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PUBLIC KEY MODEL 



Public Key cryptography  

• 1976: «New Directions in Cryptography», in 

IEEE Transactions on information theory by  

Bailey Whitfield Diffie and Martin Hellman 

 

 

• 1977: RSA algorithm (Rivest – Shamir – Adleman) 

 

 

 

• 1970: “Non-secret encryption” 

James Ellis 

Government Communications Headquarters (GCHQ) 

Bailey Whitfield Diffie 
Martin Hellman 



First step: generate a pair of keys  
 

 
 
 
 
 
 
 
 
 
 

 Alice keeps the private key secret 
 Reliably distributes the public key (Bob learns Alice’s public key) 

 
 
 

Private key 

Public key 



Symmetric key vs public key 

 

Secret key 

Key Pair 

Private Key 

Public Key 



Asymmetric key (Public key) 

 
Encryption 

Data Integrity/Authenticity 



Public key Cryptography 

 

 

 

 

 

 

 

Public key infrastructure (PKI) 



Applications of Public-Key Cryptosystems 

 Digital signatures  

 data authenticity and non-repudiation 

 Key agreement 

 to agree on a session key 

 Encryption 

 Provides data secrecy 

 key encapsulation 

 Entity Authentication 

 Zero Knowledge Proof (ZKP) 

 



Public Key History 

• Some algorithms/mathematical problems 
– Diffie-Hellman, 1976, key-exchange based on discrete logs 
– Merkle-Hellman, 1978,  based on “knapsack problem” 
– McEliece, 1978, based on algebraic coding theory 
– RSA, 1978, based on factoring 
– Rabin, 1979, security can be reduced to factoring 
– ElGamal, 1985, based on discrete logs 
– Blum-Goldwasser, 1985, based on quadratic residues 
– Elliptic curves, 1985, discrete logs over Elliptic curves 
– Chor-Rivest, 1988, based on knapsack problem 
– NTRU, 1996, based on Lattices 
– XTR, 2000, based on discrete logs of a particular field 

 



PUBLIC KEY MAIN SCHEMES 



Main schemes 

1. RSA and the Integer Factorization problem 

2. El Gamal and the discrete logarithm problem 



Factorization 

• Prime Numbers 
 prime numbers only have divisors of 1 and self  

 they cannot be written as a product of other numbers  
 eg. 2,3,5,7 are prime, 4,6,8,9,10 are not 

 

• Prime Factorisation 
 to factor a number n is to write it as a product of other numbers:  

•    n=a × b × c  

 

 note that factoring a number is relatively hard compared to multiplying the factors 
together to generate the number  

 the prime factorisation of a number n is when its written as a product of primes  
–    eg. 91=7×13 ; 3600=24×32×52  

 



Factorization 

• Prime factorization is considered “hard problem” 
 

We now how to solve it 
We cannot do it efficiently  
 It becomes harder as the size of the integer 

increases. 
 

• Two types of factoring algorithms 
General purpose 
Special-purpose 



RSA 

 
 
 
 

• by Rivest, Shamir & Adleman  of MIT in 1977 
• security due to cost of factoring large numbers  

 
 
 

• The RSA algorithm involves three steps:  
1. key generation,  
2. encryption  
3. decryption 



RSA (textbook) 

• SetUp (key pair generation) 
• Choose two distinct random prime numbers p and q. 

• Compute n = p*q (n is public) 

• Compute φ(n) = (p − 1)*( q − 1) (φ(n) is kept secret) 

• Choose an integer e,  1 < e < φ(n) and gcd(e, φ(n)) = 1, (e is public) 

• the most commonly chosen value for e is 216 + 1 = 65,537.  

• the smallest possible value for e is 3 

• Compute d as d e≡1 (mod φ(n))  (d is kept secret) 

• (efficiently by using the Extended Euclidean algorithm) 

 

 Public key = (e, n) 

 Private key = (d) 

 Secret or discarded = (p, q, φ(n)) 

 



RSA Use 

• Encryption 
• Let m be the plaintext, with 0 ≤ m < n. 

• Compute c  = me mod n 

 

 

 

• Decryption 
• Let c be the ciphertext, with 0 ≤ c < n. 

• Compute m  = cd mod n 

 

 

 



RSA Example 

1. SetUp (key pair generation) 
 
– Select primes: p=17 & q=11 
– Compute n = pq =17×11=187 
– Compute φ(n)=16*10=160 

 
– Select e : gcd(e,160)=1; choose e=7 

 
– Determine d: de=1 mod 160 and d < 160 Value is d=23 since 

23×7=161= 1×160+1 

 
• Publish public key KU={7,187} 
• Keep secret private key KR={23,17,11} 

 
 



RSA Example cont 

• Given message M = 88 (nb. 88<187) 

 

• Encryption: 

– C = 887 mod 187 = 11  

 

• Decryption: 

– M = 1123 mod 187 = 88  

 



 IMPLEMENTATION AND SECURITY 
ISSUES 
 



Modular Exponentiation 

• For efficiency, modular exponentiation uses some 
combination of 

– Repeated squaring (or square and multiply) 

– Chinese Remainder Theorem (CRT) 

– Montgomery multiplication 

– Sliding window 

– Karatsuba multiplication 



 

1 0

2

   Comment:  compute  mod  ,  where  in binary.

   1

   for    downto  0  do  

                 mod 

if  1
                  

then   mod 

Algorithm: Square-and-Multiply( , ,  )

c

k k

i

x n c c c c

z

i k

z z n

c

z z x

x c n











 
 

...
Note:  At

 i.e.,

 the e

  mod

nd of

  

   retu

 iteratio

rn

n , .

 ( )

k

i

i

c

c c
i

z z x n

z

z

n

x


 





2

2

2

2

3

2

   23 10111

   1

   11 mod 187 11    (square and multiply)

    mod 187 121       (square)

   11 mod 187 44   (square and multiply)

   11 mod 187 165  (square and

11 mod187

 mu

Example: 

b

z

z z

z z

z z

z z





  

 

  

  

2

ltiply)

   11 mod 187 88    (square and multiply)z z  



• Simple Power analysis (we can use for public 
key exponentiation)  

Security of Square and multiply 



Improving RSA’s performance 

• To speed up RSA decryption use  

    C
d
 = M  (mod N)  

small private key  d.   
• There are several attacks: 

– 1987: Wiener showed,  
• if   d < N0.25   then RSA is insecure. 

– BD’98: if   d < N0.292  then RSA is insecure 
     (open:  d < N0.5  ) 

Insecure:  priv. key  d  can be found from  (N,e). 
 

Thus, small d should never be used. 



RSA With Low public exponent 

• To speed up RSA encryption and sig. verification 

   C = Me (mod N) 

 use a small   e.   

• Minimal value:   e=3 ( gcd(e, (N) ) = 1) 

• Recommended value:   e=65537=216+1 

  Encryption:  17 mod. multiplies. 

• Several weak attacks.   Non known on RSA-OAEP. 

• Asymmetry of RSA:   fast encryption (sig. verification)/ slow decryption 

(signature). 
– ElGamal:   approx. same time for both. 



RSA SECURITY 



RSA Security 

• 4 approaches of attacking on RSA 
– brute force key search  

• not feasible for large keys 

• actually nobody attacks on RSA in that way 

– mathematical attacks  
• based on difficulty of factorization for large numbers as we shall see in the 

next slide 

– side-channel attacks  
• based on running time and other implementation aspects of decryption 

– chosen-ciphertext attack 
• Some algorithmic characteristics of RSA can be exploited to get 

information for cryptanalysis 

 

• https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf 

https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf


Is RSA a one-way permutation? 

• To invert the RSA one-way function (without d) 

attacker must compute: 

  M    from     C = Me   (mod N). 

• How hard is computing  e’th  roots modulo N  ?? 

• Best known algorithm:    
– Step 1:  factor  N.     (hard) 

– Step 2:  Find  e’th  roots modulo  p  and  q.     (easy) 



Factorization Problem 

• 3 forms of mathematical attacks 
– factor n=p*q, hence find φ(n) and then d 

– determine φ(n) directly and find d 

• is equivalent of factoring n 

– find d directly 

• as difficult as factoring n 

• So RSA cryptanalysis is focused on 
factorization of large n 



Factoring techniques 

• Most efficient 

– Generalized Number Field Sieve 

– Quadratic Sieve 

– Lattice Sieve 

 



Reasons of improvement in 
Factorization 

• increase in computational power 

• biggest improvement comes from improved 
algorithm 

– “Quadratic Sieve” to “Generalized Number Field 
Sieve” 

– Then to “Lattice Sieve” 

 

 

 

 



Implementation/side channel attacks 

• Timing attack:   

– Kocher 1997 

• The time it takes to compute   Cd (mod N) can expose   d.  

• Systems that use repeated squaring but not CRT or Montgomery (smart cards) 

– Schindler’s attack 
• Repeated squaring, CRT and Montgomery (no real systems are known) 

– Brumley-Boneh attack 
• CRT, Montgomery, sliding windows, Karatsuba (as used in openSSL) 

• Power attack:  (Kocher 99) 
  The power consumption of a smartcard while it is computing  Cd 
(mod N)   can expose  d. 

• Faults attack:  (BDL 97) 
 A computer error during   Cd (mod N) can expose   d.       



Textbook RSA is insecure 

• Textbook RSA encryption: 
– public key:   (N,e) Encrypt:   C = Me (mod N) 

– private key:  d Decrypt:   Cd = M (mod N) 

        

• Completely insecure cryptosystem: 
– Does not satisfy basic definitions of security. 

– Many attacks exist. 

 

• The RSA trapdoor permutation is not a 
cryptosystem ! 



Attack 1: small message space 

• If the message space is small, the attacker can 
encrypt all the candidate massages (offline) 
and store the computed ciphertexts 
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Attack 1: small message space 

• On-line phase. For a ciphertext c (eavesdropped) the 
attacker finds c in the table and the corresponding 
message. 
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Attack 1: small message space 

• Why it works: 

– The encryption key is known (public key) 

– It doesn’t offer semantic security 

– The attacker can repeat all actions of the message 
owner 

• CPA doesn’t make sense 

• CCA is more relevant. 



Attack 2: Chosen ciphertext Attack 

• The textbook RSA has multiplicative 
homomorphism. 

• Let 
– c1=m1e mod n 

– c2=m2e mod n 

• Thus, for 
– c=c1*c2=m1e*m2e mod n=(m1*m2) e mod n 

i.e. c is the encryption of m=m1*m2, when 
m1*m2<n 

 



Attack 2: Chosen ciphertext Attack 

Attack scenario:  
The private key owner can decrypt for us any ciphertext except a specific one 
(target of the attack) ct. We want to compute the message mt. 
 
1. The attacker encrypts the message r = 2. 

– cr=2e mod n 

2. The attacker computes  
– c=ct*cr mod n 

3. The attacker asks for the decryption of c. Let m be the reply of the key 
owner. 

4. The attacker computes m’=m/2 as mt. 
 
 
Proof: The attack works when mt<n/2, i.e. when r* mt<n. 



Attack 3: A simple attack on textbook 
RSA 

• Session-key  K is 64 bits.     View   K  {0,…,264}   

• Eavesdropper sees:    C = Ke (mod N) .  

• Suppose   K = K1K2   where   K1, K2 < 234  .   (prob. 20%) Then:    C/K1
e = 

K2
e  (mod N) 

• Build table:   C/1e, C/2e, C/3e, …, C/234e .   time:  234 

 For  K2 = 0,…, 234  test if  K2
e  is in table.   time: 23434 

• Attack time:   240  << 264 

Web 
Browser 

Web 
Server 

CLIENT HELLO 

SERVER HELLO (e,N) d 

C=RSA(K) 

Random 
session-
key K 



Common RSA encryption 

• Never use textbook RSA. 
• RSA in practice: 

 
 
 
 
 
 

• Main question: 
– How should the preprocessing be done? 
– Can we argue about security of resulting system? 

msg 
Preprocessing 

cip
h

ertext 

RSA 



In practice 

• Public key encryption schemes are rarely used to 
actually encrypt messages 

• They are usually used to encrypt a symmetric key 
• Only  

– RSA-PKCS# 1 v1.5 and  
– RSA-OAEP  

can be considered as traditional public key encryption 
algorithms  
 
 
 



PKCS#1 V1.5 

 

 

 

 

 

 

• Resulting value is RSA encrypted. 

• Widely deployed in web servers and browsers. used in the SSL/TLS protocol 
extensively 

• no modern security proof   

 

02 random pad FF msg 

1024 bits 

16 bits 



PKCS#1 V2.0 - OAEP 

• New preprocessing function:  OAEP   (BR94). 

 

 

 

 

 

• Thm: RSA is trap-door permutation     OAEP is CCS  
 when  H,G  are “random oracles”. 

• In practice:  use SHA-1 or MD5 for H and G. 

H + 

G + 

Plaintext to encrypt with RSA 

rand. M 01 00..0 

Check pad 
on decryption. 
Reject CT if invalid. 

{0,1}n-1 



PKCS#1 V2.0 - OAEP 

• The preferred method of using the RSA 
primitive to encrypt a small message  

• provably secure in the random oracle model  

• SHA-2/SHA-3 for future applications 
 
 



OAEP Improvements 

• OAEP+:   (Shoup’01)  

   trap-door permutation F  
F-OAEP+ is CCS when   
H,G,W  are “random oracles”. 

 

                    

• SAEP+:  (B’01) 

  RSA trap-door perm   

RSA-SAEP+ is CCS when  

H,W  are “random oracle”. 

R 

H + 

G + 

M W(M,R) 

R 

H + 

M W(M,R) 



Key lengths 

• Security of public key system should be comparable to security of 
block cipher. 

NIST: 

  Cipher key-size   Modulus size 

   64 bits         512 bits. 

     80 bits      1024 bits 

    128 bits      3072 bits. 

    256 bits (AES)    15360 bits  

 

• High security    very large moduli. 

Not necessary with Elliptic Curve Cryptography (more details later) 



Thanks to Kris Gaj for this figure 

 



EL GAMAL 



Discrete Logarithm 

• Zn*={1,2,3,…,n-1} 

 

• Definition.  Let b Zn* . The order of b is the smallest positive 
integer satisfying be  1 (mod n). 

 

• Zp* = <>, i.e. ord() = p-1. when n=p=prime integer 

 

• Example 
– Z7* = <3>  31=3, 32=2, 33=6, 34=4, 35=5, 36=1 

– Z13* = <2>  21=2, 22=4, 23=8, 24=3, 25=6, 26=12, 27=11, 
28=9, 29=5, 210=10, 211=7, 212=1 

 



Discrete Logarithm 

• If g is a generator of Zn
*, then for all y there is a unique x (mod (n)) 

such that 
– y = gx mod n 

• This is called the discrete logarithm of y and we use the notation 
– x = logg(y) 

 
• The discrete logarithm is conjectured to be hard as factoring. 

 
• Example 

– Z13* = <2>  21=2, 22=4, 23=8, 24=3, 25=6, 26=12, 27=11, 28=9, 29=5, 
210=10, 211=7, 212=1 

– Log2(5) = 9. 
 

 
 



ElGamal 

 Invented in 1985 

 Designed by Dr. Taher Elgamal 

 Based on the difficulty of the discrete log  

• problem 
 No patents 

 Digital signature and Key-exchange variants 

 

 

• Works over various groups 

 Zp,  

 Multiplicative group GF(pn),  

 Elliptic Curves 

 



ElGamal Public-key Cryptosystem 

• SetUp (Ring of integers) 
 

• Choose a prime number p (selected so that it is hard to 
solve the discrete log problem) 

• All operations in the ring Z*p
 

1. Randomly select a generator g for Z*p 
2. Randomly select an element a  Z*p 
3. Compute  = ga mod p 

 
 Public Key: (g, ) and the prime p (some description of the 

ring) 
 Private Key: a 

 
 



ElGamal Public-key Cryptosystem 

• Encryption 
• Encryption of the message m 

 
o Randomly select an element k  Z*p 
• Compute the ciphertext: 
o C = (c1, c2) 

    = (g k, m * k) 
o Delete k! 

 
• Decryption of C 
• Decryption of the ciphertext C = (c1, c2) 
• Compute 
o c2 * (c1

a)-1 = (m * k) * (gka)-1= m * k * (k)-1= m 
 
 



o Randomly select an element k  Z*p 

Known k, => k =>c2/ k =m1 

• Repeat k 

o C1 = (c1, c2) 
    = (g k, m1 * k) 

• C1 = (c1, c’2) 
    = (g k, m2 * k) 

• c2 / c’2= m1/m2 



ElGamal: Example 

• SetUp (Ring of integers) 

• Choose a prime number p=11. 

o g = 2 

o a  = 8 

o Compute β= 28 (mod 11) = 3 

• Public key: (2,3), Z11
* 

• Private key: 8 

 

• Encryption:  

• For m=7, k=4, we compute  C= (24, 7 * 34)= (5, 6) 

 

• Decryption: 

• 6 * (58)-1= 6 * 4-1= 6 * 3 (mod 11)= 7  



RSA vs El GAMAL 

A disadvantage of ElGamal encryption is that 
there is message expansion by a factor of 2. That 
is, the ciphertext is twice as long as the 
corresponding plaintext. 
 

El Gamal is by design probabilistic. 
 

RSA is more mature and has better marketing 
 

El Gamal can achieve much better performance. 
 





Fermat's Theorem 

• ap-1 mod p = 1  

– where p is prime and gcd(a,p)=1 

• also known as Fermat’s Little Theorem 

• useful in public key and primality testing 



Euler Totient Function φ(n) 

• when doing arithmetic modulo n  

• complete set of residues is: 0..n-1  

• reduced set of residues is those numbers 
(residues) which are relatively prime to n  

– eg for n=10,  

– complete set of residues is {0,1,2,3,4,5,6,7,8,9}  

– reduced set of residues is {1,3,7,9}  

• number of elements in reduced set of residues 
is called the Euler Totient Function φ(n)  



Euler's Theorem 

Α generalisation of Fermat's Theorem  

• aφ(N)mod N = 1  

– where gcd(a,N)=1 

eg. 

– a=3;n=10; φ(10)=4;  

– hence 34 = 81 = 1 mod 10 

– a=2;n=11; φ(11)=10; 

– hence 210 = 1024 = 1 mod 11 

 

 

 



Why RSA Works 

• because of Euler's Theorem: 
• aφ(N)mod N = 1  

– where gcd(a,N)=1 

• in RSA have: 
– N=p.q 
– φ(N)=(p-1)(q-1)  
– carefully chosen e & d to be inverses mod φ(N)  
– hence e*d=1+k.φ(N) for some k 

• hence : 
Cd = (Me)d = M1+k.φ(N) = M1.(Mφ(N))k = M1.(1)k 
= M1 = M mod N  


