

Cryptography Lecture 7

Dr. Panagiotis Rizomiliotis

Agenda

- Digital Signatures
- Elliptic curve cryptography

DIGITAL SIGNATURES

Digital Signature

- Schemes used to provide
 - authentication,
 - integrity and
 - non-repudiation services (difficult, strong bidding, legal force)
- Asymmetric analogue of MACs
- Consist of three algorithms:
 - − KeyGen(λ)→(sk,vk)
 - − Sign(sk,m) \rightarrow σ
 - Verify(vk, σ) \rightarrow {0,1}

DSS VS MAC

- $Gen(1^n) \rightarrow (sk, vk) \quad \bullet Gen(1^n) \rightarrow k$
- $Sign_{sk}(m) \rightarrow sig$ $mac_k(m) \rightarrow t$
- $Ver_{vk}(m, sig) \rightarrow \{0,1\}$ $ver_k(m, t) \rightarrow \{0,1\}$

Security definition

- Similar to MAC:
 - Many pairs (m1, σ1),(m2, σ2), . . . produced by Sign (chosen)
 - Produce an new one (m,σ) that verifies under the key vk.
- The formal security notion is called Strong Unforgeability under Chosen Message Attack (SUF-CMA)

Mac forgery game

Signature forgery game

Repeat as many times as the adversary wants

Definition of signature scheme

• Correctness:

 $- \Pr\left[\operatorname{Ver}_{vk}(m, \operatorname{Sign}_{sk}(m)) = 1 \mid (sk, vk) \leftarrow \operatorname{Gen}(1^s)\right] = 1$

- Unforgeability
 - For all PPT adversary A, there exists negligible function μ ,
 - $\Pr[A \text{ wins the signature forgery game}] \le \mu(n)$

Relation between macs and signatures

• Every signature scheme is a message authentication code.

A mac scheme is not necessarily a signature.
 Without the key, it may be impossible to verify a mac.

Security (cont.)

- common pitfall:
 - we assume that a signature σ must bind a message m and a verification key vk
 - the SUF-CMA security definition does not imply this!!!
 - it only refers to security under a single key pair (sk, vk)!!
- Duplicate Signature Key Selection (DSKS) attacks!

Digital Signatures

RSA + hash

RSA Std solutions

- RSA-PKCS# 1 v1.5
 - Has no security proof,
 - Nor any advantages over other RSA
 - it is widely deployed.
 - Not propose be used beyond legacy systems.
- RSA-PSS
 - UF-CMA secure in the random oracle model
 - It is used in a number of places including e-passports.
- RSA-FDH
 - The RSA-FDH scheme hashes the message to the group Z/NZ and then applies the RSA function to the output.
 - The scheme has strong provable security guarantees
 - Difficult to defining a suitably strong hash function with codomain the group Z=NZ.
 - The scheme is not practically deployable.

Std solutions

- ISO 9796-2 RSA Based Mechanisms
 - 3 different RSA signature padding schemes called Digital Signature 1, Digital Signature 2 and Digital Signature 3 (DS1, DS2 and DS3).
 - Variant DS1 essentially RSA encrypts a padded version of the message along with a hash of the message. This variant should no longer be considered secure.
 - Variant DS2 is a standardized version of RSA-PSS, but in a variant which allows partial message recovery.
 - Variant DS3 is defined by taking DS2 and reducing the randomisation parameter to length zero. Not to use for future applications

From ElGamal to DSA

- The Digital Signature Algorithm (DSA) is a modification of ElGamal digital signature scheme.
- It was proposed in August 1991 and adopted in December 1994 by the National Institute of Standards and Technology.
- Digital Signature Standard (DSS)
 - Computation of DSS signatures is faster than computation of RSA signatures when using the same p.
 - ✓ DSS signatures are smaller than ElGamal signatures because q is smaller than p.

Digital Signature Algorithm (DSA)

Also known as Digital Signature Standard (DSS) Key generation

- Select two prime numbers (p,q) such that q | (p-1)
- Early standard recommended p to be between 512 and 1024 bits, and q to be 160 bits
- Current recommendation for length: (1024,160), (2048,224), (2048,256), and (3072,256).
 - The size of q must resist exhaustive search
 - The size of p must resist discrete log
- Choose g to be an element in Z_p^* with order q
 - Let α be a generator of Z_p^* , and set $g = \alpha^{(p-1)/q} \mod p$
- Select $1 \le x \le q-1$; Compute $y = g^x \mod p$ Public key: (p, q, g, y) Private key: x

DSA

Signing message M:

- Select a random integer k, 0 < k < q
- Compute

r = (g^k mod p) mod q

s = k⁻¹ (h(M) + xr) mod q

- Signature: (r, s)
 - Signature consists of two 160-bit numbers, when q is 160 bit

DSA Signature: (r, s) $r = (g^k \mod p) \mod q$ $s = k^{-1} (h(M) + xr) \mod q$

Verification

- Verify 0 < r < q and 0 < s < q, if not, invalid
- Compute

u₁ = h(M)s⁻¹ mod q, u₂ = rs⁻¹ mod q

• Valid iff $r = (g^{u_1}y^{u_2} \mod p) \mod q$ $g^{u_1}y^{u_2} = g^{h(M)s^{-1}}g^{xr s^{-1}}$ $= g^{(h(M)+xr)s^{-1}} = g^k \pmod{p}$

Schnorr signature scheme

- Requirement: Group G, |G| = q, generator g, random oracle H
- $Gen(1^s)$ - $sk \in_R G$ - $vk \leftarrow g^{sk}$
- Verif $y_{vk}(m, sig)$ - $(a, s) \leftarrow sig$ - $u \leftarrow g^s \cdot vk^{-a}$ - Output H(u, m) = a

- $Sign_{sk}(m)$
 - $b \in_R Z_{|G|}$ • $u \leftarrow g^b$
 - $a \leftarrow H(u,m)$
 - $s \leftarrow a \cdot sk + b \pmod{q}$
 - Output (*a*, *s*)

EdDSA

- Introduced in 2011 by Bernstein, Duif, Lange, Schwabe, and Yang in the paper "High-speed high-security signatures"
- Modified version of Schnorr Signatures
- Based on twisted Edwards curves
- Most known the Ed25519
 - using SHA-512 (SHA-2) and Curve25519
 - TLS 1.3, SSH, Tor, ZCash, Signal protocol, WhatsApp
- Standards
 - IETF, RFC 8032
 - NIST, as part of FIPS 186–5 (2019)

Performance

Algorithm	Public Key	Signature	Sign/s
ED25519	32B	64B	~ 26,000
RSA-2048	0.3kB	0.3kB	~1,500

Std solutions

- PV Signatures
 - ISO 14888-3
 - A variant of DSA signatures (exactly the same signing equation as for DSA)
 - Due to Pointcheval and Vaudeney
 - The PV signature scheme can be shown to be provably secure in the random oracle model
 - PV signatures suffer from issues related to poor randomness in the ephemeral secret key.
- (EC)Schnorr
 - Like (EC)DSA signatures
 - Schnorr signatures can be proved UF-CMA secure in the random oracle model [280].
 - Also a proof in the generic group model
 - Signature size can be made shorter than that of DSA.
 - Schnorr signatures are to be preferred over DSA style signatures for future applications.
 - Defences proposed for (EC)DSA signatures should also be applied to Schnorr signatures

Std solutions

• (EC)DSA

- Widely standardized
 - German DSA (GDSA),
 - Korean DSA (KDSA)
 - Russian DSA (RDSA) [133,162].
- All (EC)DSA variants (bar KDSA) have weak provable security guarantees
- The KDSA is suitable for future use.

More on Signatures

Blind Signatures

Sometimes we have a document that we want to get signed without revealing the contents of the document to the signer.

Group Signatures

Protect privacy. Part of a group. Not the same secret key. A manager can reveal identity

Ring Signatures

Protect privacy. Part of a group. Not the same secret key. The cryptocurrency Monero uses ring signatures to provide anonymity

Time Stamped Signatures

Sometimes a signed document needs to be time stamped to prevent it from being replayed by an adversary. This is called time-stamped digital signature scheme.

Proxy Signatures

Delegate signature to a server.

Blind Signature Schemes

- A wants B's signature on a message m, but doesn't want B to know the message m or the signature
- Applications: electronic cash
 - Goal: anonymous spending
 - The bank signs a bank note, but A doesn't want B to know the note, as then B can associate the spending of B with A's identity

Chaum's Bind Signature Protocol Based on RSA

- Setup:
 - B has public key (n,e) and private key d
 - A has m
- Actions:
 - (blinding) A picks random $k\!\in\!Z_n^-\{0\}$ computes m'=mk^e mod n and sends to B
 - (signing) B computes $s' = (m')^d \mod n$ and sends to A
 - (unblinding) A computes s=s'k⁻¹ mod n, which is B's signature on m

Timestamping

- Timestamping is very valuable
- Trusted Timestamp
 - timestamps are generated by a trusted third party using secure FIPS-compliant hardware
 - high level of certainty that the date on the timestamp is accurate and hasn't been tampered with
- <u>RFC 3161</u> outlines the requirements a third party must meet in order to operate as a Timestamping Authority (TSA)

Timestamping

- 1. The client application creates a hashed value (as a unique identifier of the data or file that needs to be timestamped) and sends it to the TSA.
- 2. From now on, any change (even by a single bit of information) in the original file will require communication of changes with the TSA server.
- 3. The TSA combines the hash and other information, including the authoritative time. The result is digitally signed with the TSA's private key, creating a timestamp token which is sent back to the client. The timestamp token contains the information the client application will need to verify the timestamp later.
- 4. The timestamp token is received by the client application and recorded within the document or code signature.

Timestamping

One-Time Digital Signatures

- One-time digital signatures: digital schemes used to sign, at most one message; otherwise signature can be forged.
- A new public key is required for each signed message.
- Advantage: signature generation and verification are very efficient and is useful for devices with low computation power.
- Used by the hash-based signature scheme SPHINCS+
 - It is an "alternate candidate" in the NIST PQC process for selecting post-quantum secure schemes

Lamport One-time Signature

To sign one bit:

- Choose as secret keys x₀, x₁
 - x₀ represents '0'
 - x_1 represents '1'
- public key (y_0, y_1) :
 - $y_0 = f(x_0),$
 - $y_1 = f(x_1).$
 - Where f is a one-way function
- Signature is x₀ if the message is 0 or x₁ if message is 1.
- To sign a message m, use hash and sigh each bit of h(m)

ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

Elliptic curve cryptography (ECC)

- "Elliptic Curve Cryptography" is not a new cryptosystem
- Elliptic curves are a different way to do the math in public key system
- Elliptic curves may be more efficient
- Fewer bits needed for same security
- For equivalent key lengths computations are roughly equivalent
- Hence for similar security ECC offers significant computational advantages
- RFC690: Fundamental Elliptic Curve Cryptography Algorithms

What is an Elliptic Curve?

• An elliptic curve E is the graph of an equation of the form

 $y^2 = x^3 + ax + b$

- Also includes a "point at infinity"
- What do elliptic curves look like?
- See the next slide!

Elliptic Curve Picture

- Consider elliptic curve E: $y^2 = x^3 - x + 1$
- If P₁ and P₂ are on E, we can define

 $P_3 = P_1 + P_2$

as shown in picture

• Addition is all we need

Points on Elliptic Curve

• Consider $y^2 = x^3 + 2x + 3 \pmod{5}$

 $x = 0 \Rightarrow y^2 = 3 \Rightarrow \text{no solution (mod 5)}$ $x = 1 \Rightarrow y^2 = 6 = 1 \Rightarrow y = 1,4 \pmod{5}$ $x = 2 \Rightarrow y^2 = 15 = 0 \Rightarrow y = 0 \pmod{5}$ $x = 3 \Rightarrow y^2 = 36 = 1 \Rightarrow y = 1,4 \pmod{5}$ $x = 4 \Rightarrow y^2 = 75 = 0 \Rightarrow y = 0 \pmod{5}$

Then points on the elliptic curve are

 (1,1)
 (1,4)
 (2,0)
 (3,1)
 (4,0)
 and the point at
 infinity: ∞

Elliptic Curve Math

• Addition on: $y^2 = x^3 + ax + b \pmod{p}$ $P_1 = (X_1, Y_1), P_2 = (X_2, Y_2)$ $P_1 + P_2 = P_3 = (x_3, y_3)$ where $x_3 = m^2 - x_1 - x_2 \pmod{p}$ $y_3 = m(x_1 - x_3) - y_1 \pmod{p}$ $m = (y_2 - y_1) * (x_2 - x_1)^{-1} \mod p$, if $P_1 \neq P_2$ And $m = (3x_1^2 + a) * (2y_1)^{-1} \mod p$, if $P_1 = P_2$ Special cases: If m is infinite, $P_3 = \infty$, and $\infty + P = P$ for all P

Elliptic Curve Addition

- Consider y² = x³ + 2x + 3 (mod 5). Points on the curve are (1,1) (1,4) (2,0) (3,1) (3,4) (4,0) and ∞
- What is $(1,4) + (3,1) = P_3 = (x_3,y_3)$? $m = (1-4)*(3-1)^{-1} = -3*2^{-1}$ $= 2(3) = 6 = 1 \pmod{5}$ $x_3 = 1 - 1 - 3 = 2 \pmod{5}$ $y_3 = 1(1-2) - 4 = 0 \pmod{5}$
- On this curve, (1,4) + (3,1) = (2,0)

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- have two families commonly used:
 - prime curves $E_p(a, b)$ defined over Z_p
 - use integers modulo a prime
 - best in software
 - binary curves $E_{2m}(a, b)$ defined over GF(2ⁿ)
 - use polynomials with binary coefficients
 - best in hardware

Elliptic Curve Cryptography

- ECC addition is analog of modulo multiply
- ECC repeated addition is analog of modulo exponentiation
- need "hard" problem equiv to discrete log
 Q=kP, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- Certicom example: E_{23} (9, 17)

ECC Diffie-Hellman

- can do key exchange analogous to D-H
- users select a suitable curve $E_{q}(a, b)$
- select base point G= (x₁, y₁)
 with large order n s.t. nG=0
- A & B select private keys $n_A < n$, $n_B < n$
- compute public keys: $P_A = n_A G$, $P_B = n_B G$
- compute shared key: K=n_AP_B, K=n_BP_A
 same since K=n_An_BG
- attacker would need to find k, hard

ECC Encryption/Decryption

- several alternatives, will consider simplest
- must first encode any message M as a point on the elliptic curve P_m
- select suitable curve & point G as in D-H
- each user chooses private key $n_A < n$
- and computes public key $P_A = n_A G$
- to encrypt $P_m : C_m = \{ kG, P_m + kP_A \}$, k random
- decrypt C_m compute:

 $P_m + kP_A - n_A (kG) = P_m + k (n_A G) - n_A (kG) = P_m$

ECC Security

- relies on elliptic curve logarithm problem
- fastest method is "Pollard rho method"
- compared to factoring, can use much smaller key sizes than with RSA etc
- for equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Comparable Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Elliptic curve cryptography (ECC)

- ✓ RFC690: Fundamental Elliptic Curve Cryptography Algorithms
- https://tools.ietf.org/html/rfc6090

✓ FIPS PUB 186-4

 Several discrete logarithm-based protocols have been adapted to elliptic curves (replacing the group)

ECC - Example: Bitcoin

- Secp256k1 (with the ECDSA algorithm)
- Parameters (p,a,b,G,n,h)
- The curve *E*: $y^2 = x^3 + ax + b$ over F_p is defined by:

- $p = 2^{256} 2^{32} 2^9 2^8 2^7 2^6 2^4 1$
- The base point G in compressed form is:
- *G* = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
- and in uncompressed form is:
- *G* = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
- Finally the order *n* of *G* and the cofactor are:
- *h* = 01

State of the art

Primitive	Parameters	Legacy System Minimum	Future System Minimum	
RSA Problem	N, e, d	$\ell(n) \ge 1024,$	$\ell(n) \ge 3072$	
		$e \ge 3$ or 65537, $d \ge N^{1/2}$	$e \ge 65537, d \ge N^{1/2}$	
Finite Field DLP	p,q,n	$\ell(p^n) \ge 1024$	$\ell(p^n) \ge 3072$	
		$\ell(p), \ell(q) > 160$	$\ell(p), \ell(q) > 256$	
ECDLP	p,q,n	$\ell(q) \ge 160, \star$	$\ell(q) > 256, \star$	
Pairing	p,q,n,d,k	$\ell(p^{k \cdot n}) \ge 1024$	$\ell(p^{k \cdot n}) \ge 3072$	
		$\ell(p), \ell(q) > 160$	$\ell(p), \ell(q) > 256$	

Digital signature

	Classification	
Scheme	Legacy	Future
RSA-PSS	\checkmark	\checkmark
ISO-9796-2 RSA-DS2	\checkmark	\checkmark
PV Signatures	\checkmark	\checkmark
(EC)Schnorr	\checkmark	\checkmark
(EC)KDSA	\checkmark	\checkmark
RSA-PKCS# 1 v1.5	\checkmark	X
RSA-FDH	\checkmark	X
ISO-9796-2 RSA-DS3	\checkmark	X
(EC)DSA, (EC)GDSA	\checkmark	×
(EC)RDSA	\checkmark	×
ISO-9796-2 RSA-DS1	X	×

- The SOG-IS agreement was produced in response to the EU Council Decision of March 31st 1992 (92/242/EEC) in the field of security of information systems, and the subsequent Council recommendation of April 7th (1995/144/EC) on common information technology security evaluation criteria.
- Regarding Cryptography:

<u>https://www.sogis.eu/documents/cc/crypto/SOGIS-</u> <u>Agreed-Cryptographic-Mechanisms-1.3.pdf</u>

• Agreed RSA primitive sizes.

• Agreed FF-DLOG Parameters

Family	Group	R/L	Notes
	3072-bit MODP Group	R	
	4096-bit MODP Group	R	
MODP [RFC3526]	6144-bit MODP Group	R	
	8192-bit MODP Group	R	
	2048-bit MODP Group	L[2025]	29-Precomputation, 30-LegacyFF-DLOG
	3072-bit FFDHE Group	R	
	4096-bit FFDHE Group	R	
FFDHE [RFC7919]	6144-bit FFDHE Group	R	
	8192-bit FFDHE Group	R	
	2048-bit FFDHE Group	L[2025]	29-Precomputation, 30-LegacyFF-DLOG

• Agreed Elliptic Curve Parameters

Curve Family	Curve	R/L	Notes
	BrainpoolP256r1	R	
Brainpool [RFC5639]	BrainpoolP384r1	R	
	BrainpoolP512r1	R	
	NIST P-256	R	
NIST [FIPS186-4, Appendix D.1.2]	NIST P-384	\mathbf{R}	34-SpecialP
	NIST P-521	\mathbf{R}	
FR [JORF]	FRP256v1	R	

• Agreed Asymmetric Encryption Schemes

Primitive	Scheme	R/L	Notes
RSA	OAEP (PKCS# $1v2.1$) [RFC8017, PKCS1]	R	37-OAEP-PaddingAttack
RSA	PKCS#1v1.5 [RFC8017, PKCS1]	L	36-PaddingAttack

• Agreed Digital Signature Schemes

Primitive	Scheme	R/L	Notes
RSA	PSS (PKCS#1v2.1) [RFC8017, PKCS1, ISO9796-2]	R	
FF-DLOG	KCDSA [ISO14888-3]	R	
	Schnorr [ISO14888-3]	R	41-DSARandom
	DSA [FIPS186-4, ISO14888-3]	R	
EC-DLOG	EC-KCDSA [ISO14888-3]	R	
	EC-DSA [FIPS186-4, ISO14888-3]	R	41-DSARandom
	EC-GDSA [TR-03111]	R	
	EC-Schnorr [ISO14888-3]	R	
RSA	PKCS#1v1.5 [RFC8017, PKCS1, ISO9796-2]	L	40-PKCSFormatCheck

