Cryptography
Lecture 3

Dr. Panagiotis Rizomiliotis

Overview

ECIES
ECIES KEM
CB CCM Encrypt-then-MAC EAX CWC GCM
ECDLP Size ¥

-/

MAC Function

A\

HMAC EMAC CMAC

256- blts 512-bits

IND-CPA Encryption

X9.63-KDF
NIST-800-108-KDF
NIST-800-56-KDF-A /B
NIST-800-56-KDF-C

: J

Hash Function

CTR mode CBC mode

Block Cipher

A-256 SHA-512 SHA- AES-128 AES-192 AES-256

* Algorithms, key size and parameters report. ENISA- 2014

CRYPTOGRAPHIC HASH FUNCTIONS

Hash functions

no secret parameters

computation “easy”

AN N N

One-way functions

This is an input to a crypto-
graphic hash function. The input
is a very long string, that is
reduced by the hash function to a
string of fixed length. There are

additional security conditions: it
should be very hard to find an
input hashing to a given value (a
preimage) or to find two colliding
inputs (a collision).

input string x of arbitrary length = output h(x) of fixed length n (bits)

1A3FD4128A198FB3CA345932

Cryptographic properties

preimage 2"d preimage collision

v v ¥

h(X) = h(x)

on on 2n/2

l

preimage

211

preimage

2"d preimage collision

A password|fi

Xi.e. (G#Erna

ust not store gasswords!

password) pairs

v'this is sufficfent to verify a passyvord
v’an attacker with access to the password file has to find a

h(R'Fm28e h(x) h(x’) = h(x))

v'Still, do not use it!!!

on 211/2

Second preimage

2hd preimage
» Can be used to protect the integrity of data x

» A secure channel is needed to send h(x) to
the verifier.

» The attacker wants to modify x and remain
undetected

> The attack is successful if the attacker can
find a second preimage of x

collision

The hacker prepares two versions of a software Let
1. x be the correct code

2. x’ contain a backdoor that gives hacker

access to a machine

The hacker submits x for inspection to Bob

If Bob is satisfied, he digitally signs h(x) with his
private key

The hacker distributes x’;

The users verify the signature with Bob’s public key
This signature works for x and for x/,

since h(x) = h(x’)!

Birthday paradox

e the birthday problem or birthday paradox concerns the
probability that, in a set of n randomly chosen people,
some pair of them will have the same birthday.

Example: lets assume that we have a group of 23 people.

23 I
2 = —23' = 253 pairs
2 21121

We can show that the birthday
paradox is larger than 50%!

p(n) =1-

(365
n!

365"

|

Birthday paradox

20
23
30
50
57
100

200

300
350

365

367

p(n)
11.7%
41.1%
50.7%
70.6%
97.0%
99.0%
99.99997%

99.999999999999999
9999999999998%

(100 - (6x10789))%
(100 - (3x107129))%

(100 -
(1.45x107155))%

100%

Birthday Attack

* A birthday attack is a name used to refer to a
class of brute-force attacks. More precisely,

“If some function, when supplied with a random
input, returns one of | k| equally-likely values,
then by repeatedly evaluating the function for
different inputs, we expect to obtain the same
output after about 1.2 |k|/2. “

o Example: for the birthday paradox, we have
|k|=365.

Brute force

* multiple target second preimage (1 out of many):

 —if one can attack 2! simultaneous targets, the
effort to find a single preimage is 2"t

* multiple target second preimage (many out of
many):

— time-memory trade-off with ©(2") precomputation

and storage ©(22"3) time per (2nd) preimage: 0(22"/3)
[Hellman’80]

e answer: randomize hash function with a
parameter S

(salt, key, spice,...)

Brute force attacks in practice

* (2nd) preimage search
— n =128: 23 BS for 1 year if one can attack 240 targets
in parallel

e parallel collision search: small memory using
cycle finding algorithms (distinguished points)
—n=128: 1 MS for 8 hours (or 1 year on 100K
PCs)

—n = 160: 90 MS for 1 year
— need 256-bit result for long term security (30
years or more)

Quantum era

* in principle exponential parallelism

— inverting a one-way function: 2" reduced to 2"/2
[Grover’96]

* collision search:

— 2"/3 computation + hardware [Brassard-Hoyer-
Tapp’98]

— [Bernstein’09] classical collision search
requires 2"4 computation and hardware (=
standard cost of 2"/2)

Properties in practice

* collision resistance is not always necessary

e other properties are needed:

— PRF: pseudo-randomness if keyed (with secret key)

— PRO: pseudo-random oracle property (formalization
of security properties when there is no key)

— near-collision resistance
— partial preimage resistance (most of input known)
— multiplication freeness

* how to formalize these requirements and the
relation between them?

A

_
BASIC CONSTRUCTIONS

A simple approach

Divide the message into { blocks x; of n bits each

Message block 1: x,
&

Message block 2: X,
&

&+

Message block t: x,

Hash value hix)

Merkle—Damgard construction

* fisacompression function

How to choose the function
- ad hoc

- based on a block cipher

Message Message Message
Block 1 Block 2 Block n

l
|
i

lterated structure -attack

- iterating fcan degrade its SE[:LI[i’[}"
— frivial example: 2™ preimage

Merkle-Damgard strengthening

Algorithm MD-strengthening

Before hashing a message & = x5 ... Z; (Where z; is a block of bitlength r appropriate
for the relevant compression function) of bitlength b. append a final length-block. x; .
containing the (say) right-justified binary representation of b. (This presumes b < 27.)

Security relation between f and h

solution: Merkle-Damgard (MD) strengthening

— fix IV, use unambiguous padding and insert length at the end

« fis collision resistant = his collision resistant
[Merkle 88-Damgard 89]

« fisideally 2 preimage resistant 2 h is ideally 21°
preimage resistant [Lai-Massey'a2]

= propery preservation has been a heavily studied topic
since 2005

How (NOT) to strengthen a hash
function?[Joux’04]

* answer: concatenation
* hy (n1-bit result) and h; (nZ-bit result)

* intuition: the strength of g against
collision/(27) preimage attacks is the
product of the strength of hy, and h,
— if hoth are “independent” gix) = h_l{:l:} I| ha(x)

* hut.... for iterated hash functions only
the strongest function matters

Multi-collisions [Joux "'04]

* finding multi-collisions for an iterated hash function is not
much harder than finding a single collision (if the size of the

internal memory is n hits)

* algorithm
* generate R = 2" fold
multi-collision for h,

*in K search by brute
force for h,

*fime: ni. 2n22 + 2niz
<o HN1+n2)2

Multi-collisions [Joux "'04]

consider h, (n1-hit result) and h, (n2-bit result), with n1 = n2.

concatenation of 2 iterated hash functions (g(x)= hy(x) || ha(x))
Is 35 most as strong as the strongest of the two (even If both
are independent)

* cost of collision attack against g at most
ni . 2n22 + 202 == 201+ n2)2

* cost of (2nd) preimage attack against g at most
rl1 . 2"2"2 + 2"1 + EHE = 2"1 £ nZ

* if either of the functions is weak, the attacks may work better

Improving MD iteration

salt + output transformation + counter + wide pipe

Improving MD iteration

* degradation with use: salting (family of functions,
randomization)

— or should a salt be part of the input?

* PRO: strong output transformation g

— also solves length extension

* long message 2nd preimage: preclude fix points
— counter f = fi [Biham-Dunkelman’07]

 multi-collisions, herding: avoid breakdown at 2"/
with larger internal memory: known as wide pipe

—e.g., extended MD4, RIPEMD, [Lucks’05]

Merkle Tree

* Hash trees allow efficient and secure
verification of the contents of large data
structures

COMPRESSION FUNCTIONS

Block cipher based

Matyas-Meyer-Oseas Davies-Meyer Miyaguchi-Preneel

T H; 4 T
Hi1 g 4~+_Y_E'; T E Hi- L g 4»&
Y v
e =
Y
H; H

Security Analysis

* The security of the Davies—Meyer construction
in the Ideal Cipher Model

* For Matyas—Meyer—Oseas construction there
is second preimage attack

* For Miyaguchi—Preneel construction there is
second preimage attack

Non block cipher based

* Sponge construction!

absorbing | squeezing

Po Py Po-1 Zo Z,
|
e e L’“‘ '~ Arl e
r Ou..-'-"' - .- a]i‘-‘-' - - - -
X !
|
f fl .. f : f fl .
C|l|O—> = - - — - > |
|
/ / A B R /

Motivation for use of a larger
permutatlon

plaintext

block cipher

internals

) needs to he
iInvertible

well, really only
for ECB, CBC,
and OCB

ciphertext

Motivation for use of a larger
permutation

Key plaintext

Motivation for use of a larger

Block cipher usad as

a hash function:

permutation
xi

|
:

Clavies-Meyer

but why resirict
deffusion in 1
drection? _
-

round e

K.S round |

"—___I_

KS round

S round pes

Pl
wls

Motivation for use of a larger
permutation

block cipher used as ~ His
a hash function: |
Davies-Meyer 1

Em‘ aaaaaa =

“Em.-.

ES round -‘.

“md -1 -------

Motivation for use of a larger

permutation
block cipher usad =finput right input
as a hash I I

function:
Clavies-Meyer

then one can as
well have a

permutation

T output

Motivation for use of a larger

nermutation L

N 1A, L
Fi) it it p 8 n

HEJ—# e s 2 ¥ | —

at:-Er::rt:-

cxample: Keccak (no buffer)

generallzatlc:n called Parazoa
JH, Cubehash, Fuge, Grindahl, Hamsi, Luffa

Motivation for use of a larger
permutation

¥y ¥ s Xa h ha

1A

- i L r

W ki
abhsorh sueeze

If H1 has r bits (rate) and H2 has ¢ bits (capacity) and the permutation
is “ideal”, then a sponge function has security O(2%) against (2)
preimage attacks and O{2°%) against collision attacks

lteration modes and compression
functions

e security of simple modes well understood

— powerful tools available

* analysis of slightly more complex schemes
very difficult
— which properties are meaningful?
— which properties are preserved?
— MD versus sponge is still open debate

CONSTRUCTIONS

MD4 family

MD4
Ext. MD4 / (Rivest, “90) K\; SHA-0
(Rivest, ‘90) l (NIST, ‘93)
RIPEMD MD5 SHA-1
(RIPE, fa—m) (Rivest, 92) (NIST.95)
RIPEMD-128 SH A_zlm
RIPEMD-160 SHA-256
RIPEMD-256 SHA-384
RIPEMD-320 SHA-512

(Dobbertin, Bosselaers,

TTQT 09 /)
Preneel, ‘96) (NIST, 02/04)

timeline

1990: MD4 by Ron Rivest

1991: MD5 by Ron Rivest (RFC 1321, 1992)

1992: RIPEMD by H. Dobbertin, A. Bosselaers and B. Preneel
1993: SHA-0 by U.S. Government (FIPS PUB 180)

1995: SHA-1 by U.S. Government (FIPS PUB 180-1)

2000: Whirlpool by V. Rijmen and P. Barreto

2001: SHA-2 by U.S. Government (FIPS PUB 180-2)

2005: First attacks against SHA-1

2015: SHA-3 by the Keccak team (FIPS 202)

2017: February 2017, CWI Amsterdam and Google announced they had performed a collision attack against SHA-1

o 5588

SHA-3 competition

« aHA-3: 224, 256, 384, and 512-bit message digests

« (similar to SHA-2)

-

rou I;-ﬂ 1

round 2

Call: 02/11/07
Deadline (64) 31/10/08
Round 1 (51). 09/12/08
Round 2 (14). 24/7/09

Final (5): 10/12/10
Selection: 02112
Standard 05/08/15

The candidates

31/10/2008

From B. Preneel slides
Slides credits: Christophe De Canniere

Round-2 candidates

| Grost!

24(7]2009

SHA-3 finalists

v BLAKE (Aumasson et al.)

v' Grgstl (Knudsen et al.)

v" JH (Hongjun Wu)

v' Keccak (Keccak team, Daemen et al.)

v Skein (Schneier et al.)

— Geography: 3 from Europe, 1 from Asia, 1 from America

— Team members also AES finalist: 3

Hardware: post-place & route results
ASIC 130nm

[(hr-:-ughput
[Gb F-sb
—a—H AT
Keccak Bl
i BATA
16 =1k H
i CH
—I—Fl.lﬂl.ﬂ
12 ._____.--" i
Grostl Hamsi
P ___.--""- e
_B F/,."'f i i
——uy
EIEHE’ —i—habal
4 i i
-G
ﬁ{ ,r"’t! -
i Area

i 120,000 160,000 mooon (GateEgv)

Keccak: FIPS 202
(published: 5 August 2015)

append 2 extra bits for domain separation to allow
— flexible output length (XOFs or eXtendable Output Functions)
— tree structure (Sakura) allowed by additional encoding
6 versions
— SHA3-224: n=224; ¢ = 448; r = 1152 (72%)
— SHAB3-256: n=256; ¢ = 512; r = 1088 (68%)
— SHAB3-384: n=384; ¢ = 768; r = 832 (52%)
— SHA3-512: n=512; ¢ = 1024; r = 576 (36%)
— SHAKE128: n=x; ¢ = 256; r = 1344 (84%)
— SHAKE?256: n=x; ¢ =512; r = 1088 (68%)
If result has n bits, H1 has r bits (rate), H2 has c bits (capacity) and the
permutation 7t 1s “ideal’:
— collisions: min (2¢/2, 2n2)
— 2" preimage: min (2¢2, 2"
— Preimage: min (2¢, 2")

SHA3 Winner:ccak

Not an MD construction
Based on a new design: sponge

Design team: Guido Bertoni, Joan Daemen, Michaél Peeters, Gilles Van
Assche

FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions
https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

State of the art

Output Classification
Primitive Length Legacy | Future
SHA-2 256, 384, 512 v v
SHA3 256,384,512 v v
Whirlpool 512 v v
SHA3 224 v X
SHA-2 224 v X
RIPEMD-160 160 v X
SHA-1 160 X X
MD-5 128 X X
RIPEMD-128 128 X X

Other hash functions

* BLAKE?2

— Since 2012
— high efficiency that it offers on modern CPUs

* Whirlpool
— Since 2000

— designed by Vincent Rijmen and Paulo S. L. M.
Barreto

— 512 bits

