
Cryptography
Lecture 4

Dr. Panagiotis Rizomiliotis

Agenda

– Data Integrity Symmetric key schemes

• Message Authentication Codes

– Authenticated Encryption

– Lightweight cryptography

OVERVIEW

* Algorithms, key size and parameters report. ENISA– 2014

MESSAGE AUTHENTICATE CODES

Protecting the integrity of a message

– Message Authentication Codes (MAC) are symmetric-key
cryptosystems that aim to achieve message integrity

– Attention: only integrity
– No confidentiality!!
– No authenticity!!

 block-cipher based schemes
 hash function based schemes
 universal hash functions based schemes

Message integrity: MACs

• MAC is a pair of algorithms (S,V).
– S produces a tag

– V verifies the integrity

Alice Bob

Secret k
message m tag

Generate tag:
 tag  S(k, m)

Verify tag:
 V(k, m, tag) = `yes’

?

How V() works:

1. Computes tag’ = S(k,m)

2. If tag == tag’, data is valid

Otherwise, data has been corrupted

Secret k

Integrity requires a secret key

• ECC = error correction and detection code (well studied)

• Attacker can easily modify message m and re-compute ECC.

• ECC designed to detect random, not malicious errors.

Alice Bob

message m tag

Generate tag:
 tag  ECC(m)

Verify tag:
 V(m, tag) = `yes’

?

Protecting the integrity of a message

• Main MAC designs

 block-cipher based schemes

 hash function based schemes

 universal hash functions based schemes

Attack Scenario

• Attacker’s power:
• chosen message attack
• The attacker can choose q messages: m1,m2,…,mq
• The key owner must produce all the tags ti  S(k,mi)

• Attacker’s goal:
• existential forgery
• produce a new valid message/tag pair (m,t), i.e

– (m,t)  { (m1,t1) , … , (mq,tq) }
– Secure MAC:
– The attack can produve the pair with negigible

probability (attackers advantage)
• AdvMAC[A,I] = Pr[Valid pair] is “negligible.”

Secure MACs

• AdvMAC[A,I] = Pr[b = 1] is “negligible.”

Chal. Adv.

kK

(m,t)

m1  M

t1  S(k,m1)

b=1, if V(k,m,t) = `yes’ and (m,t)  { (m1,t1) , … , (mq,tq) }

b=0. otherwise

b

m2 , …, mq

t2 , …, tq

Quiz

• Let I = (S,V) be a MAC.

• Suppose an attacker is able to find m0 ≠ m1 such that

 S(k, m0) = S(k, m1) for ½ of the keys k in K

• Can this MAC be secure?

 •Yes, the attacker cannot generate a valid tag for m0 or m1

•No, this MAC can be broken using a chosen msg attack

•It depends on the details of the MAC

Quiz

• Let I = (S,V) be a MAC.

• Suppose an attacker is able to find m0 ≠ m1 such that

 S(k, m0) = S(k, m1) for ½ of the keys k in K

• Can this MAC be secure?

 •Yes, the attacker cannot generate a valid tag for m0 or m1

•No, this MAC can be broken using a chosen msg attack

•It depends on the details of the MAC

Quiz

• Let I = (S,V) be a MAC.

• Suppose S(k,m) is always 5 bits long

• Can this MAC be secure?

•Yes, the attacker cannot generate a valid tag for
any message

•It depends on the details of the MAC

•No, an attacker can simply guess the tag for messages

Quiz

• Let I = (S,V) be a MAC.

• Suppose S(k,m) is always 5 bits long

• Can this MAC be secure?

•Yes, the attacker cannot generate a valid tag for
any message

•It depends on the details of the MAC

•No, an attacker can simply guess the tag for messages

Can the tag length be small?

• Let I = (S,V) be a MAC and let the tag be 5 bits long.

• Can this MAC be secure?

 No, an attacker can simply guess the tag for messages

 The MAC is Weak by design

• Suppose at install time the system computes all the MAC tags.

• Later a virus infects system and modifies system files

• User reboots into clean OS and supplies his secret key

Then: secure MAC ⇒ all modified files will be detected

EXAMPLE: PROTECTING SYSTEM FILES

F1

t1 = S(k,F1)

F2

t2 = S(k,F2)

Fn

tn = S(k,Fn)

⋯
filename filename filename

Block cipher based mac

• In the text books it is called CBC-MAC
• One of the main constructions used in practice

• EMAC is commonly used as an AES-based MAC:CCM
encryption mode (used in 802.11i)

• ISO 9797-1

(RAW) CBC-MAC

F(k,) F(k,) F(k,)

D1 D2 …. Dq

 

F(k,)



H1 Hq-1 H2 Hq

Why CBC-MAC is insecure?

Suppose we define a MAC IRAW = (S,V) where

 S(k,m) = rawCBC(k,m)

Then IRAW is easily broken using a 1-chosen msg attack.

Adversary works as follows:

– Choose an arbitrary one-block message mX

– Request tag for m. Get t = F(k,m)

– Output t as MAC forgery for the 2-block message (m,
tm)

Indeed: rawCBC(k, (m, tm)) = F(k, F(k,m)(tm)) = F(k, t(tm)) = t

More complicated in practice

• The model for MAC generation comprises six
steps:

1. Padding of the data to a multiple of the cipher
block size

2. Splitting of the data into blocks
3. Initial transformation of the first block of data
4. Iteration through the remaining blocks of data
5. Post-processing of the result of the last iteration
6. Truncation of the result to the required length

ISO 9797-1

• ISO/IEC 9797-1 Information technology –
Security techniques – Message Authentication
Codes (MACs) – Part 1: Mechanisms using a
block cipher

raw CBC

encrypted CBC-MAC (EMAC)

F(k,) F(k,) F(k,)

D0 D1 … Dq

 

F(k,)



F(k’,)
tag

Hq

raw CBC

CMAC

F(k,) F(k,) F(k,)

D0 D1 … Dq

 

F(k,)



tag

Hq

k’

Why padding is crucial

F(k,) F(k,) F(k,)

m[0] m[1] m[3] ???

 

F(k,)



F(k1,)
tag

m[4]

Example of ‘bad’ padding

• Bad idea: pad m with 0’s

• Is the resulting MAC secure?

• No, given the tag on message m the attacker obtains the tag on all the
messages m’ = m||0

m[0] m[1] m[0] 0000 m[1]

EMAC padding

• For security, padding must be invertible

• m0 ≠ m1 ⇒ pad(m0) ≠ pad(m1)

• ISO 9797-1: (Use “1” to indicate the beginning of pad)

• pad with “100000”.

• Add new dummy block if needed.

m[0] m[1] m[0] 100 m[1]

m’[0] m’[1] m’[0] m’[1] 1000…000

recommendations

• When shortened MAC outputs are used, then the MAC key must be relatively short
lived

 The MAC can only be verified for a short length of time!!

• EMAC
 Algorithm 2 in ISO-9797-1

 frequent rekeying is required

 Two keys

 the security of the scheme is bounded by 2k, where k is the length of a single key

• CMAC
 Algorithm 5 in ISO-9797-1

 provable security guarantees

 the scheme should be used for at most 248 messages

 no party learns the enciphering of the all-0 string (there is an attack)

Hash based mac

• 1996: HMAC construction published by M. Bellare, R. Canetti, H. Krawczyk

• 1997: RFC 2104

• Uses:

• SSL/TLS, IPsec, SSH, JSON Web Tokens

Hash based mac

• where
H(): is a cryptographic hash function
m: is the message to be authenticated
k: is the secret key
k‘: is a block-sized key derived from the secret key, K; either by

padding to the right with 0s up to the block size, or by hashing
down to less than the block size first and then padding to the right
with zeros

∥ denotes concatenation
⊕ denotes bitwise exclusive or (XOR)
opad: is the block-sized outer padding, consisting of repeated

bytes valued 0x5c
 ipad: is the block-sized inner padding, consisting of repeated bytes

valued 0x36

HMAC properties

HMAC is assumed to be a secure PRF

Can be proven under certain PRF assumptions about H()

Does not require collision-resistance!!!

Never use HMAC-MD4

Can be used HMAC-SHA1, and HMAC-MD5

Conservative instantiations:HMAC-SHA2 and HMAC-SHA3.

ECBC-MAC and HMAC analysis

Theorem: For any L>0,

For every eff. q-query PRF adv. A attacking FECBC or FNMAC

there exists an eff. adversary B s.t.:

 AdvPRF[A, FECBC]  AdvPRP[B, F] + 2 q2 / |X|

 AdvPRF[A, FHMAC]  q⋅L⋅AdvPRF[B, F] + q2 / 2|K|

CBC-MAC is secure as long as q << |X|1/2

HMAC is secure as long as q << |K|1/2 (264 for AES-128)

An example

q = # messages MAC-ed with k

Suppose we want AdvPRF[A, FECBC] ≤ 1/232 ⇐ q2 /|X| < 1/ 232

• AES: |X| = 2128 ⇒ q < 248

 So, after 248 messages must, must change key

• 3DES: |X| = 264 ⇒ q < 216

AdvPRF[A, FECBC]  AdvPRP[B, F] + 2 q2 / |X|

AUTHENTICATED ENCRYPTION
WITH ASSOCIATED DATA (AEAD)

Authenticated encryption

• So far we have symmetric encryption schemes for confidentiality
and message authentication codes for data integrity.

• In practice, most of the time, we need both.

• Authentication encryption offers
 Confidentiality of data
 Ciphertext integrity

• Usually we are talking about nonce-based authenticated encryption

with associated data (AEAD)

Main constructions

Generic Composition (Encrypt-then-MAC)

Offset Codebook (OCB) mode

CCM mode

EAX mode

Carter-Wegman + Counter (CWC) mode

Galois/Counter Mode (GCM)

CAESAR Competition

Encrypt-then-mac

SES

Plaintext

Ciphertext

MAC

tag

key1

key2

Encrypt-then-mac

simplest mechanism

 it is a two pass process

Encrypt-and-MAC or MAC-then-Encrypt, in
general should not be used

ISO/IEC 19772:2009

• ISO/IEC 19772:2009. Information technology --
Security techniques -- Authenticated encryption

• Two main constructions

1. CCM mode

2. Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM)

 designed by McGrew and Viega
 combines Counter mode with a Carter-Wegman MAC (i.e. GMAC)

 recommended in the IETF RFCs for IPsec, SSH and TLS
 online scheme
 fully parallelisable
 efficient implementations in hardware

 provably secure given that
 the IV is a nonce
 the underlying block cipher is secure

 Authentication tags must have length at least 96 bits

Galois/Counter Mode (GCM)

From
Wikipedia

Other schemes

• CCM mode

 combines CTR mode with CBC-MAC

 provably secure

 main drawback comes from its inefficiency

 It is not “on-line”

• OCB (Offset Codebook) mode

 proposed by Rogaway et al

 provably secure building on the security of the underlying block cipher

 one-pass mode of operation making it highly efficient.

 two U.S. patents.

 As of January 2013, free for software usage under an GNU General Public
License

Other schemes

• CWC (Carter-Wegman + Counter) mode
• Proposed by Kohno, Viega and Whiting [202].

combines a Carter-Wegman MAC, with CTR mode
• the IV is a nonce
• provably secure building on the security of the

underlying block cipher

• EAX

• proof of security
• very similar to CCM mode,
• based on CTR mode and CBC-MAC

Caesar competition (2013-2019)

• Open competition
• Output: a portfolio of algorithms
• not a standardization project
• 57 submissions
• 7 schemes in the final portfolio
• Main goal was to identify a portfolio of authenticated

ciphers that
offer advantages over AES-GCM
are suitable for widespread adoption

• https://competitions.cr.yp.to/caesar.html

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html

Caesar final portfolio

• The final CAESAR portfolio is organized into
three use cases:

1. Lightweight applications (resource
constrained environments)

2. High-performance applications

3. Defense in depth

Cipher Designer

Ascon Christoph Dobraunig, Maria Eichlseder, Florian
Mendel, Martin Schläffer

ACORN Hongjun Wu

Caesar final portfolio

Cipher Designer

AEGIS-128 Hongjun Wu, Bart Preneel

OCB Ted Krovetz, Phillip Rogaway

Cipher Designer

Deoxys-II Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Yannick Seurin

COLM Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx,
Bart Mennink, Mridul Nandi, Elmar Tischhauser, Kan Yasuda

• TLS v1.3 supports 5 cipher suites.
– TLS_AES_128_GCM_SHA256
– TLS_AES_256_GCM_SHA384
– TLS_CHACHA20_POLY1305_SHA256
– TLS_AES_128_CCM_SHA256
– TLS_AES_128_CCM_8_SHA256

Cipher Suite specification – TLS 1.3

46

CHACHA20_POLY1305

• IETF Protocols (RFC 8439)

– The ChaCha20 cipher

– The Poly1305 MAC

CHACHA20

• ChaCha20 is a stream cipher designed by
Daniel J. Bernstein, ChaCha20 is a variant of
the Salsa20 family of stream ciphers

• Add-Rotate-XOR (ARX) Operations

• Faster than AES and resilient to timing attacks

Poly1305

• Poly1305 is a cryptographic Message
Authentication Code (MAC)

• Published in 2004

• Compared to the more widely used HMAC,
Poly1305 is extremely faster.

• Uses AES

• 32-byte secret key

LIGHTWEIGHT CRYPTOGRAPHY

Lightweight cryptography

• Cryptographic algorithms for constrained devices

• Limited resources for cryptography

• Internet of things

• Standardization efforts

 ISO

NIST

ISO

• Block ciphers

 ISO/IEC 29192-2:2012 specifies two block ciphers suitable for lightweight
cryptography:

 PRESENT: a lightweight block cipher with a block size of 64 bits and a key
size of 80 or 128 bits;

 CLEFIA: a lightweight block cipher with a block size of 128 bits and a key
size of 128, 192 or 256 bits.

• Stream Ciphers

 Enocoro: key size of 80 or 128 bits, based on a finite state machine and
uses operations defined over the finite field GF(24) and GF(28).

 Trivium: key size of 80 bits, three nonlinear feedback registers, 288 bits of
internal size.

ISO – hash functions

• ISO/IEC 29192-5:2016 specifies three hash-functions suitable for applications
requiring lightweight cryptographic implementations.

– PHOTON: a lightweight hash-function with permutation sizes of 100, 144, 196, 256 and

288 bits computing hash-codes of length 80, 128, 160, 224, and 256 bits, respectively.

– SPONGENT: a lightweight hash-function with permutation sizes of 88, 136, 176, 240 and

272 bits computing hash-codes of length 88, 128, 160, 224, and 256 bits, respectively.

– Lesamnta-LW: a lightweight hash-function with permutation size 384 bits computing a

hash-code of length 256 bits.

• The requirements for lightweight cryptography are given in ISO/IEC 29192-1.

NSA – Simon and Speck

NIST lightweight project

• https://csrc.nist.gov/Projects/Lightweight-Cryptography

• Scope:
 All cryptographic primitives and modes that are needed

in constrained environments.
 Initial Focus: Symmetric Cryptography.

 Target functionality: Encryption, AE, hashing, key

agreement, sensor/tag authentication.

 Target devices: ARM Cortex-M0 processors, Intel Quark SoC X1021, Atom
E3826.

 Side channel resistance: In general, good to have.

https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

NIST

• Target applications: Hardware encrypted data storage
device, low-cost and low-consumption sensor data
transmission, RAIN RFID tags for anti-counterfeiting
solutions, IoTs, wearables, low power wireless sensor
networks.

– Modifications of well-analyzed designs: e.g., DESL, DESXL.

– Old interesting algorithms: e.g., RC5, TEA, XTEA.

– New dedicated algorithms: e.g., Skinny, Pride, Gimli,

Simon, Speck, Simeck, Present, etc.

NIST project

 Early September 2018, NIST will publish FRN (Federal Register
Notice) and the final Call for Submissions.

 December 2018, option for early submission for initial review.
 February 2019, deadline for submissions.

 NIST will publish the complete and proper submissions.
 Initial evaluation will be for approximately 12 months.

 Workshop will be held ten to twelve months after the submission

deadline.
 Standardization within two to four years, after the public analysis

starts

NEXT STEPS

• NIST plans to announced nine candidates

(finalists) to advance to Round 3

• Round 3 candidates will be given an opportunity

to perform minor modifications to their projects to

improve efficiency or avoid cryptographic attacks

(tweaks)

• Final round will last about one year

• Winner (or winners) will be selected in 2021

FINALISTs

• On March 29, 2021, NIST announced the finalists as:
1. ASCON,

2. Elephant,

3. GIFT-COFB,

4. Grain128-AEAD,

5. ISAP,

6. Photon-Beetle,

7. Romulus,

8. Sparkle,

9. TinyJambu,

10.Xoodyak

MAC SECURITY

 Strong Unforgeability
under Chosen Message Attack (SUF-CMA)

• For a MAC I=(S,V) and adv. A define a MAC game as:

Def: I=(S,V) is a secure MAC if for all “efficient” A:

 AdvMAC[A,I] = Pr[Chal. outputs 1] is “negligible.”

Chal. Adv.

kK

(m,t)

m1  M

t1  S(k,m1)

b=1 if V(k,m,t) = `yes’ and (m,t)  { (m1,t1) , … , (mq,tq) }

b=0 otherwise

b

m2 , …, mq

t2 , …, tq

Ασκηση

• Έστω ότι το ECBC-MAC επιλέγει ένα τυχαίο IV
για κάθε μήνυμα που προστατεύεται και
περιλαμβάνει το IVστο tag. Δηλαδή,
S(k,m):=(r, ECBCr(k,m)) όπου το ECBCr(k,m)
αναφέρεται στο ECBC χρησιμοποιώντας το r
ως IV. Ο αλγόριθμος επιβεβαίωσης V με το
κλειδί k, το μήνυμα m, και το tag (r,t)
επιστρέφει ``1'', όταν t=ECBCr(k,m) και ``0'',
διαφορετικά. Ο αλγόριθμος MAC δεν είναι
ασφαλής. Γιατί;

raw CBC

Modified encrypted CBC-MAC (EMAC)

F(k,) F(k,) F(k,)

D0 D1 … Dq

 

F(k,)



F(k’,)
tag

Hq

 IV

Modified encrypted CBC-MAC (EMAC)

F(k,)

D0



F(k’,)
tag

Hq

IV

Proof (sketch)

• Let m1= D0||m and let tag=(r, ECBCr(k,m1))

• Then, it is easy to verify that for any message

– m2= D||m, and

– r’ = r ⊕ D ⊕ D0

it holds that tag=(r’, ECBCr’(k,m2)).

Better security: a rand. construction

Let F: K × X ⟶ X be a PRF. Result: MAC with tags in X2.

Security: AdvMAC[A, IRCBC]  AdvPRP[B, F] ⋅ (1 + 2 q2 / |X|)

⇒ For 3DES: can sign q=232 msgs with one key

m

rawCBC >
k

t

r
rand. r in X

rawCBC

>

tag

2 blocks

k1

