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SYMMETRIC ENCRYPTION SCHEMES
Confidentiality



Security 
• perfect security, 

– an information-theoretic notion introduced by Shannon 
and showed by him to be met by the one-time pad 
scheme.

– regardless of the computing power available to the 
adversary, the ciphertext provides it no information about 
the plaintext beyond the a priori information it had prior to 
seeing the ciphertext

– it requires a key as long as the total amount of data 
encrypted

• computational security
– The security will only hold with respect to adversaries of limited 

computing power.



Shannon’s perfect secrecy definition

Let (E,D) be a cipher over (K,M,C) 

(E,D) has perfect secrecy if       m∀ 0, m1  M    (  |m∈ 0| = |m1| )

        { E(k,m0) }     =    { E(k,m1) }       where   k K⟵



One-time pas has perfect secrecy 

Plaintext Μ Plaintext ΜCiphertext C

Alice Bob
Random Sequence

+

Random Sequence

+



Perfect Secrecy

Theorem
One time pad has perfect secrecy.
• Proof: easily using Information Theory

Theorem
Perfect secrecy implies that the size of the key K (i.e. the One-

time pad’s random sequence) must be greater or equal to 
plaintext M

Thus, the key must be used only once. Impractical!
 



Can a stream cipher have perfect secrecy?

Yes, if the PRG is really “secure” 

No, there are no ciphers with perfect secrecy

No, since the key is shorter than the message

Yes, every cipher has perfect secrecy

Quiz



Can a stream cipher have perfect secrecy?

Yes, if the PRG is really “secure” 

No, there are no ciphers with perfect secrecy

No, since the key is shorter than the message

Yes, every cipher has perfect secrecy

Quiz



Two times padding/ re-using the IV
(attack 1)  

• Let 
• c1 = m1 ⊕ RS
• c2 = m2 ⊕ RS

• Eve eavesdrops c1,c21st attack: Known Plaintext Attack
Let m1 be a known plaintext to Eve. Then trivially:

c1 ⊕c2 ⊕m1= m1 ⊕ RS ⊕ m2 ⊕ RS ⊕m1=m2



Example

• Alice (two times the same keystream)

• Bob

m1: 0  1  1  0  1  1  1

RS: 1  0  1  1  0  1  0

c1:     1  1  0  1  1  0  1

⊕
m2: 1  0  0  1  0  1  1

RS: 1  0  1  1  0  1  0

c2:     0  0  1  0  0  0  1

⊕



Example

• Eve

•

m1: 0  1  1  0  1  1  1

c2: 0  0  1  0  0  0  1

c1:     1  1  0  1  1  0  1

m2: 1  0  0  1  0  1  1

⊕



Stream Ciphers

• One time padding is also a stream cipher 
requirement, since the same attack applies

• Remember that:
• The generator PRG produces a pseudorandom 

sequence PRS
• PRS=PRG(K,IV)
• c = m ⊕ PRS



Stream Ciphers (synchronous)

• PRS=PRG(K,IV)
• c = m ⊕ PRS

Plaintext m Plaintext mCiphertext c

Alice Bob

Pseudo Random 
Generator (PRG)

+ +

K=secret key

Pseudo Random 
Generator (PRG)

IV=public

PRS PRS



Stream Ciphers

• When the same key/IV pair is used the generator produces the same PRS
• Thus, we have

– c1 = m1 ⊕ PRS
– c2 =m2 ⊕ PRS

• The same attach. The IV must never repeat for the same key.



Example

• Alice (two times the same IV)

• Bob

m1: 0  1  1  0  1  1  1

PRS: 1  0  1  1  0  1  0

c1:     1  1  0  1  1  0  1

⊕
m2: 1  0  0  1  0  1  1

PRS: 1  0  1  1  0  1  0

c2:     0  0  1  0  0  0  1

⊕



Example

• Eve

•

m1: 0  1  1  0  1  1  1

c2: 0  0  1  0  0  0  1

c1:     1  1  0  1  1  0  1

m2: 1  0  0  1  0  1  1

⊕



Two times padding/ re-using the IV
(attack 2) 

• Let 
• c1 = m1 ⊕ RS  (or PRS) 
• c2 = m2 ⊕ RS (or PRS)

• Eve eavesdrops c1,c22nd attack: Known Plaintext Statistics
• Eve computes:

c=c1 ⊕c2=m1 ⊕ RS ⊕ m2 ⊕ RS =m1⊕m2
– Eve combines the (most probable) values of m1 and m2 until she produces c
– It is an efficient way to find candidate pairs (m1,m2)



Example

• Alice (two times the same keystream)

• Bob

m1: 0  1  1  0  1  1  1

k: 1  0  1  1  0  1  0

c1:     1  1  0  1  1  0  1

⊕
m2: 1  0  0  1  0  1  1

k: 1  0  1  1  0  1  0

c2:     0  0  1  0  0  0  1

⊕



Example

• Eve

•

c1:     1  1  0  1  1  0  1

c2: 0  0  1  0  0  0  1

c: 1  1  1  1  1  0  0

⊕

Trivial leakage: 

When the bits of c are zero 
then the corresponding bits 
of m1 and m2 are the same



Example

• Eve

•

c1:     1  1  0  1  1  0  1

c2: 0  0  1  0  0  0  1

c: 1  1  1  1  1  0  0

⊕

Scenario: 
Let any m used by Alice be of the form

m=X||D
where X is one of {111, 010,011,000}.

Then, m1 = X1|D1 and m2= X2|D2

We have that for the different possible X: 
111⊕010= 101
111⊕011= 100
010⊕011= 001
111⊕000= 111
011⊕000= 011
010⊕000= 010

Since the last 3 bits of c are 100, then the 
last 3 of m1, m2 are {111,011}/ we don’t 
know which is which. 

We can improve the attack we more 
ciphertexts



Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C) 

(E,D) has perfect secrecy if       m∀ 0, m1  M    (  |m∈ 0| = |m1| )

        { E(k,m0) }     =    { E(k,m1) }       where   k K⟵

(E,D) has (almost) perfect secrecy if  m∀ 0, m1  M (|m∈ 0| = |m1| )

        { E(k,m0) }   ≈p   { E(k,m1) }       where   k K⟵

… but also need adversary to exhibit  m0, m1  M explicitly∈



Semantic Security/ IND-CPA
For   b=0,1   define experiments EXP(0) and EXP(1) as:

for b=0,1:   Wb := [ event that EXP(b)=1  ]

AdvSS[A,E] := | Pr[ W0 ] −  Pr[ W1 ] |      [0,1]∈

Chal.

b

Adv. A

kK
m0 , m1   M :    |m0| = |m1|

c  E(k, mb)

b’  {0,1}



Semantic Security (one-time key)

Def:   E is semantically secure if for all efficient  
A

        AdvSS[A,E]    is negligible.

 - Indistinguishability under chosen-plaintext 
attack (IND-CPA)

   ⇒ for all explicit m0 , m1   M :  

{ E(k,m0) }   ≈p   { E(k,m1) } 



Adv. B  (us)

Example 1
Suppose efficient A can always deduce LSB of PT from CT.     

     ⇒ E = (E,D) is not semantically secure.  

Chal.

b{0,1}

Adv.  A
(given)

kK

C E(k, mb)

m0, LSB(m0)=0 

m1, LSB(m1)=1 

C

LSB(mb)=b

Then  AdvSS[B, E] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1 



Example 1

• When algorithm A works with probability p 
(not certain) then the attack is the same, only 
the advantage changes.

• Example, p = 0.8

Then  AdvSS[B, E] = | 0,8 − 0,2 |= |0,6| = 0,6 



Example 2 
• Έστω ότι ο (E,D) είναι ένας semantically secure cipher όπου ο χώρος του 

μηνύματος και του ciphertext είναι {0,1}n. Εϊναι το ακόλουθο σχήμα 
κρυπτογράφησης είναι semantically secure?

E′(k,m)=E(k,m)∥∥(LSB(m)⊕ ΜSB(m))
Proof (sketch): 
1. Use the definition to evaluate the scheme
2. We are looking for two messages such that LSB(m)⊕ ΜSB(m) gives 

different output
3. Two such messages, for any m, are

– m0 = (0||m||0)
– m1 = (1||m||0)
(there are also other choices of course.)

• The advantage is 1.



Adv. B  (us)

Example 2
Suppose efficient A can always deduce LSB⊕ MSB of PT from CT.     

     ⇒ E = (E,D) is not semantically secure.  

Chal.

b{0,1}

Adv.  A
(given)

kK

C E(k, mb)

m0,LSB(m0)=0, MSB(m0)=0 

m1,LSB(m1)=1, MSB(m1)=0 

C

LSB(mb)⊕ MSB(mb) =b

Then  AdvSS[B, E] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1 



• Encryption

Block Cipher ECB Mode



Adv. B  (us)

Example 3 (ECB mode)
Suppose that ECB mode of a block cipher B is used.     

     ⇒ E = (E,D) is not semantically secure.  

Chal.

b{0,1}

If C0==C1, 
then b=0
Else b=1

kK

C E(k, mb)

m0=P|P 

m1=P|Q 

C=C0|C1

Then  AdvSS[B, E] = | Pr[ EXP(0)=1 ] −  Pr[ EXP(1)=1 ] |= |0 – 1| = 1 



PADDING



Padding
• Padding it is needed when the input doesn’t have the necessary length.

 For instance when a plaintext is processed in blocks (CBC mode, ECB 
mode etc

 When message is processed in blocks (hash functions)

• There are padding oracle attacks

 An application exhibits padding errors while decrypting a ciphertext

 The attacker can choose the ciphertext (chosen ciphertext attack)
 (for instance keywrapping) 



Padding in CBC mode 

F(k,) F(k,) F(k,)

p[0] p[1] p[3] ???



F(k,)



p[4]

c[0] c[1] c[3] c[4]

IV



Padding
• There are several padding schemes

 Zero padding (ex. CBC-CS1/2/3, NIST Special Publication 800-38A )

 One and zeros padding

 PKCS5/PKCS7

PKCS5 Padding

 Originally designed for block ciphers operating on 64-bit blocks (e.g., DES).

 Up to 8-bytes (64-bit) block sizes.

 The plaintext is padded by adding bytes, each of which is the number of padding bytes added. 

 Example, if 3 bytes of padding are added, the padding will be 0x03 0x03 0x03.

 if 5 bytes of padding are added, the padding will be 0x05 0x05 0x05 0x05 0x05.
PKCS7 Padding(similar to PKCS5)

 Supports block sizes of up to 255 bytes (maximum number stored in a byte).

 if a message is a multiple of blockSize, PKCS7 still “pads out” with a block of 16 0x10s



PKCS7



Single block attack
The encrypted message consists of an IV and a single ciphertext block.

 We can set the IV to whatever we want. Initially IV is all zeros

 The padding oracle will compute tells us only whether or not the resulting 
plaintext block ends with valid padding.

 By making modifications to the IV, we can predictably modify the plaintext block, 
since flipping a bit in the IV will flip the corresponding bit in the plaintext. 

 Setting the IV’s final byte to any value will xor that value into the plaintext’s final 
byte. 

 If we iterate through every possible value for the final IV byte, eventually one of 
them will set the plaintext’s final byte to 0x01 

 The padding oracle will tell us when this happens, because 0x01 is valid padding!

 A trailing 0x01 byte meets the padding standard, so the oracle accepts it just like it 
would accept 0x02 0x02 or 0x03 0x03 0x03.



Padding Attack (1)
• Single block messages



Single block attack
 The search for a valid IV byte ends when we reach 0x2e, because 0x2e  0x2f = 0x01.⊕

 We can start to construct what I’ll call a zeroing IV, i.e. the IV which will set some (eventually all) of the plaintext’s bytes to 
zero.

 zero gives us options. If we want to set a plaintext byte to any value other than zero, we can just xor that value into the zeroing IV. 
In other words, the zeroing IV gives us a way of manipulating the plaintext however we like.

 As soon as we set the plaintext’s final byte to 0x01, we can take the corresponding IV byte and xor that against 0x01. This 
modified IV byte will set the plaintext’s final byte to 0x00 – and so it will work as the final byte of our zeroing IV.

 Once we have that, we can derive a new IV which is guaranteed to set the plaintext’s final byte to 0x02, and we can start 
trying to set the plaintext’s penultimate byte to 0x02 as well.

 Once we’ve found valid one-byte padding, we can use a similar process to search for valid two-byte padding. 

 This search will terminate when the plaintext’s final two bytes equal 0x02 0x02.This permits us to move on to attacking the 
third-from-last byte, then the fourth-from-last, and so on.

 Note: If the plaintext’s penultimate byte is already set to 0x02, then the message’s padding would be valid if the final byte is 
set to either 0x01 or 0x02. If our ultimate byte search hits 0x02 before 0x01, but we assume that we found 0x01 and not 0x02, 
and the attack fails. We get an affirmative result from the oracle, by changing the IV’s penultimate byte and query the oracle 
again. If both queries succeed, this tells us that the penultimate byte is not part of the message’s (valid) padding, proving that 
the padding has length one and thus must have value 0x01 as well. On the other hand, if this second query fails, we’ve run 
into a false positive and should keep searching.



Padding Attack (2)
• Single block messages



Padding Attack
• The attack can be generalized to multi-block plaintexts  [1]
• A real world attack against TLS 1.2, IPsec

 It takes advantage of MAC-then-encrypt

• This attack was first reported against TLS by Serge Vaudenay in 2002 [2]. 

[1] https://www.nccgroup.com/us/research-blog/cryptopals-exploiting-cbc-padding-oracles/ 

[2] https://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf  

https://www.nccgroup.com/us/research-blog/cryptopals-exploiting-cbc-padding-oracles/
https://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf


HASH FUNCTIONS



Cryptographic properties 



Cryptanalysis

We can do one of the following:

1)Show that there is an attack more efficient than the generic 
attacks, i.e.
 Guess a preimage (complexity 2n) 
 Guess a 2nd preimage (complexity 2n)
 Guess a collision pair (complexity 2n/2)

2)Build on a secure primitive and prove that the construction is 
secure by showing that if there is an efficient attack against 
the construction then you can adapt this attack and mount a 
new one against the secure primitive.



Exercise 1
Let H:{0,1}*→T  be a collision resistant hash function. Is the following hash 
function collision resistant?

H′(m)=H(m) H⨁ (m 1⊕ |m|)
where |m| is length of m and 1x is a string of x 1’s. 
For instance, let m=10101. Then, |m|=5 and 1|m|=15=11111

H

m

H’(m)

Hm 1⊕ ⊕



Exercise 1
Proof

Clearly, it is easy to show that any two message m, m’ such that m’= m 1⊕ |m|, they have that same 
hash value:

H′(m’)=H(m’) H⨁ (m’ 1⊕ |m’|)= H(m 1⊕ |m|) H⨁ (m 1⊕ |m| 1⊕ |m|)=

= H(m 1⊕ |m|) H⨁ (m)=H’(m)

Thus, it is not collision resistant. 
(Try as an example the pair (m = 110001, m’ = 001110)

H

m

H’(m)

Hm 1⊕ ⊕



Exercise 2

1. Let H:{0,1}*→{0,1}n  be a collision resistant hash function. 
Is the following hash function collision resistant?

H′(m)=H(H(m))
H H

m H’(m)



Proof (sketch)
• Let H′(m)=H(H(m)) 
and let’s assume that H’(m) is not collision resistant. 
Thus, there is a polynomial algorithm A that can compute a pair of different 
messages m1 and m2, more efficiently than O(2n/2), such that: 

H’(m1)=H’(m2)
Thus, it holds 

H(H(m1))=H(H(m2)). 



Proof (sketch)
Thus, it holds 

H(H(m1))=H(H(m2)). 
We distinguish two cases:

1. H(m1)=H(m2). Then, the algorithm A can compute collisions for H(m), 
more efficiently than O(2n/2). This is a contradiction.

2. H(m1)≠H(m2). Then,  the messages y1=H(m1) and  y2=H(m2) 
H(H(m1))=H(H(m2)) <=> H(y1)=H(y2)

are collisions for H(m). That is that, the algorithm A can compute collisions for 
H(m), more efficiently than O(2n/2).  This is a contradiction.



MAC SECURITY



 Strong Unforgeability
under Chosen Message Attack (SUF-CMA)

• For a MAC   I=(S,V)  and adv.  A  define a MAC game as:

Def:  I=(S,V)  is a secure MAC if for all “efficient”  A:
         AdvMAC[A,I]  =  Pr[Chal. outputs 1]    is “negligible.”

Chal. Adv.

kK

(m,t)

m1  M

t1  S(k,m1)

b=1    if  V(k,m,t) = `yes’   and  (m,t)    { (m1,t1) , … , (mq,tq) }

b=0   otherwise

b

m2 , …, mq

t2 , …, tq



(RAW) CBC-MAC security

F(k,) F(k,) F(k,)

D1 D2 …. Dq



F(k,)



H1 Hq-1H2 Hq



(RAW) CBC-MAC security

• Let m = D0 
(size single block)

F(k,)

D0

tag

• Let m’ = D0||D0⊕tag 
(size two blocks)

F(k,)

D0

tag

F(k,)

D1=D0⊕tag

tag





 Strong Unforgeability
under Chosen Message Attack (SUF-CMA)

         AdvMAC[A,I]  =  Pr[Chal. outputs 1]=1

Chal. Adv.

kK

(m’,tag)

m

tag  S(k,m)

b=1

b



Example

Lets assume that the ECBCIV is a modified version of EMAC 
which uses a randomly selected IV for each message m and 
produces the output as it appears in the next slide. The IV will 
then be part of the tag, i.e. 

tag=(IV,  ECBCIV(k,k’,m))  

where (k,k’) are the two keys. Is the new MAC SUF-CMA 
secure?



raw CBC

Modified EMAC (ECBCIV)

F(k,) F(k,) F(k,)

D0 D1 … Dq



F(k,)



F(k’,)

Hq

IV



Modified EMAC (ECBCIV)

F(k,)

D0



F(k’,)
tag

Hq

IV

• Let m1= D0. Then, 
tag=(IV,  ECBCIV(k,m1))

and IV D0 is the input of the cipher F



Modified EMAC (ECBCIV)

F(k,)

D



F(k’,)
ECBC

Hq

IV’

• It is easy to verify that for any message 
(for any D)
• m2= D, and
• IV’ = IVDD0

The input to F is again
 IV’ D=IVDD0D=IV D0

It holds that 
tag=(IV’,  ECBCIV’(k,m2))



ECBC-MAC and HMAC analysis

Theorem:     Let q be the number of different messages for which a tag 

was produced (using the same key) and let L be the total length in bits. If 

Adv[B,F] be the advantage of an efficient attacker B against a block cipher 

F and   Adv[B,H] be the advantage of an efficient attacker B against a hash 

function H. Then:

   AdvPRF[A, FECBC]   AdvPRP[B, F]  +  2 q2 / |X|

AdvPRF[A, FHMAC]   q L Adv⋅ ⋅ PRF[B, F]  +  q2 / 2|K|

Where |X| is the total number of different input blocks for the block 
cipher and |K| the total number of keys



ECBC-MAC and HMAC analysis

1. When the block cipher is secure we  Adv[B,F]=0 and

   AdvPRF[A, FECBC]   2 q2 / |X|

Thus, CBC-based MAC is secure as long as   q  <<  |X|1/2

2. When the block cipher is secure we  Adv[B,H]=0 and

AdvPRF[A, FHMAC]   q2 / 2|K|

Thus, HMAC is secure as long as   q  <<  |K|1/2  



An example

q = # messages MAC-ed with k    

Suppose we want   AdvPRF[A, FECBC] ≤  1/232              q⇐ 2 /|X| < 1/ 232 

• AES:     |X| = 2128       q < 2⇒ 48

So, after  248  messages we must change key

• 3DES:    |X| = 264       q < 2⇒ 16

So, after  216  messages we must change key

AdvPRF[A, FECBC]   AdvPRP[B, F]  +  2 q2 / |X|



WEP - SECURITY



Wired Equivalent Privacy (WEP)

• WEP - Part of original 802.11 specification published in 
1999.

• Confidentiality
– Uses RC4 Stream cipher
– Has static 40-bit base key (common for all the clients)
– A 64-bit per-packet key
– A 24-bit Initialization Vector (IV)

• Integrity
– Uses Integrity Check Value (ICV) to verify integrity
– No key!!



Characteristics - notes

• Stateless protocol
– Mobile stations and access points are not required 

to keep past state
• Encrypted CRC-32 used as integrity check

– Fine for random errors, but not deliberate ones
– Linear

• CRC(X+Y) = CRC(X)+CRC(Y)

• RC4 keystream should not be reused
– One-time pad



Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point Client

association 
request

association 
response

probe request
OR

challenge

challengeRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated



Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point Client

association 
request

association 
response

probe request
OR

challenge

challengeRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Passive eavesdropper recovers RC4(IV,K), 
can respond to any subsequent challenge 
without knowing K



Attack on Access Control

• It is possible to get authenticated without knowing the secret key! 
(shown in blue)

• We only need a plaintext, ciphertext pair of a legitimate authentication. 
(shown in black)

client

server

Request.Authentication

128 nonce

nonce+RC4(IV, key)   IV

Request received

nonce+RC4(IV, key)

Decrypt the packet
and verify nonce

Request.Authentication

128 nonce

nonce+RC4(IV, key)   IV

Request received

nonce+RC4(IV, key)

Decrypt the packet
and verify nonce

N
orm

al session
H

acker U
sing D

ata O
btained

 From
 Previous Session

hacker



How WEP “Privacy” Works

24 bits 40 bits

(IV, shared key) used as RC4 seed
 Must never be repeated (why?)
 There is no key update protocol, so
   security relies on never repeating IV

IV sent in the clear
Worse: changing IV with 
each packet is optional!

CRC-32 checksum is linear in : 
if attacker flips some plaintext bits, he knows which
bits of CRC to flip to produce the same checksum

no integrity!



WEP

IV

RC4
key

IV encrypted packet

original unencrypted packet checksum



WEP

– Share a single cryptographic key among all devices
– Encrypt all packets sent over the air, using the shared key
– Use a checksum to prevent injection of spoofed packets

(encrypted traffic)



WEP - A Little More Detail

• WEP uses the RC4 stream cipher to encrypt a TCP/IP
packet (P) by xor-ing it with keystream (RC4(K, IV))

IV,     P  RC4(K, IV)



Attack #1: Keystream Reuse

• WEP didn’t use RC4 carefully
• The problem: IV’s frequently repeat

– The IV is often a counter that starts at zero
– Hence, rebooting causes IV reuse
– Also, there are only 16 million possible IV’s, so after 

intercepting enough packets, there are sure to be 
repeats

 Attackers can eavesdrop on 802.11 traffic
– An eavesdropper can decrypt intercepted ciphertexts 

even without knowing the key



Attack #2: Spoofed Packets

• Attackers can inject forged 802.11 traffic
– Learn RC4(K, IV) using previous attack
– Since the checksum is unkeyed, you can then create 

valid ciphertexts that will be accepted by the 
receiver



A Property of RC4

• Keystream leaks, under known-plaintext attack
– Suppose we intercept a ciphertext C, and suppose 

we can guess the corresponding plaintext P
– Let PRS = RC4(K, IV) be the RC4 keystream
– Since C = P  PRS, we can derive the RC4 

keystream PRS by P  C = P  (P  PRS) = PRS
• This is not a problem ... unless keystream is 

reused!



A Risk of Keystream Reuse

• If IV’s repeat, confidentiality is at risk
– If we send two ciphertexts (C, C’) using the same IV, then the xor of 

plaintexts leaks (P  P’ = C  C’), which might reveal both plaintexts

 Lesson: If RC4 isn’t used carefully, it becomes insecure

IV,     P  RC4(K, IV)

IV,     P’  RC4(K, IV)



A note on IVs

• What if random IVs were used? 
• IV space – 224 possibilities 
• Collision after 4000 packets 
• Rough estimate: a busy AP sends 1000 

packets/sec 
• Collision every 4s! 
• Even with counting IV (best case), rollover 

every few hours



So..

• If we have 224 known plaintexts, can decrypt 
every packet!!!! 



Attack #2: Spoofed Packets

• Attackers can inject forged 802.11 traffic
– Learn Z = RC4(K, IV) using previous attack
– Since the CRC checksum is unkeyed, you can then create valid 

ciphertexts that will be accepted by the receiver

 Attackers can bypass 802.11b access control
– All computers attached to wireless net are exposed

IV, (P, CRC(P))  Z



Attack #3: Packet Modification

• CRC is linear
   CRC(P  ) = CRC(P)  CRC() 
     the modified packet (P  ) has a valid checksum

 Attacker can tamper with packet (P) without breaking RC4

(P, CRC(P))  RC4(K)

(P, CRC(P))  RC4(K)  (, CRC())



Attack #4: Replay Attacks

 Attacker can replay plaintext (P) without breaking RC4
 Stateless!!

P  RC4(K) P  RC4(K)

P  RC4(K)
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