Cryptography
Lecture 6

Dr. Panagiotis Rizomiliotis

PUBLIC KEY MODEL

Public Key cryptography

 1976: «New Directions in Cryptography», in
IEEE Transactions on information theory by
Bailey Whitfield Diffie and Martin Hellman

e 1977:RSA algorithm (Rivest — Shamir — Adleman)

 1970: “Non-secret encryption”
James Ellis
Government Communications Headquarters (GCHQ)

Bailey Whitfield Diffie
Martin Hellman

First step: generate a pair of keys

Private key

Public key

v Alice keeps the private key secret
v’ Reliably distributes the public key (Bob learns Alice’s public key)

Secret key

Key Pair

Private Key

~B

Public Key

Asymmetrlc key (Publlc key)

Encryption

Public key Cryptography

Public Key Infrastructure (PKI)

CA
sssss
u Public key

Check 258

Public key infrastructure (PKI)

Applications of Public-Key Cryptosystems

» Digital signatures
v’ data authenticity and non-repudiation
» Key agreement
v’ to agree on a session key
» Encryption
v’ Provides data secrecy
v’ key encapsulation
» Entity Authentication

v’ Zero Knowledge Proof (ZKP)

Public Key History

* Some algorithms/mathematical problems
— Diffie-Hellman, 1976, key-exchange based on discrete logs
— Merkle-Hellman, 1978, based on “knapsack problem”
— McEliece, 1978, based on algebraic coding theory
— RSA, 1978, based on factoring
— Rabin, 1979, security can be reduced to factoring
— ElGamal, 1985, based on discrete logs
— Blum-Goldwasser, 1985, based on quadratic residues
— Elliptic curves, 1985, discrete logs over Elliptic curves
— Chor-Rivest, 1988, based on knapsack problem
— NTRU, 1996, based on Lattices
— XTR, 2000, based on discrete logs of a particular field

PUBLIC KEY MAIN SCHEMES

Main schemes

1. RSA and the Integer Factorization problem
2. El Gamal and the discrete logarithm problem

Factorization

* Prime Numbers

» prime numbers only have divisors of 1 and self

» they cannot be written as a product of other numbers
» eg.2,3,5,7 are prime, 4,6,8,9,10 are not

* Prime Factorisation

» to factor a number n is to write it as a product of other numbers:
. n=a xbxc

» note that factoring a number is relatively hard compared to multiplying the factors
together to generate the number

» the prime factorisation of a number n is when its written as a product of primes
— eg. 91=7x13; 3600=24x32x52

Factorization
* Prime factorization is considered “hard problem”

v We now how to solve it
v’ We cannot do it efficiently

v’ It becomes harder as the size of the integer
Increases.

* Two types of factoring algorithms
» General purpose
» Special-purpose

RSA

RON RIVEST, ADI SHAMIR & LEN ADLEMAN

@ RSA public-key cryptography

* by Rivest, Shamir & Adleman of MIT in 1977
e security due to cost of factoring large numbers

 The RSA algorithm involves three steps:
1. key generation,

2. encryption

3. decryption

RSA (textbook)

« SetUp (key pair generation)

* Choose two distinct random prime numbers p and q.

« Compute n = p*q (n is public)

* Compute @(n) = (p - 1*(q-1) (p(n) is kept secret)

* Choose an integer e, 1 <e < @(n) and gcd(e, ¢(n)) =1, (e is public)
* the most commonly chosen value for e is 21 + 1 = 65,537.
* the smallest possible value for e is 3

« Compute d as d e=1 (mod ¢(n)) (d is kept secret)

(efficiently by using the Extended Euclidean algorithm)

v Public key = (e, n)
v' Private key = (d)

v Secret or discarded = (p, g, ®(n))

RSA Use

* Encryption

« Let m be the plaintext, with 0 =m <n.
« Compute c =meé mod n

* Decryption

» Let c be the ciphertext, with 0 <c <n.
« Compute m =c9mod n

RSA Example

1. SetUp (key pair generation)

— Select primes: p=17 & g=11
— Compute n=pqg =17x11=187
— Compute ¢p(n)=16*10=160

— Select e : gcd(e,160)=1; choose e=7

— Determine d: de=1 mod 160 and d < 160 Value is d=23 since
23x7=161= 1x160+1

e Publish public key KU={7,187}
 Keep secret private key KR={23,17,11}

RSA Example cont

* Given message M = 88 (nb. 88<187)

* Encryption:
— C=88"mod 187 =11

* Decryption:
— M =112 mod 187 = 88

IMPLEMENTATION AND SECURITY
ISSUES

Modular Exponentiation

* For efficiency, modular exponentiation uses some
combination of
— Repeated squaring (or square and multiply)
— Chinese Remainder Theorem (CRT)
— Montgomery multiplication
— Sliding window
— Karatsuba multiplication

Algorithm: Square-and-Multiply(x, c, n)

Comment: compute x°mod n, where c=c,C,_,...C, in binary.

z <1
for 1<k downto 0 do
7 < z° modn
if ¢ =1 _
|.e.,z<—(z><xci) mod n
then z<—(z><x) mod n

return (z)

Note: At the end of iteration i, z = x*.

Example: 11* mod187
23=10111,

Z<1
z < z°-11mod 187 =11 (square and multiply)
z<z°mod187=121 (square)

Z < z°-11 mod 187 =44 (square and multiply)
z < z°-11 mod 187 =165 (square and multiply)

z < z°-11 mod 187 =88 (square and multiply)

Security of Square and multiply

e Simple Power analysis (we can use for public
key exponentiation)

0101000000101 0100101 1 1,01001 1 1

[
L 15]

il I e

S'SM SISMSE SS'SIS SMS'S S'SMS SMISM'S SMSS5 ' SM'SMS

- Power trace from an RSA opefat-ioﬁ'

= Uses standard square and multiply

= Square and multiply operations have visibly different power profiles
= ‘1’ relates to squaring step followed by a multiplication step

= ‘0’in the exponentinvolves only a squaring step

Improving RSA’s performance

* To speed up RSA decryption use
=M (mod N)
small private key d.

e There are several attacks:
— 1987: Wiener showed,

e if d<NO92> then RSA isinsecure.
— BD’98: if d < NO92%2 then RSA is insecure
(open: d < N%°)

Insecure: priv. key d can be found from (N,e).

Thus, small d should never be used.

RSA With Low public exponent

To speed up RSA encryption and sig. verification
C = Me (mod N)

use a small e.

Minimal value: e=3 (gcd(e, (N))=1)
Recommended value: e=65537=216+1

Encryption: 17 mod. multiplies.

Several weak attacks. Non known on RSA-OAEP.

Asymmetry of RSA: fast encryption (sig. verification)/ slow decryption
(signature).
— ElIGamal: approx. same time for both.

RSA SECURITY

RSA Security

* 4 approaches of attacking on RSA
— brute force key search
* not feasible for large keys
e actually nobody attacks on RSA in that way
— mathematical attacks

* based on difficulty of factorization for large numbers as we shall see in the
next slide

— side-channel attacks
* based on running time and other implementation aspects of decryption
— chosen-ciphertext attack

* Some algorithmic characteristics of RSA can be exploited to get
information for cryptanalysis

* https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf

|s RSA a one-way permutation?

* To invert the RSA one-way function (without d)
attacker must compute:

M from C=M® (mod N).

 How hard is computing e’th roots modulo N ?7?

* Best known algorithm:
— Step 1: factor N. (hard)
— Step 2: Find e’th roots modulo p and q. (easy)

Factorization Problem

* 3 forms of mathematical attacks
— factor n=p*q, hence find ¢(n) and then d
— determine ¢(n) directly and find d
* is equivalent of factoring n
— find d directly
e as difficult as factoring n

* So RSA cryptanalysis is focused on
factorization of large n

Factoring techniques

e Most efficient
— Generalized Number Field Sieve

— Quadratic Sieve
— Lattice Sieve

Factoring algorithms

Reasons of improvement in
Factorization

* increase in computational power

* biggest improvement comes from improved
algorithm

— “Quadratic Sieve” to “Generalized Number Field
Sieve”

— Then to “Lattice Sieve”

Implementation/side channel attacks

* Timing attack:
— Kocher 1997

* The time it takes to compute c* (mod N) can expose d.

» Systems that use repeated squaring but not CRT or Montgomery (smart cards)
— Schindler’s attack

* Repeated squaring, CRT and Montgomery (no real systems are known)
— Brumley-Boneh attack

* CRT, Montgomery, sliding windows, Karatsuba (as used in openSSL)

 Power attack: (Kocher 99)
The power consumption of a smartcard while it is computing c*
(mod N) can expose d.

* Faults attack: (BDL97)
A computer error during c* (mod N) can expose d.

Textbook RSA is insecure

* Textbook RSA encryption:
— publickey: (N,e) Encrypt: C=M°®(mod N)
— private key: d Decrypt: €°=M (mod N)

* Completely insecure cryptosystem:
— Does not satisfy basic definitions of security.
— Many attacks exist.

 The RSA trapdoor permutation is not a
cryptosystem |

Attack 1: small message space

* |f the message space is small, the attacker can
encrypt all the candidate massages (offline)
and store the computed ciphertexts

M1 C1
M2 C
M3 Cs

Mé6-1 Cé-1
Ms Cs

Attack 1: small message space

* On-line phase. For a ciphertext c (eavesdropped) the
attacker finds c in the table and the corresponding
message.

M1 C1
M: C
Ms € > C3
Mé-1 Cé-1

Mes Cs

Attack 1: small message space

 Why it works:
— The encryption key is known (public key)
— It doesn’t offer semantic security

— The attacker can repeat all actions of the message
owner

e CPA doesn’t make sense
e CCA is more relevant.

Attack 2: Chosen ciphertext Attack

* The textbook RSA has multiplicative
homomorphism.
* Let
—cl=ml1® mod n
— c2=m2¢ mod n
 Thus, for
— c=c1*c2=m1¢*m2® mod n=(m1*m2) ® mod n

i.e. cis the encryption of m=m1*m2, when
m1*m2<n

Attack 2: Chosen ciphertext Attack

Attack scenario:

The private key owner can decrypt for us any ciphertext except a specific one
(target of the attack) c,. We want to compute the message m..

1. The attacker encrypts the message r = 2.
— ¢=2¢*mod n
2. The attacker computes
— c=¢*c,modn
3. The attacker asks for the decryption of c. Let m be the reply of the key
ownetr.

4. The attacker computes m’=m/2 as m,.

Proof: The attack works when m,<n/2, i.e. when r* m<n.

Attack 3: A simple attack on textbook
RSA

CLIENT HELLO

Random
session-
key K

P SERVER HETTO (e, N)

C=RSA (K)

* Session-key Kis 64 bits. View K € {0,...,2%%}
* Eavesdroppersees: C=K°(modN).

« Suppose K=K;-K, where K, K,<23* . (prob.~20%) Then: C/K,°=
K, (mod N)

* Build table: c/1¢,¢c/2¢,¢/3¢, .., C/23% . time: 234
For K, =0,..., 234 testif K,® isin table. time: 23434

e Attack time; =240 << 264

Common RSA encryption

e Never use textbook RSA.
* RSA in practice:

l Preprocessing >I RSA I

* Main question:
— How should the preprocessing be done?
— Can we argue about security of resulting system?

In practice

* Public key encryption schemes are rarely used to

actually encrypt messages
 They are usually used to encrypt a symmetric key

* Only
— RSA-PKCS# 1 v1.5 and

— RSA-OAEP
can be considered as traditional public key encryption

algorithms

PKCS#1 V1.5

16 bits

02 random pad FF msg

N -
—
1024 bits

Resulting value is RSA encrypted.

Widely deployed in web servers and browsers. used in the SSL/TLS protocol
extensively

no modern security proof

PKCS#1 V2.0 - OAEP

* New preprocessingfunction: OAEP (BR94).

6—m

r

Check pad
on decryption.
Reject CT if invalid.

Plaintext to encrypt | with RSA RSk FEE

Thm: RSA is trap-door permutation = OAEP is CCS
when H,G are “random oracles”.

* In practice: use SHA-1 or MD5 for H and G.

PKCS#1 V2.0 - OAEP

* The preferred method of using the RSA
primitive to encrypt a small message

* provably secure in the random oracle model
* SHA-2/SHA-3 for future applications

OAEP Improvements

* OAEP+: (shoup'01) R

V trap-door permutation F w

F-OAEP+ is CCS when
H,GW are “random oracles”.

 SAEP+: (B’01)

RSA trap-door perm =
RSA-SAEP+ is CCS when
HW are “random oracle”.

Key lengths

Security of public key system should be comparable to security of
block cipher.

NIST:
Cipher key-size Modulus size
< 64 bits 512 bits.
80 bits 1024 bits
128 bits 3072 bits.
256 bits (AES) 15360 bits

High security = very large moduli.

Not necessary with Elliptic Curve Cryptography (more details later)

Keylengths in RSA providing the same level
of security as selected secret-key cryptosystems

18000
14000
12000
10000 AES-192
8000 — —
6000
AES-128

4000 _—

— —a - . 3DES (3K)
2000 - —— —— ~3DES (2K)

0 . - — "DES
2001 2010 2020 2030 vyear

Thanks to Kris Gaj for this figure

EL GAMAL

Discrete Logarithm

Z *={1,2,3,...,n-1}

Definition. Letb €Z_ * . The order of b is the smallest positive
integer satisfying b® =1 (mod n).

Z,* = <a>, i.e. ord(a) = p-1. when n=p=prime integer

Example
— Z,* =<3> 31=3, 32=2, 33=6, 34=4, 3°=5, 3°=1

— Z,3% =<2> 21=2,2%=4,23=8, 24=3, 2°=6, 2°=12, 27=11,
28=9, 2°=5, 210=10, 211=7, 212=1

Discrete Logarithm

If g is a generator of Z_*, then for all y there is a unique x (mod ¢(n))
such that
— y=g*modn
This is called the discrete logarithm of y and we use the notation
— x=log,(y)

The discrete logarithm is conjectured to be hard as factoring.

Example

— Zﬁ* =<2> 21=2, 22=4, 23=8, 24=3, 2°=6, 25=12, 27=11, 28=9, 2°=5,
210=10, 211=7, 212=1
— Log,(5) =9.

*VVvYy

VvV VY

DN N N

ElGamal

Invented in 1985
Designed by Dr. Taher Elgamal
Based on the difficulty of the discrete log

problem
No patents

Digital signature and Key-exchange variants

Works over various groups

/
pl
Multiplicative group GF(p"),

Elliptic Curves

ElGamal Public-key Cryptosystem

* SetUp (Ring of integers)

* Choose a prime number p (selected so that it is hard to
solve the discrete log problem)

* All operations in the ring Z* |

1. Randomly select a generator g for Z*
2. Randomly select an element a € Z*
3. Compute B=g>modp

> P_ubl)ic Key: (g, B) and the prime p (some description of the
ring

» Private Key: a

ElGamal Public-key Cryptosystem

Encryption
Encryption of the message m

Randomly select an element k € Z* |
Compute the ciphertext:

C=(cy,)
=(gk, m* Bk
Delete k!

Decryption of C

Decryption of the ciphertext C = (c,, ¢,)
Compute

o * (et = (m* B * (g) 1= m * B * (B 1= m

o Randomly select an element k € Z* |
Known k, => Bk =>c2/ Bk =m1
* Repeat k
o C1=(c,,c,)
=(g*, m1* 3
* C1=(c,)
=(g ", m2* Y
* ¢,/ c,=ml/m2

o O O ®

ElGamal: Example

SetUp (Ring of integers)
Choose a prime number p=11.
g=2

a=8

Compute B=28 (mod 11) =3
Public key: (2,3), Z,,"

Private key: 8

Encryption:
For m=7, k=4, we compute C= (24, 7 * 34)= (5, 6)

Decryption:
6*(58)1=6*41=6*3(mod11)=7

RSA vs El GAMAL

» A disadvantage of EIGamal encryption is that
there is message expansion by a factor of 2. That
s, the ciphertext is twice as long as the
corresponding plaintext.

» El Gamal is by design probabilistic.
» RSA is more mature and has better marketing

» El Gamal can achieve much better performance.

Fermat's Theorem

e« almodp=1
— where p Is prime and gcd(a,p)=1
e also known as Fermat’s Little Theorem
* useful in public key and primality testing

Euler Totient Function ¢ (n)

when doing arithmetic modulo n
complete set of residues is: 0..n-1

reduced set of residues iIs those numbers
(residues) which are relatively prime to n

— eg for n=10,
— complete set of residues is {0,1,2,3,4,5,6,7,8,9}
— reduced set of residues is {1,3,7,9}

number of elements in reduced set of residues
IS called the Euler Totient Function ¢(n)

Fuler's Theorem

A generalisation of Fermat's Theorem
« a*Mmod N =1
— where gcd(a,N)=1
eg.
—a=3;n=10; ¢(10)=4;
—hence 3*=81 =1 mod 10
—a=2;n=11; ¢(11)=10;
— hence 219=1024 = 1 mod 11

Why RSA Works

because of Euler's Theorem:

a*Nmod N =1

— where gcd(a,N)=1

In RSA have:

—N=p.q

- o(N)=(p-1)(q-1) |

— carefully chosen e & d to be inverses mod ¢(N)
— hence e*d=1+k.p(N) for some k

hence :

Cd = (Me)d = M1tko(N) = ML (Me(N))k = ML, (1)K
=M!=M mod N

