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MESSAGE AUTHENTICATE CODES 



Protecting the integrity of a message 

– Message Authentication Codes (MAC) are symmetric-key 
cryptosystems that aim to achieve message integrity  
 

– Attention: only integrity 
– No confidentiality!! 
– No authenticity!! 

 
 

 block-cipher based schemes 
 hash function based schemes 
 universal hash functions based schemes 

 

 



Message integrity:   MACs 

• MAC is a pair of algorithms (S,V). 
– S produces a tag 

– V verifies the integrity 

Alice Bob 

Secret k 
message  m  tag 

Generate tag: 
     tag  S(k, m) 

Verify tag: 
    V(k, m, tag)  = `yes’ 

? 

How V() works: 

1. Computes tag’ = S(k,m) 

2. If tag == tag’, data is valid 

Otherwise, data has been corrupted 

Secret k 



Integrity requires a secret key 

• ECC = error correction and detection code (well studied) 
 
 
 
 
 
 
 
 
 
 

• Attacker can easily modify message m and re-compute ECC. 
 

• ECC designed to detect random, not malicious errors. 
 

Alice Bob 

message  m  tag 

Generate tag: 
     tag  ECC(m) 

Verify tag: 
    V(m, tag)  = `yes’ 

? 



Protecting the integrity of a message 

• Main MAC designs 

 block-cipher based schemes 

 hash function based schemes 

 universal hash functions based schemes 

 

 



Attack Scenario 

• Attacker’s power: 
• chosen message attack 
• The attacker can choose q messages:  m1,m2,…,mq    
• The key owner must produce all the tags   ti  S(k,mi) 

 
• Attacker’s goal: 
• existential forgery 
• produce a new valid message/tag pair (m,t), i.e 

–    (m,t)    { (m1,t1) , … , (mq,tq) } 
– Secure MAC:  
– The attack can produve the pair with negigible 

probability (attackers advantage) 
• AdvMAC[A,I]  =  Pr[Valid pair]    is “negligible.” 



Secure MACs 

 
 
 
 
 
 
 
 
 
 
 
 

• AdvMAC[A,I]  =  Pr[b = 1]    is “negligible.” 
 

Chal. Adv. 

kK 

(m,t) 

m1  M 

t1  S(k,m1) 

b=1,    if  V(k,m,t) = `yes’   and  (m,t)    { (m1,t1) , … , (mq,tq) } 

b=0.   otherwise 

b 

m2 , …, mq 

t2 , …, tq 



Quiz 

• Let  I = (S,V) be a MAC. 

• Suppose an attacker is able to find  m0 ≠ m1 such that 

  S(k, m0) = S(k, m1)     for  ½ of the keys k in K 

• Can this MAC be secure? 

 •Yes, the attacker cannot generate a valid tag for m0 or m1 

•No, this MAC can be broken using a chosen msg attack 

•It depends on the details of the MAC 
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• Let  I = (S,V) be a MAC. 

• Suppose an attacker is able to find  m0 ≠ m1 such that 
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Quiz 

• Let  I = (S,V) be a MAC. 

• Suppose S(k,m) is always 5 bits long 

 

• Can this MAC be secure? 

 

•Yes, the attacker cannot generate a valid tag for 
any message 

•It depends on the details of the MAC 

•No, an attacker can simply guess the tag for messages 



Quiz 

• Let  I = (S,V) be a MAC. 

• Suppose S(k,m) is always 5 bits long 

 

• Can this MAC be secure? 

 

•Yes, the attacker cannot generate a valid tag for 
any message 

•It depends on the details of the MAC 

•No, an attacker can simply guess the tag for messages 



Can the tag length be small? 

• Let  I = (S,V) be a MAC and let the tag be 5 bits long. 

• Can this MAC be secure? 

 

 No, an attacker can simply guess the tag for messages 

 The MAC is Weak by design 

 

 



 

 
 
 
 
 
 

 
 

• Suppose at install time the system computes all the MAC tags. 

• Later a virus infects system and modifies system files 

• User reboots into clean OS and supplies his secret key 

Then:   secure MAC   ⇒   all modified files will be detected 
 

EXAMPLE:  PROTECTING SYSTEM FILES 

F1 

t1 = S(k,F1) 

F2 

t2 = S(k,F2) 

Fn 

tn = S(k,Fn) 

⋯ 
filename filename filename 



Block cipher based mac 

• In the text books it is called CBC-MAC 
• One of the main constructions used in practice 

• EMAC is commonly used as an AES-based MAC:CCM 
encryption mode  (used in 802.11i) 

• ISO 9797-1 

 

 

 

 



(RAW) CBC-MAC 

 

F(k,) F(k,) F(k,) 

D1 D2 …. Dq 

  

F(k,) 

 

H1 Hq-1 H2 Hq 



Why CBC-MAC is insecure? 

Suppose we define a MAC    IRAW =  (S,V)     where 

   S(k,m) = rawCBC(k,m) 

Then   IRAW  is easily broken using a 1-chosen msg attack. 

Adversary works as follows: 

– Choose an arbitrary one-block message   mX 

– Request tag for m.    Get   t = F(k,m) 

– Output  t  as MAC forgery for the 2-block message  (m,  
tm) 

Indeed:    rawCBC(k, (m,  tm) ) = F(k, F(k,m)(tm) ) = F(k, t(tm) ) = t 



More complicated in practice 

• The model for MAC generation comprises six 
steps: 
 

1. Padding of the data to a multiple of the cipher 
block size 

2. Splitting of the data into blocks 
3. Initial transformation of the first block of data 
4. Iteration through the remaining blocks of data 
5. Post-processing of the result of the last iteration 
6. Truncation of the result to the required length 

 



ISO 9797-1 

• ISO/IEC 9797-1 Information technology – 
Security techniques – Message Authentication 
Codes (MACs) – Part 1: Mechanisms using a 
block cipher 

 



raw CBC 

encrypted CBC-MAC (EMAC) 

F(k,) F(k,) F(k,) 

D0 D1 … Dq 

  

F(k,) 

 

F(k’,) 
tag 

Hq 



raw CBC 

CMAC 

F(k,) F(k,) F(k,) 

D0 D1 … Dq 

  

F(k,) 

 

tag 

Hq 

k’ 



Why padding is crucial  

 

F(k,) F(k,) F(k,) 

m[0] m[1] m[3] ??? 

  

F(k,) 

 

F(k1,) 
tag 

m[4] 



Example of ‘bad’ padding 

• Bad idea:   pad  m  with  0’s 

 

 

 

• Is the resulting MAC secure? 

 

• No, given the tag on message m  the attacker obtains the tag on all the 
messages m’ = m||0 

 

 

 

m[0] m[1] m[0] 0000 m[1] 



EMAC padding 

• For security, padding must be invertible     

•   m0 ≠ m1     ⇒     pad(m0) ≠ pad(m1) 

• ISO 9797-1: (Use “1” to indicate the beginning of pad) 

• pad with   “100000”.     

• Add new dummy block if needed. 

 

 
m[0] m[1] m[0] 100 m[1] 

m’[0] m’[1] m’[0] m’[1] 1000…000 



recommendations 

• When shortened MAC outputs are used, then the MAC key must be  relatively short 
lived 

  The MAC can only be verified for a short length of time!! 

 

• EMAC 
 Algorithm 2 in ISO-9797-1 

 frequent rekeying is required 

 Two keys 

 the security of the scheme is bounded by 2k, where k is the length of a single key 

 

• CMAC 
 Algorithm 5 in ISO-9797-1 

 provable security guarantees  

 the scheme should be used for at most 248 messages 

  no party learns the enciphering of the all-0 string (there is an attack) 

 



Hash based mac 

• 1996:  HMAC construction published by M. Bellare, R. Canetti, H. Krawczyk 

• 1997: RFC 2104 

 

 

 

 

 

 

 

 

 

• Uses:  

• SSL/TLS, IPsec, SSH, JSON Web Tokens 

 



Hash based mac 

• where 
H(): is a cryptographic hash function 
m: is the message to be authenticated 
k: is the secret key 
k‘: is a block-sized key derived from the secret key, K; either by 

padding to the right with 0s up to the block size, or by hashing 
down to less than the block size first and then padding to the right 
with zeros 

∥ denotes concatenation 
⊕ denotes bitwise exclusive or (XOR) 
opad: is the block-sized outer padding, consisting of repeated 

bytes valued 0x5c 
 ipad: is the block-sized inner padding, consisting of repeated bytes 

valued 0x36 



HMAC properties 

HMAC is assumed to be a secure PRF 

Can be proven under certain PRF assumptions about H() 

Does not require collision-resistance!!! 

 

Never use HMAC-MD4 

Can be used HMAC-SHA1, and  HMAC-MD5  

Conservative instantiations:HMAC-SHA2 and HMAC-SHA3.  

 
 

 



ECBC-MAC and HMAC analysis 

Theorem:     For any L>0, 

For every eff. q-query PRF adv. A attacking FECBC or FNMAC 

there exists an eff. adversary B  s.t.: 

     AdvPRF[A, FECBC]   AdvPRP[B, F]  +  2 q2 / |X| 

   AdvPRF[A, FHMAC]   q⋅L⋅AdvPRF[B, F]  +  q2 / 2|K| 

CBC-MAC is secure as long as   q  <<  |X|1/2 

HMAC is secure as long as   q  <<  |K|1/2  (264 for AES-128) 



An example 

q = # messages MAC-ed with k     

Suppose we want   AdvPRF[A, FECBC] ≤  1/232          ⇐    q2 /|X| < 1/ 232  

• AES:     |X| = 2128    ⇒   q < 248 

 So, after  248  messages must, must change key 

 

• 3DES:    |X| = 264    ⇒   q < 216 

 

AdvPRF[A, FECBC]   AdvPRP[B, F]  +  2 q2 / |X| 



AUTHENTICATED ENCRYPTION 
WITH ASSOCIATED DATA (AEAD) 



Authenticated encryption 

• So far we have symmetric encryption schemes for confidentiality 
and message authentication codes for data integrity. 
 

• In practice, most of the time, we need both. 
 
 

• Authentication encryption offers 
 Confidentiality of data 
 Ciphertext integrity 

 
• Usually we are talking about nonce-based authenticated encryption 

with associated data (AEAD) 



Main constructions 

Generic Composition (Encrypt-then-MAC) 

Offset Codebook (OCB) mode 

CCM mode 

EAX mode 

Carter-Wegman + Counter (CWC) mode 

Galois/Counter Mode (GCM) 

CAESAR Competition 



Encrypt-then-mac 

 

SES 

Plaintext 

Ciphertext 

MAC 

tag 

key1 

key2 



Encrypt-then-mac 

simplest mechanism  

 it is a two pass process 

 

Encrypt-and-MAC or MAC-then-Encrypt, in 
general should not be used 



ISO/IEC 19772:2009 

• ISO/IEC 19772:2009. Information technology -- 
Security techniques -- Authenticated encryption 

 

 

• Two main constructions 

1. CCM mode  

2. Galois/Counter Mode (GCM)  
 
 



Galois/Counter Mode (GCM) 

 designed by McGrew and Viega  
 combines Counter mode with a Carter-Wegman MAC (i.e. GMAC) 

 
 recommended in the IETF RFCs for IPsec, SSH and TLS  
 online scheme  
 fully parallelisable  
 efficient implementations in hardware  

 
 provably secure given that 
 the IV is a nonce  
 the underlying block cipher is secure  

 
 Authentication tags must have length at least 96 bits  

 



Galois/Counter Mode (GCM) 

 

From 
Wikipedia 



Other schemes 

• CCM mode  

 combines CTR mode with CBC-MAC 

 provably secure 

 main drawback comes from its inefficiency 

 It is not “on-line” 

 

• OCB (Offset Codebook) mode  

 proposed by Rogaway et al 

 provably secure building on the security of the underlying block cipher  

 one-pass mode of operation making it highly efficient.  

 two U.S. patents.  

 As of January 2013, free for software usage under an GNU General Public 
License 



Other schemes 

• CWC (Carter-Wegman + Counter ) mode  
• Proposed by Kohno, Viega and Whiting [202]. 

combines a Carter-Wegman MAC, with CTR mode 
• the IV is a nonce 
• provably secure building on the security of the 

underlying block cipher 

 
• EAX 

• proof of security  
• very similar to CCM mode,  
• based on CTR mode and CBC-MAC 

 



Caesar competition (2013-2019) 

• Open competition 
• Output: a portfolio of algorithms 
• not a standardization project 
• 57 submissions 
• 7 schemes in the final portfolio 
• Main goal was to identify a portfolio of authenticated 

ciphers that  
offer advantages over AES-GCM  
are suitable for widespread adoption 
 

• https://competitions.cr.yp.to/caesar.html 
 

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html


Caesar final portfolio 

• The final CAESAR portfolio is organized into 
three use cases: 

1. Lightweight applications (resource 
constrained environments) 

2. High-performance applications 

3. Defense in depth 

Cipher Designer 

Ascon Christoph Dobraunig, Maria Eichlseder, Florian 
Mendel, Martin Schläffer 

ACORN Hongjun Wu 



Caesar final portfolio 

 
Cipher Designer 

AEGIS-128 Hongjun Wu, Bart Preneel 

OCB Ted Krovetz, Phillip Rogaway 

Cipher Designer 

Deoxys-II Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Yannick Seurin 

COLM Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, 
Bart Mennink, Mridul Nandi, Elmar Tischhauser, Kan Yasuda 



• TLS v1.3 supports 5 cipher suites. 
– TLS_AES_128_GCM_SHA256 
– TLS_AES_256_GCM_SHA384 
– TLS_CHACHA20_POLY1305_SHA256 
– TLS_AES_128_CCM_SHA256 
– TLS_AES_128_CCM_8_SHA256  
 

Cipher Suite specification – TLS 1.3 

46 



CHACHA20_POLY1305 

• IETF Protocols (RFC 8439) 

– The ChaCha20 cipher 

– The Poly1305 MAC 

 

 



CHACHA20 

• ChaCha20 is a stream cipher designed by 
Daniel J. Bernstein, ChaCha20 is a variant of 
the Salsa20 family of stream ciphers 

•  Add-Rotate-XOR (ARX) Operations 

• Faster than AES and resilient to timing attacks 

 

 



Poly1305 

• Poly1305 is a cryptographic Message 
Authentication Code (MAC)  

• Published in 2004 

• Compared to the more widely used HMAC, 
Poly1305 is extremely faster. 

• Uses AES  

• 32-byte secret key 



LIGHTWEIGHT CRYPTOGRAPHY 



Lightweight cryptography 

• Cryptographic algorithms for constrained devices 

• Limited resources for cryptography 

• Internet of things 

 

 

• Standardization efforts 

 ISO 

NIST 



ISO  

• Block ciphers 

 ISO/IEC 29192-2:2012 specifies two block ciphers suitable for lightweight 
cryptography: 

 PRESENT: a lightweight block cipher with a block size of 64 bits and a key 
size of 80 or 128 bits; 

 CLEFIA: a lightweight block cipher with a block size of 128 bits and a key 
size of 128, 192 or 256 bits. 

 

• Stream Ciphers 

 Enocoro: key size of 80 or 128 bits, based on a finite state machine and 
uses operations defined over the finite field GF(24) and GF(28). 

 Trivium: key size of 80 bits, three nonlinear feedback registers, 288 bits of 
internal size. 

 

 

 

 



ISO – hash functions 

• ISO/IEC 29192-5:2016 specifies three hash-functions suitable for applications 
requiring lightweight cryptographic implementations. 

 
– PHOTON: a lightweight hash-function with permutation sizes of 100, 144, 196, 256 and 

288 bits computing hash-codes of length 80, 128, 160, 224, and 256 bits, respectively. 

 
– SPONGENT: a lightweight hash-function with permutation sizes of 88, 136, 176, 240 and 

272 bits computing hash-codes of length 88, 128, 160, 224, and 256 bits, respectively. 

 
– Lesamnta-LW: a lightweight hash-function with permutation size 384 bits computing a 

hash-code of length 256 bits. 

 

• The requirements for lightweight cryptography are given in ISO/IEC 29192-1. 

 



NSA – Simon and Speck 

 



NIST lightweight project 

• https://csrc.nist.gov/Projects/Lightweight-Cryptography 
 

• Scope: 
 All cryptographic primitives and modes that are needed 

in constrained environments. 
 Initial Focus: Symmetric Cryptography. 

 
 Target functionality: Encryption, AE, hashing, key 

agreement, sensor/tag authentication. 
 

 Target devices: ARM Cortex-M0 processors, Intel Quark SoC X1021, Atom 
E3826. 
 

 Side channel resistance: In general, good to have. 
 

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography


NIST 

• Target applications: Hardware encrypted data storage 
device, low-cost and low-consumption sensor data 
transmission, RAIN RFID tags for anti-counterfeiting 
solutions, IoTs, wearables, low power wireless sensor 
networks. 

 
– Modifications of well-analyzed designs: e.g., DESL, DESXL.  

 
– Old interesting algorithms: e.g., RC5, TEA, XTEA.  

 
– New dedicated algorithms: e.g., Skinny, Pride, Gimli, 

Simon, Speck, Simeck, Present, etc. 

 



NIST project 

 Early September 2018, NIST will publish FRN (Federal Register 
Notice) and the final Call for Submissions. 

 December 2018, option for early submission for initial review. 
 February 2019, deadline for submissions. 

 
 NIST will publish the complete and proper submissions. 
 Initial evaluation will be for approximately 12 months. 

 
 Workshop will be held ten to twelve months after the submission 

deadline. 
 Standardization within two to four years, after the public analysis 

starts 
 
 



NEXT STEPS 

• NIST plans to announced nine candidates 

(finalists) to advance to Round 3 

• Round 3 candidates will be given an opportunity 

to perform minor modifications to their projects to 

improve efficiency or avoid cryptographic attacks 

(tweaks) 

• Final round will last about one year 

• Winner (or winners) will be selected in 2021 



FINALISTs 

• On March 29, 2021, NIST announced the finalists as: 
1.  ASCON,  

2. Elephant,  

3. GIFT-COFB,  

4. Grain128-AEAD,  

5. ISAP,  

6. Photon-Beetle,  

7. Romulus,  

8. Sparkle,  

9. TinyJambu,  

10.Xoodyak 



MAC SECURITY 



 Strong Unforgeability 
under Chosen Message Attack (SUF-CMA) 

• For a MAC   I=(S,V)  and adv.  A  define a MAC game as: 
 
 
 
 
 
 
 

 

 

 

Def:  I=(S,V)  is a secure MAC if for all “efficient”  A: 

          AdvMAC[A,I]  =  Pr[Chal. outputs 1]    is “negligible.” 

Chal. Adv. 

kK 

(m,t) 

m1  M 

t1  S(k,m1) 

b=1    if  V(k,m,t) = `yes’   and  (m,t)    { (m1,t1) , … , (mq,tq) } 

b=0   otherwise 

b 

m2 , …, mq 

t2 , …, tq 



Ασκηση 

• Έστω ότι το ECBC-MAC επιλέγει ένα τυχαίο IV 
για κάθε μήνυμα που προστατεύεται και 
περιλαμβάνει το IVστο tag. Δηλαδή, 
S(k,m):=(r,  ECBCr(k,m)) όπου το ECBCr(k,m) 
αναφέρεται στο ECBC χρησιμοποιώντας το r 
ως IV. Ο αλγόριθμος επιβεβαίωσης V με το 
κλειδί k, το μήνυμα m, και το tag (r,t) 
επιστρέφει ``1'', όταν t=ECBCr(k,m) και ``0'', 
διαφορετικά. Ο αλγόριθμος MAC δεν είναι 
ασφαλής. Γιατί; 

 



raw CBC 

Modified encrypted CBC-MAC (EMAC) 

 

F(k,) F(k,) F(k,) 

D0 D1 … Dq 

  

F(k,) 

 

F(k’,) 
tag 

Hq 

 IV 



Modified encrypted CBC-MAC (EMAC) 

F(k,) 

D0 

 

F(k’,) 
tag 

Hq 

IV 



Proof (sketch) 

• Let m1= D0||m and let tag=(r,  ECBCr(k,m1))  

• Then, it is easy to verify that for any message 

– m2= D||m, and 

– r’ = r ⊕ D ⊕ D0 

 

it holds that tag=(r’,  ECBCr’(k,m2)). 





Better security:   a rand. construction 

Let   F: K × X ⟶ X   be a PRF.      Result:  MAC with tags in X2. 
 

Security:          AdvMAC[A, IRCBC]   AdvPRP[B, F] ⋅ (1 +  2 q2 / |X| ) 

⇒   For 3DES:    can sign  q=232  msgs with one key 

 

m 

rawCBC > 
k 

t 

r 
rand. r in X  

rawCBC 

> 

tag 

2 blocks 

k1 


