝑎𝑚𝑒 ≤ 𝜇(𝑛)  

 



Relation between macs and signatures 

 

• Every signature scheme is a message 
authentication code. 

 

 

• A mac scheme is not necessarily a signature. 

– Without the key, it may be impossible to verify a 
mac. 



Security (cont.) 

• common pitfall:  

– we assume that a signature σ must bind 
a message m and a verification key vk 

– the SUF-CMA security definition does 
not imply this!!! 

– it only refers to security under a single 
key pair (sk, vk)!! 

• Duplicate Signature Key Selection 
(DSKS) attacks! 

 



Digital Signatures 

 Message Sender Message Receiver 

Message Message 

Hash function 

Digest 

Encryption 

Signature 

Hash function 

Digest 

Decryption 

Expected Digest 

Private 
Key 

Public 
Key 



RSA + hash 

 



RSA Std solutions 

• RSA-PKCS# 1 v1.5 
– Has no security proof, 
– Nor any advantages over other RSA  
– it is widely deployed.  
– Not propose be used beyond legacy systems. 

• RSA-PSS 
– UF-CMA secure in the random oracle model 
– It is used in a number of places including e-passports. 

• RSA-FDH 
– The RSA-FDH scheme hashes the message to the group Z/NZ and then applies 

the RSA function to the output.  
– The scheme has strong provable security guarantees 
– Difficult to defining a suitably strong hash function with codomain the group 

Z=NZ.  
– The scheme is not practically deployable. 

 

 



Std solutions 

• ISO 9796-2 RSA Based Mechanisms 
– 3 different RSA signature padding schemes called Digital Signature 1,Digital Signature 2 

and Digital Signature 3 (DS1, DS2 and DS3). 
– Variant DS1 essentially RSA encrypts a padded version of the message along with a hash 

of the message. This variant should no longer be considered secure. 
– Variant DS2 is a standardized version of RSA-PSS, but in a variant which allows partial 

message recovery.  
• Variant DS3 is defined by taking DS2 and reducing the randomisation parameter to length zero. Not to 

use for future applications  



From ElGamal to DSA 

• The Digital Signature Algorithm (DSA) is a modification of ElGamal digital 
signature scheme.  

• It was proposed in August 1991 and adopted in December 1994 by the 
National Institute of Standards and Technology. 

• Digital Signature Standard (DSS) 

 Computation of DSS signatures is faster than computation of RSA 
signatures when using the same p. 

 DSS signatures are smaller than ElGamal signatures because q is 
smaller than p. 

 

 



Digital Signature Algorithm (DSA) 

Also known as Digital Signature Standard (DSS) 
Key generation 
• Select two prime numbers (p,q) such that  q | (p-1) 
• Early standard recommended p to be between 512 and 

1024 bits, and q to be 160 bits 
• Current recommendation for length: (1024,160), 

(2048,224), (2048,256), and (3072,256). 
– The size of q must resist exhaustive search 
– The size of p must resist discrete log 

• Choose g to be an element in Zp
* with order q 

– Let  be a generator of Zp
*, and set  g = (p-1)/q mod p 

• Select 1  x  q-1;  Compute y = gx mod p 
Public key: (p, q, g, y) 
Private key: x 



DSA 

Signing message M: 

• Select a random integer k, 0 < k < q 

• Compute  

  r = (gk mod p) mod q 

  s = k-1 ( h(M) + xr) mod q 

• Signature: (r, s) 
– Signature consists of two 160-bit numbers, 

when q is 160 bit 

 



DSA 

Verification 

• Verify 0 < r < q and 0 < s < q, if not, invalid 

• Compute  

  u1 = h(M)s-1 mod q, 

    u2 =  rs-1 mod q 

• Valid iff r  = (gu1 yu2 mod p) mod q  
  gu1 yu2 = gh(M)s^{-1} gxr s^{-1}    

     = g(h(M)+xr)s^{-1} = gk  (mod p) 

Signature: (r, s) 

r = (gk mod p) mod q 

s = k-1 ( h(M) + xr) mod q 



 Schnorr signature scheme 

• Requirement: Group 𝐺, 𝐺 = 𝑞,  generator 𝑔,  random 
oracle 𝐻 
 

• 𝐺𝑒𝑛 1𝑠  

– 𝑠𝑘 ∈𝑅  𝐺 

– 𝑣𝑘 ← 𝑔𝑠𝑘  
 

• 𝑉𝑒𝑟𝑖𝑓𝑦𝑣𝑘(𝑚, 𝑠𝑖𝑔) 

– 𝑎, 𝑠 ← 𝑠𝑖𝑔 

– u ← 𝑔𝑠 ⋅ 𝑣𝑘−𝑎 
– Output 𝐻 𝑢, 𝑚 = 𝑎     

 
 
 

 

• 𝑆𝑖𝑔𝑛𝑠𝑘 𝑚  
• 𝑏 ∈𝑅 𝑍|𝐺| 

• 𝑢 ← 𝑔𝑏  

• 𝑎 ← 𝐻(𝑢, 𝑚) 

• 𝑠 ← 𝑎 ⋅ 𝑠𝑘 +
𝑏 (𝑚𝑜𝑑  𝑞) 

• Output (𝑎, 𝑠)  

 
 



EdDSA 

• Introduced in 2011 by Bernstein, Duif, Lange, Schwabe, 
and Yang in the paper “High-speed high-security 
signatures” 

• Modified version of Schnorr Signatures 
•  Based on twisted Edwards curves 
• Most known the Ed25519 

– using SHA-512 (SHA-2) and Curve25519 
– TLS 1.3, SSH, Tor, ZCash, Signal protocol, WhatsApp 

• Standards 
– IETF, RFC 8032  
– NIST, as part of FIPS 186–5 (2019) 



Performance 

Algorithm Public Key Signature Sign/s 

ED25519 32B 64B ~ 26,000 

RSA-2048 0.3kB 0.3kB ~1,500 

22 



Std solutions 

• PV Signatures 
– ISO 14888-3 
– A variant of DSA signatures (exactly the same signing equation as for DSA) 
– Due to Pointcheval and Vaudeney  
– The PV signature scheme can be shown to be provably secure in the random oracle 

model 
– PV signatures suffer from issues related to poor randomness in the ephemeral secret 

key.  

• (EC)Schnorr 
– Like (EC)DSA signatures 
– Schnorr signatures can be proved UF-CMA secure in the random oracle model [280]. 
– Also a proof in the generic group model 
– Signature size can be made shorter than that of DSA.  
– Schnorr signatures are to be preferred over DSA style signatures for future applications. 
– Defences proposed for (EC)DSA signatures should also be applied to Schnorr signatures 

 



Std solutions 

• (EC)DSA 
– Widely standardized  

• German DSA (GDSA), 
• Korean DSA (KDSA)  
• Russian DSA (RDSA) [133,162].  

– All (EC)DSA variants (bar KDSA) have weak provable security guarantees 
– The KDSA is suitable for future use.  



More on Signatures 

 Blind Signatures 

Sometimes we have a document that we want to get signed without revealing the 
contents of the document to the signer. 

 Group Signatures 

Protect privacy. Part of a group. Not the same secret key. A manager can reveal identity 

  Ring Signatures 

Protect privacy. Part of a group. Not the same secret key. The cryptocurrency Monero 
uses ring signatures to provide anonymity 

 Time Stamped Signatures 

Sometimes a signed document needs to be time stamped to prevent it from 
being replayed by an adversary. This is called time-stamped digital signature 
scheme.  

 Proxy Signatures 

Delegate signature to a server.  

 



Blind Signature Schemes 

• A wants B’s signature on a message m, but 
doesn’t want B to know the message m or the 
signature 

• Applications: electronic cash 

– Goal: anonymous spending 

– The bank signs a bank note, but A doesn’t want B 
to know the note, as then B can associate the 
spending of B with A’s identity 

 



Chaum’s Bind Signature Protocol Based on 
RSA 

• Setup: 

– B has public key (n,e) and private key d 

– A has m  

• Actions: 

– (blinding) A picks random kZn-{0} computes m’=mke 
mod n and sends to B 

– (signing) B computes s’=(m’)d mod n and sends to A 

– (unblinding) A computes s=s’k-1 mod n, which is B’s 
signature on m 



Timestamping 

• Timestamping is very valuable 

• Trusted Timestamp 

– timestamps are generated by a trusted third party 
using secure FIPS-compliant hardware 

– high level of certainty that the date on the timestamp 
is accurate and hasn’t been tampered with 

• RFC 3161 outlines the requirements a third party 
must meet in order to operate as a Timestamping 
Authority (TSA) 

 

 

 

 

https://tools.ietf.org/html/rfc3161


Timestamping 

1. The client application creates a hashed value (as a unique identifier of 
the data or file that needs to be timestamped) and sends it to the TSA. 

2. From now on, any change (even by a single bit of information) in the 
original file will require communication of changes with the TSA server.  

3. The TSA combines the hash and other information, including the 
authoritative time. The result is digitally signed with the TSA’s private key, 
creating a timestamp token which is sent back to the client.  The 
timestamp token contains the information the client application will need 
to verify the timestamp later. 

4. The timestamp token is received by the client application and recorded 
within the document or code signature. 

 



Timestamping 



One-Time Digital Signatures 

• One-time digital signatures: digital schemes used to sign, at 
most one message; otherwise signature can be forged.  

• A new public key is required for each signed message. 

• Advantage: signature generation and verification are very 
efficient and is useful for devices with low computation power. 

 

• Used by the hash-based signature scheme SPHINCS+  
– It is an “alternate candidate” in the NIST PQC process for selecting 

post-quantum secure schemes 



Lamport One-time Signature  

To sign one bit: 

• Choose as secret keys x0, x1  
– x0  represents ‘0’  

– x1  represents ‘1’ 

• public key (y0,y1):  
– y0 = f(x0),  

– y1 = f(x1). 

– Where f is a one-way function 

• Signature is x0 if the message is 0 
or x1 if message is 1. 

• To sign a message m, use hash 
and sigh each bit of h(m) 

 



ELLIPTIC CURVE CRYPTOGRAPHY 
(ECC) 



Elliptic curve cryptography (ECC) 

• “Elliptic Curve Cryptography” is not a new cryptosystem 
• Elliptic curves are a different way to do the math in public key 

system 
 

• Elliptic curves may be more efficient 
• Fewer bits needed for same security 

 
• For equivalent key lengths computations are roughly equivalent 
• Hence for similar security ECC offers significant computational 

advantages 
 
 

• RFC690: Fundamental Elliptic Curve Cryptography Algorithms 
 



What is an Elliptic Curve? 

• An elliptic curve E is the graph of an equation 

of the form 

  y2 = x3 + ax + b 

• Also includes a “point at infinity” 

• What do elliptic curves look like? 

• See the next slide! 



Elliptic Curve Picture 

• Consider elliptic curve 

 E:  y2 = x3 - x + 1 

• If P1 and P2 are on E, we 
can define  

  P3 = P1 + P2  

 as shown in picture 

• Addition is all we need 

P1 

P2 

P3 

x 

y 



Points on Elliptic Curve 

• Consider y2 = x3 + 2x + 3 (mod 5) 

 x = 0  y2 = 3  no solution (mod 5) 

 x = 1  y2 = 6 = 1  y = 1,4 (mod 5) 

 x = 2  y2 = 15 = 0  y = 0 (mod 5) 

 x = 3  y2 = 36 = 1  y = 1,4 (mod 5) 

 x = 4  y2 = 75 = 0  y = 0 (mod 5) 

• Then points on the elliptic curve are 

 (1,1) (1,4) (2,0) (3,1) (3,4) (4,0) and the point at 
infinity:  



Elliptic Curve Math 

• Addition on: y2 = x3 + ax + b (mod p) 

 P1=(x1,y1), P2=(x2,y2) 

 P1 + P2 = P3 = (x3,y3) where 

 x3 = m2 - x1 - x2 (mod p) 

 y3 = m(x1 - x3) - y1 (mod p) 

And m = (y2-y1)(x2-x1)
-1 mod p, if P1P2 

     m = (3x1
2+a)(2y1)

-1 mod p, if P1 = P2 

Special cases:  If m is infinite, P3 = , and  

     + P = P for all P  



Elliptic Curve Addition 

• Consider y2 = x3 + 2x + 3 (mod 5). Points on the 
curve are (1,1) (1,4) (2,0) (3,1) (3,4) (4,0) and  

• What is (1,4) + (3,1) = P3 = (x3,y3)? 

  m = (1-4)(3-1)-1 = -32-1 

     = 2(3) = 6 = 1 (mod 5) 

  x3 = 1 - 1 - 3 = 2 (mod 5) 

  y3 = 1(1-2) - 4 = 0 (mod 5) 

• On this curve, (1,4) + (3,1) = (2,0)  



Finite Elliptic Curves 

• Elliptic curve cryptography uses curves whose 
variables & coefficients are finite 

• have two families commonly used: 

– prime curves Ep(a,b) defined over Zp  

• use integers modulo a prime 

• best in software 

– binary curves E2m(a,b) defined over GF(2n) 

• use polynomials with binary coefficients 

• best in hardware 



Elliptic Curve Cryptography 

• ECC addition is analog of modulo multiply 

• ECC repeated addition is analog of modulo 
exponentiation 

• need “hard” problem equiv to discrete log 
– Q=kP, where Q,P belong to a prime curve 

– is “easy” to compute Q given k,P 

– but “hard” to find k given Q,P 

– known as the elliptic curve logarithm problem 

• Certicom example: E23(9,17)  



ECC Diffie-Hellman 

• can do key exchange analogous to D-H 
• users select a suitable curve Eq(a,b)  
• select base point G=(x1,y1) 

– with large order n s.t. nG=O 

• A & B select private keys nA<n, nB<n 
• compute public keys: PA=nAG, PB=nBG 
• compute shared key: K=nAPB, K=nBPA 

– same since K=nAnBG 

• attacker would need to find k, hard 
 



ECC Encryption/Decryption 

• several alternatives, will consider simplest 

• must first encode any message M as a point on the 
elliptic curve Pm 

• select suitable curve & point G as in D-H 

• each user chooses private key nA<n 

• and computes public key PA=nAG 

• to encrypt Pm : Cm={kG, Pm+kPA}, k random 

• decrypt Cm compute:  
Pm+kPA–nA(kG) = Pm+k(nAG)–nA(kG) = Pm 



ECC Security 

• relies on elliptic curve logarithm problem 

• fastest method is “Pollard rho method” 

• compared to factoring, can use much smaller 
key sizes than with RSA etc 

• for equivalent key lengths computations are 
roughly equivalent 

• hence for similar security ECC offers significant 
computational advantages 



Comparable Key Sizes for Equivalent 
Security 

 Symmetric 

scheme 

(key size in bits) 

ECC-based 

scheme 

(size of n in bits) 

RSA/DSA 

(modulus size in 

bits) 

56 112 512 

80 160 1024 

112 224 2048 

128 256 3072 

192 384 7680 

256 512 15360 



Elliptic curve cryptography (ECC) 

RFC690: Fundamental Elliptic Curve Cryptography 
Algorithms 

• https://tools.ietf.org/html/rfc6090 

 

FIPS PUB 186-4 

 

• Several discrete logarithm-based protocols have 
been adapted to elliptic curves (replacing the 
group) 

 

https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc6090


ECC - Example: Bitcoin 
 

• Secp256k1 (with the ECDSA algorithm) 

• Parameters (p,a,b,G,n,h) 

 

• The curve E: y2 = x3+ax+b over Fp is defined by: 

• a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

• b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007 

• p =  2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1 

 

• The base point G in compressed form is: 

• G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 

 

• and in uncompressed form is: 

• G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 
26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8 

 

• Finally the order n of G and the cofactor are: 

• n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 

• h = 01 

 

 



State of the art 

 



Digital signature 

 



SOGIS 

• The SOG-IS agreement was produced in response 
to the EU Council Decision of March 31st 1992 
(92/242/EEC) in the field of security of 
information systems, and the subsequent Council 
recommendation of April 7th (1995/144/EC) on 
common information technology security 
evaluation criteria. 

• Regarding Cryptography: 

https://www.sogis.eu/documents/cc/crypto/SOGIS-
Agreed-Cryptographic-Mechanisms-1.3.pdf  

https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf
https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.3.pdf


SOGIS 

• Agreed RSA primitive sizes. 

 

 

 



SOGIS 

• Agreed FF-DLOG Parameters 

 



SOGIS 

• Agreed Elliptic Curve Parameters 



SOGIS 

• Agreed Asymmetric Encryption Schemes 



SOGIS 

• Agreed Digital Signature Schemes 



 


