
Cryptography
Lecture – Symmetric key Cryptanalysis

Dr. Panagiotis Rizomiliotis

Agenda

• Encryption Security
• Padding attack
• Hash security
• MAC security

SYMMETRIC ENCRYPTION SCHEMES
Confidentiality

Security
• perfect security,

– an information-theoretic notion introduced by Shannon
and showed by him to be met by the one-time pad
scheme.

– regardless of the computing power available to the
adversary, the ciphertext provides it no information about
the plaintext beyond the a priori information it had prior to
seeing the ciphertext

– it requires a key as long as the total amount of data
encrypted

• computational security
– The security will only hold with respect to adversaries of limited

computing power.

Shannon’s perfect secrecy definition

Let (E,D) be a cipher over (K,M,C)

(E,D) has perfect secrecy if m∀ 0, m1 M (|m∈ 0| = |m1|)

 { E(k,m0) } = { E(k,m1) } where k K⟵

One-time pas has perfect secrecy

Plaintext Μ Plaintext ΜCiphertext C

Alice Bob
Random Sequence

+

Random Sequence

+

Perfect Secrecy

Theorem
One time pad has perfect secrecy.
• Proof: easily using Information Theory

Theorem
Perfect secrecy implies that the size of the key K (i.e. the One-

time pad’s random sequence) must be greater or equal to
plaintext M

Thus, the key must be used only once. Impractical!

Can a stream cipher have perfect secrecy?

Yes, if the PRG is really “secure”

No, there are no ciphers with perfect secrecy

No, since the key is shorter than the message

Yes, every cipher has perfect secrecy

Quiz

Can a stream cipher have perfect secrecy?

Yes, if the PRG is really “secure”

No, there are no ciphers with perfect secrecy

No, since the key is shorter than the message

Yes, every cipher has perfect secrecy

Quiz

Two times padding/ re-using the IV
(attack 1)

• Let
• c1 = m1 ⊕ RS
• c2 = m2 ⊕ RS

• Eve eavesdrops c1,c21st attack: Known Plaintext Attack
Let m1 be a known plaintext to Eve. Then trivially:

c1 ⊕c2 ⊕m1= m1 ⊕ RS ⊕ m2 ⊕ RS ⊕m1=m2

Example

• Alice (two times the same keystream)

• Bob

m1: 0 1 1 0 1 1 1

RS: 1 0 1 1 0 1 0

c1: 1 1 0 1 1 0 1

⊕
m2: 1 0 0 1 0 1 1

RS: 1 0 1 1 0 1 0

c2: 0 0 1 0 0 0 1

⊕

Example

• Eve

•

m1: 0 1 1 0 1 1 1

c2: 0 0 1 0 0 0 1

c1: 1 1 0 1 1 0 1

m2: 1 0 0 1 0 1 1

⊕

Stream Ciphers

• One time padding is also a stream cipher
requirement, since the same attack applies

• Remember that:
• The generator PRG produces a pseudorandom

sequence PRS
• PRS=PRG(K,IV)
• c = m ⊕ PRS

Stream Ciphers (synchronous)

• PRS=PRG(K,IV)
• c = m ⊕ PRS

Plaintext m Plaintext mCiphertext c

Alice Bob

Pseudo Random
Generator (PRG)

+ +

K=secret key

Pseudo Random
Generator (PRG)

IV=public

PRS PRS

Stream Ciphers

• When the same key/IV pair is used the generator produces the same PRS
• Thus, we have

– c1 = m1 ⊕ PRS
– c2 =m2 ⊕ PRS

• The same attach. The IV must never repeat for the same key.

Example

• Alice (two times the same IV)

• Bob

m1: 0 1 1 0 1 1 1

PRS: 1 0 1 1 0 1 0

c1: 1 1 0 1 1 0 1

⊕
m2: 1 0 0 1 0 1 1

PRS: 1 0 1 1 0 1 0

c2: 0 0 1 0 0 0 1

⊕

Example

• Eve

•

m1: 0 1 1 0 1 1 1

c2: 0 0 1 0 0 0 1

c1: 1 1 0 1 1 0 1

m2: 1 0 0 1 0 1 1

⊕

Two times padding/ re-using the IV
(attack 2)

• Let
• c1 = m1 ⊕ RS (or PRS)
• c2 = m2 ⊕ RS (or PRS)

• Eve eavesdrops c1,c22nd attack: Known Plaintext Statistics
• Eve computes:

c=c1 ⊕c2=m1 ⊕ RS ⊕ m2 ⊕ RS =m1⊕m2
– Eve combines the (most probable) values of m1 and m2 until she produces c
– It is an efficient way to find candidate pairs (m1,m2)

Example

• Alice (two times the same keystream)

• Bob

m1: 0 1 1 0 1 1 1

k: 1 0 1 1 0 1 0

c1: 1 1 0 1 1 0 1

⊕
m2: 1 0 0 1 0 1 1

k: 1 0 1 1 0 1 0

c2: 0 0 1 0 0 0 1

⊕

Example

• Eve

•

c1: 1 1 0 1 1 0 1

c2: 0 0 1 0 0 0 1

c: 1 1 1 1 1 0 0

⊕

Trivial leakage:

When the bits of c are zero
then the corresponding bits
of m1 and m2 are the same

Example

• Eve

•

c1: 1 1 0 1 1 0 1

c2: 0 0 1 0 0 0 1

c: 1 1 1 1 1 0 0

⊕

Scenario:
Let any m used by Alice be of the form

m=X||D
where X is one of {111, 010,011,000}.

Then, m1 = X1|D1 and m2= X2|D2

We have that for the different possible X:
111⊕010= 101
111⊕011= 100
010⊕011= 001
111⊕000= 111
011⊕000= 011
010⊕000= 010

Since the last 3 bits of c are 100, then the
last 3 of m1, m2 are {111,011}/ we don’t
know which is which.

We can improve the attack we more
ciphertexts

Recall Shannon’s perfect secrecy

Let (E,D) be a cipher over (K,M,C)

(E,D) has perfect secrecy if m∀ 0, m1 M (|m∈ 0| = |m1|)

 { E(k,m0) } = { E(k,m1) } where k K⟵

(E,D) has (almost) perfect secrecy if m∀ 0, m1 M (|m∈ 0| = |m1|)

 { E(k,m0) } ≈p { E(k,m1) } where k K⟵

… but also need adversary to exhibit m0, m1 M explicitly∈

Semantic Security/ IND-CPA
For b=0,1 define experiments EXP(0) and EXP(1) as:

for b=0,1: Wb := [event that EXP(b)=1]

AdvSS[A,E] := | Pr[W0] − Pr[W1] | [0,1]∈

Chal.

b

Adv. A

kK
m0 , m1  M : |m0| = |m1|

c  E(k, mb)

b’  {0,1}

Semantic Security (one-time key)

Def: E is semantically secure if for all efficient
A

 AdvSS[A,E] is negligible.

 - Indistinguishability under chosen-plaintext
attack (IND-CPA)

 ⇒ for all explicit m0 , m1  M :

{ E(k,m0) } ≈p { E(k,m1) }

Adv. B (us)

Example 1
Suppose efficient A can always deduce LSB of PT from CT.

 ⇒ E = (E,D) is not semantically secure.

Chal.

b{0,1}

Adv. A
(given)

kK

C E(k, mb)

m0, LSB(m0)=0

m1, LSB(m1)=1

C

LSB(mb)=b

Then AdvSS[B, E] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] |= |0 – 1| = 1

Example 1

• When algorithm A works with probability p
(not certain) then the attack is the same, only
the advantage changes.

• Example, p = 0.8

Then AdvSS[B, E] = | 0,8 − 0,2 |= |0,6| = 0,6

Example 2
• Έστω ότι ο (E,D) είναι ένας semantically secure cipher όπου ο χώρος του

μηνύματος και του ciphertext είναι {0,1}n. Εϊναι το ακόλουθο σχήμα
κρυπτογράφησης είναι semantically secure?

E′(k,m)=E(k,m)∥∥(LSB(m)⊕ ΜSB(m))
Proof (sketch):
1. Use the definition to evaluate the scheme
2. We are looking for two messages such that LSB(m)⊕ ΜSB(m) gives

different output
3. Two such messages, for any m, are

– m0 = (0||m||0)
– m1 = (1||m||0)
(there are also other choices of course.)

• The advantage is 1.

Adv. B (us)

Example 2
Suppose efficient A can always deduce LSB⊕ MSB of PT from CT.

 ⇒ E = (E,D) is not semantically secure.

Chal.

b{0,1}

Adv. A
(given)

kK

C E(k, mb)

m0,LSB(m0)=0, MSB(m0)=0

m1,LSB(m1)=1, MSB(m1)=0

C

LSB(mb)⊕ MSB(mb) =b

Then AdvSS[B, E] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] |= |0 – 1| = 1

• Encryption

Block Cipher ECB Mode

Adv. B (us)

Example 3 (ECB mode)
Suppose that ECB mode of a block cipher B is used.

 ⇒ E = (E,D) is not semantically secure.

Chal.

b{0,1}

If C0==C1,
then b=0
Else b=1

kK

C E(k, mb)

m0=P|P

m1=P|Q

C=C0|C1

Then AdvSS[B, E] = | Pr[EXP(0)=1] − Pr[EXP(1)=1] |= |0 – 1| = 1

PADDING

Padding
• Padding it is needed when the input doesn’t have the necessary length.

 For instance when a plaintext is processed in blocks (CBC mode, ECB
mode etc

 When message is processed in blocks (hash functions)

• There are padding oracle attacks

 An application exhibits padding errors while decrypting a ciphertext

 The attacker can choose the ciphertext (chosen ciphertext attack)
 (for instance keywrapping)

Padding in CBC mode

F(k,) F(k,) F(k,)

p[0] p[1] p[3] ???



F(k,)



p[4]

c[0] c[1] c[3] c[4]

IV

Padding
• There are several padding schemes

 Zero padding (ex. CBC-CS1/2/3, NIST Special Publication 800-38A)

 One and zeros padding

 PKCS5/PKCS7

PKCS5 Padding

 Originally designed for block ciphers operating on 64-bit blocks (e.g., DES).

 Up to 8-bytes (64-bit) block sizes.

 The plaintext is padded by adding bytes, each of which is the number of padding bytes added.

 Example, if 3 bytes of padding are added, the padding will be 0x03 0x03 0x03.

 if 5 bytes of padding are added, the padding will be 0x05 0x05 0x05 0x05 0x05.
PKCS7 Padding(similar to PKCS5)

 Supports block sizes of up to 255 bytes (maximum number stored in a byte).

 if a message is a multiple of blockSize, PKCS7 still “pads out” with a block of 16 0x10s

PKCS7

Single block attack
The encrypted message consists of an IV and a single ciphertext block.

 We can set the IV to whatever we want. Initially IV is all zeros

 The padding oracle will compute tells us only whether or not the resulting
plaintext block ends with valid padding.

 By making modifications to the IV, we can predictably modify the plaintext block,
since flipping a bit in the IV will flip the corresponding bit in the plaintext.

 Setting the IV’s final byte to any value will xor that value into the plaintext’s final
byte.

 If we iterate through every possible value for the final IV byte, eventually one of
them will set the plaintext’s final byte to 0x01

 The padding oracle will tell us when this happens, because 0x01 is valid padding!

 A trailing 0x01 byte meets the padding standard, so the oracle accepts it just like it
would accept 0x02 0x02 or 0x03 0x03 0x03.

Padding Attack (1)
• Single block messages

Single block attack
 The search for a valid IV byte ends when we reach 0x2e, because 0x2e 0x2f = 0x01.⊕

 We can start to construct what I’ll call a zeroing IV, i.e. the IV which will set some (eventually all) of the plaintext’s bytes to
zero.

 zero gives us options. If we want to set a plaintext byte to any value other than zero, we can just xor that value into the zeroing IV.
In other words, the zeroing IV gives us a way of manipulating the plaintext however we like.

 As soon as we set the plaintext’s final byte to 0x01, we can take the corresponding IV byte and xor that against 0x01. This
modified IV byte will set the plaintext’s final byte to 0x00 – and so it will work as the final byte of our zeroing IV.

 Once we have that, we can derive a new IV which is guaranteed to set the plaintext’s final byte to 0x02, and we can start
trying to set the plaintext’s penultimate byte to 0x02 as well.

 Once we’ve found valid one-byte padding, we can use a similar process to search for valid two-byte padding.

 This search will terminate when the plaintext’s final two bytes equal 0x02 0x02.This permits us to move on to attacking the
third-from-last byte, then the fourth-from-last, and so on.

 Note: If the plaintext’s penultimate byte is already set to 0x02, then the message’s padding would be valid if the final byte is
set to either 0x01 or 0x02. If our ultimate byte search hits 0x02 before 0x01, but we assume that we found 0x01 and not 0x02,
and the attack fails. We get an affirmative result from the oracle, by changing the IV’s penultimate byte and query the oracle
again. If both queries succeed, this tells us that the penultimate byte is not part of the message’s (valid) padding, proving that
the padding has length one and thus must have value 0x01 as well. On the other hand, if this second query fails, we’ve run
into a false positive and should keep searching.

Padding Attack (2)
• Single block messages

Padding Attack
• The attack can be generalized to multi-block plaintexts [1]
• A real world attack against TLS 1.2, IPsec

 It takes advantage of MAC-then-encrypt

• This attack was first reported against TLS by Serge Vaudenay in 2002 [2].

[1] https://www.nccgroup.com/us/research-blog/cryptopals-exploiting-cbc-padding-oracles/

[2] https://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf

https://www.nccgroup.com/us/research-blog/cryptopals-exploiting-cbc-padding-oracles/
https://www.iacr.org/archive/eurocrypt2002/23320530/cbc02_e02d.pdf

HASH FUNCTIONS

Cryptographic properties

Cryptanalysis

We can do one of the following:

1)Show that there is an attack more efficient than the generic
attacks, i.e.
 Guess a preimage (complexity 2n)
 Guess a 2nd preimage (complexity 2n)
 Guess a collision pair (complexity 2n/2)

2)Build on a secure primitive and prove that the construction is
secure by showing that if there is an efficient attack against
the construction then you can adapt this attack and mount a
new one against the secure primitive.

Exercise 1
Let H:{0,1}*→T be a collision resistant hash function. Is the following hash
function collision resistant?

H′(m)=H(m) H⨁ (m 1⊕ |m|)
where |m| is length of m and 1x is a string of x 1’s.
For instance, let m=10101. Then, |m|=5 and 1|m|=15=11111

H

m

H’(m)

Hm 1⊕ ⊕

Exercise 1
Proof

Clearly, it is easy to show that any two message m, m’ such that m’= m 1⊕ |m|, they have that same
hash value:

H′(m’)=H(m’) H⨁ (m’ 1⊕ |m’|)= H(m 1⊕ |m|) H⨁ (m 1⊕ |m| 1⊕ |m|)=

= H(m 1⊕ |m|) H⨁ (m)=H’(m)

Thus, it is not collision resistant.
(Try as an example the pair (m = 110001, m’ = 001110)

H

m

H’(m)

Hm 1⊕ ⊕

Exercise 2

1. Let H:{0,1}*→{0,1}n be a collision resistant hash function.
Is the following hash function collision resistant?

H′(m)=H(H(m))
H H

m H’(m)

Proof (sketch)
• Let H′(m)=H(H(m))
and let’s assume that H’(m) is not collision resistant.
Thus, there is a polynomial algorithm A that can compute a pair of different
messages m1 and m2, more efficiently than O(2n/2), such that:

H’(m1)=H’(m2)
Thus, it holds

H(H(m1))=H(H(m2)).

Proof (sketch)
Thus, it holds

H(H(m1))=H(H(m2)).
We distinguish two cases:

1. H(m1)=H(m2). Then, the algorithm A can compute collisions for H(m),
more efficiently than O(2n/2). This is a contradiction.

2. H(m1)≠H(m2). Then, the messages y1=H(m1) and y2=H(m2)
H(H(m1))=H(H(m2)) <=> H(y1)=H(y2)

are collisions for H(m). That is that, the algorithm A can compute collisions for
H(m), more efficiently than O(2n/2). This is a contradiction.

MAC SECURITY

 Strong Unforgeability
under Chosen Message Attack (SUF-CMA)

• For a MAC I=(S,V) and adv. A define a MAC game as:

Def: I=(S,V) is a secure MAC if for all “efficient” A:
 AdvMAC[A,I] = Pr[Chal. outputs 1] is “negligible.”

Chal. Adv.

kK

(m,t)

m1  M

t1  S(k,m1)

b=1 if V(k,m,t) = `yes’ and (m,t)  { (m1,t1) , … , (mq,tq) }

b=0 otherwise

b

m2 , …, mq

t2 , …, tq

(RAW) CBC-MAC security

F(k,) F(k,) F(k,)

D1 D2 …. Dq



F(k,)



H1 Hq-1H2 Hq

(RAW) CBC-MAC security

• Let m = D0
(size single block)

F(k,)

D0

tag

• Let m’ = D0||D0⊕tag
(size two blocks)

F(k,)

D0

tag

F(k,)

D1=D0⊕tag

tag



 Strong Unforgeability
under Chosen Message Attack (SUF-CMA)

 AdvMAC[A,I] = Pr[Chal. outputs 1]=1

Chal. Adv.

kK

(m’,tag)

m

tag  S(k,m)

b=1

b

Example

Lets assume that the ECBCIV is a modified version of EMAC
which uses a randomly selected IV for each message m and
produces the output as it appears in the next slide. The IV will
then be part of the tag, i.e.

tag=(IV, ECBCIV(k,k’,m))

where (k,k’) are the two keys. Is the new MAC SUF-CMA
secure?

raw CBC

Modified EMAC (ECBCIV)

F(k,) F(k,) F(k,)

D0 D1 … Dq



F(k,)



F(k’,)

Hq

IV

Modified EMAC (ECBCIV)

F(k,)

D0



F(k’,)
tag

Hq

IV

• Let m1= D0. Then,
tag=(IV, ECBCIV(k,m1))

and IV D0 is the input of the cipher F

Modified EMAC (ECBCIV)

F(k,)

D



F(k’,)
ECBC

Hq

IV’

• It is easy to verify that for any message
(for any D)
• m2= D, and
• IV’ = IVDD0

The input to F is again
 IV’ D=IVDD0D=IV D0

It holds that
tag=(IV’, ECBCIV’(k,m2))

ECBC-MAC and HMAC analysis

Theorem: Let q be the number of different messages for which a tag

was produced (using the same key) and let L be the total length in bits. If

Adv[B,F] be the advantage of an efficient attacker B against a block cipher

F and Adv[B,H] be the advantage of an efficient attacker B against a hash

function H. Then:

 AdvPRF[A, FECBC]  AdvPRP[B, F] + 2 q2 / |X|

AdvPRF[A, FHMAC]  q L Adv⋅ ⋅ PRF[B, F] + q2 / 2|K|

Where |X| is the total number of different input blocks for the block
cipher and |K| the total number of keys

ECBC-MAC and HMAC analysis

1. When the block cipher is secure we Adv[B,F]=0 and

 AdvPRF[A, FECBC]  2 q2 / |X|

Thus, CBC-based MAC is secure as long as q << |X|1/2

2. When the block cipher is secure we Adv[B,H]=0 and

AdvPRF[A, FHMAC]  q2 / 2|K|

Thus, HMAC is secure as long as q << |K|1/2

An example

q = # messages MAC-ed with k

Suppose we want AdvPRF[A, FECBC] ≤ 1/232 q⇐ 2 /|X| < 1/ 232

• AES: |X| = 2128 q < 2⇒ 48

So, after 248 messages we must change key

• 3DES: |X| = 264 q < 2⇒ 16

So, after 216 messages we must change key

AdvPRF[A, FECBC]  AdvPRP[B, F] + 2 q2 / |X|

WEP - SECURITY

Wired Equivalent Privacy (WEP)

• WEP - Part of original 802.11 specification published in
1999.

• Confidentiality
– Uses RC4 Stream cipher
– Has static 40-bit base key (common for all the clients)
– A 64-bit per-packet key
– A 24-bit Initialization Vector (IV)

• Integrity
– Uses Integrity Check Value (ICV) to verify integrity
– No key!!

Characteristics - notes

• Stateless protocol
– Mobile stations and access points are not required

to keep past state
• Encrypted CRC-32 used as integrity check

– Fine for random errors, but not deliberate ones
– Linear

• CRC(X+Y) = CRC(X)+CRC(Y)

• RC4 keystream should not be reused
– One-time pad

Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point Client

association
request

association
response

probe request
OR

challenge

challengeRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Shared-Key Authentication

beacon

Prior to communicating data, access point may require client to authenticate

Access Point Client

association
request

association
response

probe request
OR

challenge

challengeRC4(IV,K)

unauthenticated &
unassociated

authenticated &
unassociated

authenticated &
associated

Passive eavesdropper recovers RC4(IV,K),
can respond to any subsequent challenge
without knowing K

Attack on Access Control

• It is possible to get authenticated without knowing the secret key!
(shown in blue)

• We only need a plaintext, ciphertext pair of a legitimate authentication.
(shown in black)

client

server

Request.Authentication

128 nonce

nonce+RC4(IV, key) IV

Request received

nonce+RC4(IV, key)

Decrypt the packet
and verify nonce

Request.Authentication

128 nonce

nonce+RC4(IV, key) IV

Request received

nonce+RC4(IV, key)

Decrypt the packet
and verify nonce

N
orm

al session
H

acker U
sing D

ata O
btained

 From
 Previous Session

hacker

How WEP “Privacy” Works

24 bits 40 bits

(IV, shared key) used as RC4 seed
 Must never be repeated (why?)
 There is no key update protocol, so
 security relies on never repeating IV

IV sent in the clear
Worse: changing IV with
each packet is optional!

CRC-32 checksum is linear in :
if attacker flips some plaintext bits, he knows which
bits of CRC to flip to produce the same checksum

no integrity!

WEP

IV

RC4
key

IV encrypted packet

original unencrypted packet checksum

WEP

– Share a single cryptographic key among all devices
– Encrypt all packets sent over the air, using the shared key
– Use a checksum to prevent injection of spoofed packets

(encrypted traffic)

WEP - A Little More Detail

• WEP uses the RC4 stream cipher to encrypt a TCP/IP
packet (P) by xor-ing it with keystream (RC4(K, IV))

IV, P  RC4(K, IV)

Attack #1: Keystream Reuse

• WEP didn’t use RC4 carefully
• The problem: IV’s frequently repeat

– The IV is often a counter that starts at zero
– Hence, rebooting causes IV reuse
– Also, there are only 16 million possible IV’s, so after

intercepting enough packets, there are sure to be
repeats

 Attackers can eavesdrop on 802.11 traffic
– An eavesdropper can decrypt intercepted ciphertexts

even without knowing the key

Attack #2: Spoofed Packets

• Attackers can inject forged 802.11 traffic
– Learn RC4(K, IV) using previous attack
– Since the checksum is unkeyed, you can then create

valid ciphertexts that will be accepted by the
receiver

A Property of RC4

• Keystream leaks, under known-plaintext attack
– Suppose we intercept a ciphertext C, and suppose

we can guess the corresponding plaintext P
– Let PRS = RC4(K, IV) be the RC4 keystream
– Since C = P  PRS, we can derive the RC4

keystream PRS by P  C = P  (P  PRS) = PRS
• This is not a problem ... unless keystream is

reused!

A Risk of Keystream Reuse

• If IV’s repeat, confidentiality is at risk
– If we send two ciphertexts (C, C’) using the same IV, then the xor of

plaintexts leaks (P  P’ = C  C’), which might reveal both plaintexts

 Lesson: If RC4 isn’t used carefully, it becomes insecure

IV, P  RC4(K, IV)

IV, P’  RC4(K, IV)

A note on IVs

• What if random IVs were used?
• IV space – 224 possibilities
• Collision after 4000 packets
• Rough estimate: a busy AP sends 1000

packets/sec
• Collision every 4s!
• Even with counting IV (best case), rollover

every few hours

So..

• If we have 224 known plaintexts, can decrypt
every packet!!!!

Attack #2: Spoofed Packets

• Attackers can inject forged 802.11 traffic
– Learn Z = RC4(K, IV) using previous attack
– Since the CRC checksum is unkeyed, you can then create valid

ciphertexts that will be accepted by the receiver

 Attackers can bypass 802.11b access control
– All computers attached to wireless net are exposed

IV, (P, CRC(P))  Z

Attack #3: Packet Modification

• CRC is linear
  CRC(P  ) = CRC(P)  CRC()
  the modified packet (P  ) has a valid checksum

 Attacker can tamper with packet (P) without breaking RC4

(P, CRC(P))  RC4(K)

(P, CRC(P))  RC4(K)  (, CRC())

Attack #4: Replay Attacks

 Attacker can replay plaintext (P) without breaking RC4
 Stateless!!

P  RC4(K) P  RC4(K)

P  RC4(K)

Attacks
• Andrea Bittau, Mark Handley, and Joshua Lackey. The final nail in WEP's cofin. In IEEE Symposium on Security and

Privacy, pages 386-400. IEEE Computer Society, 2006.
• 2. Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile communications: the insecurity of 802.11. In

ACM MobiCom 2001, pages 180-189. ACM Press, 2001.
• 3. Rafik Chaabouni. Break WEP faster with statistical analysis. Technical report, EPFL, LASEC, June 2006.

http://lasecwww.epfl.ch/pub/lasec/doc/cha06.pdf.
• Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling algorithm of RC4. In Serge

Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography 2001, volume 2259 of Lecture Notes in
Computer Science, pages 1-24. Springer, 2001.

• Andreas Klein. Attacks on the RC4 stream cipher. submitted to Designs, Codes and Cryptography, 2007.
• KoreK. chopchop (experimental WEP attacks). http://www.netstumbler.org/showthread.php?t=12489, 2004.
• KoreK. Next generation of WEP attacks? http://www.netstumbler.org/showpost.php?p=93942&postcount=35,

2004.
• Subhamoy Maitra and Goutam Paul. Many keystream bytes of RC4 leak secret key information. Cryptology ePrint

Archive, Report 2007/261, 2007. http://eprint.iacr.org/.
• Toshihiro Ohigashi, Hidenori Kuwakado, and Masakatu Morii. A key recovery attack on WEP with less packets. to be

published, 2007.
• Yuko Ozasa, Yoshiaki Fujikawa, Toshihiro Ohigashi, Hidenori Kuwakado, and Masakatu Morii. A study on the Tews,

Weinmann, Pyshkin attack against WEP. In IEICE Tech. Rep., volume 107 of ISEC2007-47, pages 17{21, Hokkaido,
July 2007. Thu, Jul 19, 2007 - Fri, Jul 20 : Future University-Hakodate (ISEC, SITE, IPSJ-CSEC).

• Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. A key recovery attack on the 802.11b wired equivalent
privacy protocol (WEP). ACM Transactions on Information and System Security, 7(2):319{332, May 2004.

• Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin, ‘Breaking 104 bit WEP in less than 60 seconds’, Cryptology
ePrint Archive, Report 2007/120, 2007. http://eprint.iacr.org/.

http://lasecwww.epfl.ch/pub/lasec/doc/cha06.pdf

	Cryptography Lecture 5
	Agenda
	Symmetric Encryption schemes
	Security
	Shannon’s perfect secrecy definition
	One-time pas has perfect secrecy
	Perfect Secrecy
	Slide 8
	Slide 9
	Two times padding/ re-using the IV (attack 1)
	Example
	Example (2)
	Stream Ciphers
	Stream Ciphers (synchronous)
	Stream Ciphers (2)
	Example (3)
	Example (4)
	Two times padding/ re-using the IV (attack 2)
	Example (5)
	Example (6)
	Example (7)
	Recall Shannon’s perfect secrecy
	Semantic Security/ IND-CPA
	Semantic Security (one-time key)
	Example 1
	Example 1 (2)
	Example 2
	Example 2
	Block Cipher ECB Mode
	Example 3 (ECB mode)
	Padding
	Padding (2)
	Padding in CBC mode
	Padding (3)
	PKCS7
	Single block attack
	Padding Attack (1)
	Single block attack (2)
	Padding Attack (2)
	Padding Attack (3)
	Hash functions
	Cryptographic properties
	Cryptanalysis
	Exercise 1
	Exercise 1 (2)
	Exercise 2
	Proof (sketch)
	Proof (sketch) (2)
	MAC security
	Strong Unforgeability under Chosen Message Attack (SUF-CMA)
	(RAW) CBC-MAC security
	(RAW) CBC-MAC security (2)
	Strong Unforgeability under Chosen Message Attack (SUF-CMA) (2)
	Example (8)
	Modified EMAC (ECBCIV)
	Modified EMAC (ECBCIV) (2)
	Modified EMAC (ECBCIV) (3)
	ECBC-MAC and HMAC analysis
	ECBC-MAC and HMAC analysis (2)
	An example
	WEP - security
	Wired Equivalent Privacy (WEP)
	Characteristics - notes
	Shared-Key Authentication
	Shared-Key Authentication (2)
	Attack on Access Control
	How WEP “Privacy” Works
	WEP
	WEP (2)
	WEP - A Little More Detail
	Attack #1: Keystream Reuse
	Attack #2: Spoofed Packets
	A Property of RC4
	A Risk of Keystream Reuse
	A note on IVs
	So..
	Attack #2: Spoofed Packets (2)
	Attack #3: Packet Modification
	Attack #4: Replay Attacks
	Attacks
	Slide 81

