
Cryptography
Lecture 8

Dr. Panagiotis Rizomiliotis

TOC

• Key derivation function
– HKDF

• key agreement/transfer
– Diffie Hellman
– (non)-KEM
– KEM
– Quantum Key distribution

• Key size

Contemporary communication
protocol

– First Phase: Authentication (sometimes mutual)
 Public Key
 Symmetric Key

– Second Phase: Key Establishment (master key)
 Key agreement
 Key distribution

– Third Phase: Data Encryption
 KDF (master key)
 Symmetric key encryption

TLS 1.3 (example)

Handshake
• Agree a cipher suite.
• Agree a master secret.
• Authentication using
certificate(s).

Application Data
• Use KDF to generate sessions keys
• Symmetric key encryption.

– AEAD cipher modes.

• Typically HTTP
(OWASP presentation)

KEY AGREEMENT/TRANSFER

ToC

• Bob and Alice must agree on a common key.
• Then, they use a key derivation function to

produce several symmetric keys

Protecting data confidentiality
 Public key encryption and decryption are expensive

computations.
 Rarely used for plaintext confidentiality protection.

 Main schemes used in practice:
 KEM: Key Encapsulation Mechanism

Combine a public key encryption with key derivation functions (KDF)

 Non-KEM
Just traditional public key encryption (only two options in practice):

1. RSA-PKCS# 1 v1.5
2. RSA-OAEP

 Symmetric key based data protection.
 DEM: Data Encryption Mechanism

Protecting data confidentiality

Non-kem
 RSA-PKCS# 1 v1.5

 No modern security proof
 Used in SSL/TLS protocol extensively (until v1.2)
 The weak form of padding
 Attacks on various cryptographic devices

 RSA-OAEP
 the preferred method of using the RSA primitive to encrypt a

small message
 Provably secure in the random oracle model
 The hash functions used can be SHA-1 for legacy applications and

SHA-2/SHA-3 for future applications

Key Encapsulation Mechanism (KEM)
 RSA-KEM

 Takes a random element m and encrypts it using the RSA
 The output key is computed by applying a KDF to m
 Secure in the random oracle model

 PSEC-KEM
 It is based on elliptic curves.
 Provable secure
 Based on the hardness of the (computational) DH problem
 More secure than ECIES-KEM, less efficient

 ECIES-KEM
 Discrete logarithm based encryption scheme
 Very popular

Key agreement

 1976: “New directions in Cryptography”

 Two entities agree upon a common secret over a public
channel
 No pre-shared keys.

 Based on the discrete logarithm problem

The main idea - DH

Implementation

 p and g are both publicly available numbers
 Users, Alice and Bob, pick private random values (when used

once are called ephemeral):
 Private Alice: a
 Private Bob: b

 They compute public values
 Public Alice: x = ga mod p
 Public Bob: y = gb mod p

 Public values x and y are exchanged

(Ephemeral) DH

BobAlice x = ga mod p

y = gb mod p

K = ka = ya mod p K= kb = xb mod p

 Algebraically it can be shown that ka = kb
 Users now have a symmetric secret key to encrypt
 They use a KDF first…

Toy Example
• Alice and Bob get public numbers

– p = 23, g = 9

• Alice and Bob compute public values
– X = 94 mod 23 = 6561 mod 23 = 6
– Y = 93 mod 23 = 729 mod 23 = 16

• Alice and Bob exchange public numbers

• Alice and Bob compute symmetric keys
– ka = ya mod p = 164 mod 23 = 9

– kb = xb mod p = 63 mod 23 = 9

• Alice and Bob now can talk securely!

Person-in-the-middle attack

Alice BobMallory

ga

gbgd

gc

Key1 = gad Key1 = gcb

Mallory gets to listen to everything.

Solution
 AKE protocols (authentication and key establishment protocols)

 Authenticate before key establishment
 Literally hundreds of AKE protocols

 Authentication:
 Use public key encryption (and usually certificates)
 Use pre-shared keys (like passwords)

 Two main types of key establishment:
 Key agreement (DH)
 Key distribution/transfer (key encryption/KEM)

Authentications
 Use public key encryption (and usually certificates)
 Use pre-shared keys (like passwords or master key of the last session)

 Insecure!
 Can be easily eavesdroped

Simple Transmission (PSK)

Alice BobI’m Alice, password

OK/error

19

Secure simple Transmission (PSK)

Alice Bob

I’m Alice, password

OK/error

20

Establish secure channel

One-way Challenge-Response

Alice BobI’m Alice

challenge R

response Z
K = password

f() can be:
 encryption function – Bob just decrypts and verifies time in within allowed

skew
 hash – Bob needs to hash all times in allowable interval or Alice sends time

21

Z=f(password,R)
Z=? f(password,R)

One-way Challenge-Response (PSK)

Alice BobI’m Alice

challenge R

response Z
K = shared key

f() can be:
 encryption function – Bob just decrypts and verifies time in within allowed

skew
 hash – Bob needs to hash all times in allowable interval or Alice sends time
 It is better to use MAC (usually HMAC)

22

Z=f(K,R)
Z=?f(K,R)

One-Way using Timestamp (PSK)

 Problems?
 Impersonate Alice if intercept and send message – race condition
 If use same K with multiple servers, could send message to another server and

impersonate Alice
 Clock skew/synchronization

Alice BobI’m Alice, f(K,timestamp)

23

 Authentication often needed in both directions
 Server trusting user is not only concern

 User must trust server
 Ex. User accessing online bank account

24

2-Way Authentication

Mutual Authentication with Secret
Key

Alice BobI’m Alice

R1

f(K,R1)

R2

f(K,R2)

25

Mutual Authentication with Secret
Key

Alice BobI’m Alice, R2

f(K,R1)
R1, f(K,R2)

More efficient version:

26

Mutual Authentication with Secret
Key

Trudy BobI’m Alice, R2

Doesn’t
know K so
can’t send
f(K,R1)

R1, f(K,R2)

Trudy BobI’m Alice, R1

Now use
f(K,R1) in
above attempt

R3, f(K,R1)

Reflection attack:

27

 Solutions:
 Separate keys for each direction/different passwords
 Requirements on R values: odd in one direction, even in the other, concatenate

with senders’ name

28

Mutual Authentication with Secret
Key

Password/Key Guessing

 Also note, Trudy can get Bob to encrypt a value (or a several
of values) and then try an offline attack to guess K

 Have Bob return R1 value for Alice to encrypt

Alice BobI’m Alice

f(K,R2)
R2, f(K,R1)

R1

Now Bob would have to reuse R1 in order for
Trudy, who eavesdrops, to be able to use
f(K,R1)

29

Timestamps

 Same issues as before plus clock skew
 Any modification to timestamp will work

Alice BobI’m Alice, f(K,timestamp)

f(K,timestamp+1)

30

 We use public key cryptography
 Prove the possession of a public key
 Usually it is based on certificates
 Very popular

Certification based

31

One-way Using Public Key

Alice BobI’m Alice

R

[R]Apriv

Bob decrypts with Alice’s
public key and verifies R
was returned.

One-way Using Public Key

Alice BobI’m Alice

R

[R]Apriv

[R]Ax = R signed with
Alice’s x key, where x is
private (priv) or public
(pub) key

Alice BobI’m Alice

[R]Apub

R

Bob decrypts with Alice’s
public key and verifies R
was returned.

Alice proves to Bob
she has her private
key by returning R

33

One-way Problems
 First case:

 Can send anything to Alice as R and get Alice to sign it
 Second case:

 Intercepted an encrypted message for Alice, send it and get
Alice to decrypt it

34

Mutual Authentication with Public
Keys

 Always the same issue!
◦ how to obtain/store/validate Bob’s public key

Alice BobI’m Alice, [R2]Bpub

R1

[R1]Apub, R2

35

gbmod p||CertB||SigB(Alice|| gb ||ga)

Ake based on DH:
Station-to-station protocol

gamod p||CertA

SigA(Bob||ga|| gb)

K = gab
K = gab

Password-based Authenticated Key
Exchange (PAKE)

 1992, Bellovin and Merritt
 Encrypted Key Exchange (EKE)

KEY DERIVATION

Overview

* Algorithms, key size and parameters report. ENISA– 2014

Key derivation function

 Key Derivation Functions (KDFs) are used to derive
cryptographic keys

1. from a source of keying material shared random strings
(in the case of key agreement protocols) and from an
entropy source (in the case of key generation)

2. from passwords

 KDFs act both as a randomness extractor as well as an
expander

Deriving many keys from one

Typical scenario. a single source key (SK) is sampled from:
• Hardware random number generator
• A key exchange protocol (discussed later)

Need many keys to secure session:
• unidirectional keys; multiple keys for nonce-based CBC.

Goal: generate many keys from this one source key

SK k1, k2, k3, …KDF

When source key is uniform

F: a PRF with key space K and outputs in {0,1}n

Suppose source key SK is uniform in K

• Define Key Derivation Function (KDF) as:

CTX: a string that uniquely identifies the application

KDF(SK, CTX, L) :=
 F(SK, (CTX ll 0)) ll F(SK, (CTX ll 1)) ll ⋯ ll F(SK, (CTX ll L))

What is the purpose of CTX?

KDF(SK, CTX, L) :=
 F(SK, (CTX ll 0)) ll F(SK, (CTX ll 1)) ll ⋯ ll F(SK, (CTX ll L))

Even if two apps sample same SK they get indep. keys

It’s good practice to label strings with the app. name

It serves no purpose

What if source key is not uniform?

Recall: PRFs are pseudo random only when key is
uniform in K
• SK not uniform PRF output may not look random⇒

Source key often not uniformly random:

• Key exchange protocol: key uniform in some subset of
K

• Hardware RNG: may produce biased output

Extract-then-Expand paradigm

Step 1: extract pseudo-random key k from source key
SK

step 2: expand k by using it as a PRF key as before

pr
ob

SK

pr
ob

k

extractor

salt

salt: a fixed non-secret string chosen at random

HKDF: a KDF from HMAC

Implements the extract-then-expand paradigm:

 extract: use k = HMAC(salt, SK)

 Then expand using HMAC as a PRF with key k

HKDF in TLS

Key derivation function

Password-Based KDF (PBKDF)

Deriving keys from passwords:
 Do not use HKDF: passwords have insufficient entropy
 Derived keys will be vulnerable to dictionary attacks

PBKDF defenses: salt and a slow hash function

Standard approach: PKCS#5 (PBKDF1)

H(c)(pwd ll salt): iterate hash function c times

Password based key derivation
Goal: derive cryptographic keys from a secret random string (passwords)
 PBKDF2

 NIST SP 800-132
Based on any secure PRF (for instance a hash function)

 The PRF is iterated several times (at least 103, recommended 4*104)
increase the workload of dictionary attacks

 Input is the password, a salt and the desired key length
 Possible to implement dictionary attacks on ASICs or GPUs

 Bcrypt
 Based on block cipher (Blowfish)

 Scrypt
 Since 2009. Looks more resistant so far.

 Argon2
 From 2013 to 2015 the Password Hashing Competition (https://password-hashing.net/)

 Main security goal is that these hash functions are ‘memory hard’, it is difficult to
speed them up with dedicated hardware

 Another similar proposal is Blocki

https://password-hashing.net/
https://password-hashing.net/

Overview

* Algorithms, key size and parameters report. ENISA– 2014

ECIES
 EC Integrated Encryption Scheme (ECIES)
 KEM = Key Encapsulation Mechanism
 DEM = Data Encapsulation Mechanism

 ECIES = ECIES-KEM + DEM

ECIES
 Bob generates public/private keys (EC) DH.
 Bob publishes public key.

Bob
 puB prB

ECIES
 Ephemeral key pair (prA,puA) (EC)DH
 Compute common key

K = ECDH(prA,puB)
 Compute Session Key

K’= KDF(salt,info, K)
 Use K’ to protect confidentiality and integrity of message

M.
 Send to Bob

 (C, tag, puA, other aux info)

Alice

ECIES
 Compute common key

K = ECDH(prB,puA)
 Compute Session Key

K’= KDF(salt,info, K)
 Use K’ to verify integrity and decrypt C ot retrieve

message M.

Bob

prB

QUANTUM KEY DISTRIBUTION

quantum cryptography

Quantum Key distribution
 Symmetric key
 It is based on quantum mechanics
 Two physically separated parties can create and share random

secret keys
– Allows them to verify that the key has not been

intercepted.

• Establish an unconditionally secure communication channel
1. Quantum Key distribution
2. Switch to one-time-pad

Basic Idea

fundamentals
 Measurement causes perturbation

• No Cloning Theorem
 An unknown quantum state CANNOT be cloned. Therefore,

eavesdropper, Eve, cannot have the same information as
Bob.

 Single-photon signals are secure.

 Thus, measuring the qubit in the wrong basis destroys the
information

Quantum communications

• Transmitting information with a single-photon

• Use a quantum property to carry information

Liner States

= "0" = |0>

= "1" = |1>

Two basis

BB84 - Set-up

• Paper by Charles Bennett and Gilles Brassard in 1984 is
the basis for QKD protocol BB84. Prototype developed in
1991.

• Alice
Has the ability to create qubits in two orthogonal bases

• Bob
Has the ability to measure qubits in those two bases.

BB84

BB84

Alice's Bit Sequence

0 1 0 - 0 1 1 1 1 - 1 0

- 1 - - 0 1 - - 1 - 1 0

Bob's Bases

Bob's Results

Key

Alice

Bob

Polarizers

Horizontal - Vertical

Diagonal (-45 , +45) 

H/V Basis

45 Basis

Example

Eavesdropping
• Communication interception

• Use quantum physics to force spy to introduce errors in the
communication

• The errors are detected

?|0> |0>

Eve

BobAlice

ASSSUMPTIONS
 Source: Emits perfect single photons. (No multi-

photons)
 Channel: noisy but lossless. (No absorption in

channel)
Detectors: Perfect detection efficiency. (100 %)
 Basis Alignment: Perfect. (Angle between X and Z

basis is exactly 45 degrees.)

 Conclusion: QKD is secure in theory.
 (Assumptions lead to security proofs)

Other schemes
• EPR
• Uses entangled qubits sent from a central source
• Alice and Bob measure qubits randomly and independently
• After measuring, they compare measurement bases and proceed as in

BB84
• Advantage over BB84 is that Eve can now be detected using rejected

qubits

• B92
• Uses only two non-orthogonal states
• Each bit is either successfully
• received or an “erasure”

Current State of Affairs

• Commercial quantum key distribution
products exist

• Current fiber-based distance
• record: 200 km

Current State of Affairs

• Demonstrated free-space link: 10 km

Satellite-to-ground quantum key
distribution

 Micius satellite
 Use QKD and symmetric encyrption
 ESA signed a contract with SES Techcom S.A. (LU) to develop the Quantum

Cryptography Telecommunication System (QUARTZ)

KEY LENGTH

Key length
• Difference between symmetric and public key cryptography
 Symmetric key: best attack (must be) exhaustive search
 Public key: more efficient attacks due to the mathematical algorithms

– Several reports exist with recommendations: (www.keylength.com)
o Lenstra and Verheul Equations (2000)
o Lenstra Updated Equations (2004)
o ECRYPT-CSA Recommendations (2018)
o NIST Recommendations (2016)
o ANSSI Recommendations (2014)
o IAD-NSA CNSA Suite (2016)
o Network Working Group RFC3766 (2004)
o BSI Recommendations (2018)

Minimum symmetric key-size in bits for
various attackers

ECRYPT II, Yearly Report on Algorithms and Keysizes (2011-2012)

Key-size Equivalence

Security levels (symmetric
equivalent)

Key length
• Keys are getting older (with use)
 There are time/memory/pre-processing (generic) attacks.
 Based on the birthday paradox

 Use session keys

 There is an attack against AES-128. It has only 85-bit security
• if 243 encryptions of an (arbitrary) fixed text under different keys are available to the attacker.

Key length

• D5.4. Algorithms, Key Size and Protocols Report (2018). ECRYPT-CSA

Key usage
• Principle of key separation: the cryptographic kerys must only be used for

their intended purpose.
 For example to use a symmetric AES key as both the key to an application

of AES in an encryption scheme, and also for the use of AES within a MAC
scheme

 Using an RSA private key as both a decryption key and as a key to generate
RSA signatures.

 Use the same encryption key on a symmetric channel between Alice and
Bob for two way communication (as opposed to two unidirectional keys).

• Such usage can often lead to unexpected system behavior.
• It must be well investigated

• It is difficult to enforce the principle

Key deletion/backup/archive
• Key backup
 Critical operation
 If you lose the key, you lose encrypted data
 Key escrow

• Key archival
 Special type of backup
 Usually a legal requirement
 Public keys to verify signatures

• Key deletion
 Data sanitization
 Not a trivial task
 Repeatedly overwriting
 Follow standards

OTHER KEY MANAGEMENT
RELATED ISSUES

What is the best we can hope foR
1. The primitive is solid
2. The algorithm and the protocol are secure
3. The implementation flawless

• Then, it is all about the secret keys.

• Manage the circle of life of a key
• (generate the key, establish, use, store, delete/archive)

• Much more difficult than it sounds!!

Key management

 Secure design and implementation
 We are shifting the problem
 The key can be seen as special type of data

• Secure administration of (cryptographic) keys

• Standards
• NIST Special Publication 800-57. Recommendation for key management, Part 1: General (Revision

3). National Institute of Standards and Technology, 2012

• NIST Special Publication 800-130. A framework for designing cryptographic key management
systems. National Institute of Standards and Technology, 2013.

Key lifecycle

1. Key Generation
2. Key Registration/Certification
3. Key Distribution and Installation
4. Key Storage and backup
5. Key Use
6. Revocation/Change
7. Key Archive/Destruction

Key storage
• Store a password, symmetric key, private part of the public-key pair.

 No storage
 In the clear
 In hardware
 Encrypted
• Store locally
• Use a web/cloud based secret manager
 Off-line (pen and paper)

Key storage - Secure hardware
 Secure tokens (eg. Smart cards)

 Hardware Security Module (HSM)

 FIPS PUB 140-2. SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC
MODULES

• Four levels of security
 FIPS 140-3 was approved on March 22, 2019 and will become

effective on September 22, 2019
 NIST maintains a DB of validated cryptographic modeules

Key storage - Key wrapping

• Use a block cipher to encrypt a secret key.

Key storage - Secret sharing
schemes

• Main concept:
 Produce shares from the secret
Use distributed storage for the shares
 Each share looks random (no information leakage)
Delete the secret key
Use the shares to retrieve the secret key when

needed

• key shares

Threshold scheme
• A (k,n) threshold scheme has the following properties:

 From the secret n shares are produced.
 Any group of k share owners can reconstruct the secret,
 Any a group of (k-1) or less shares cannot!

• Most of the schemes are based on Shamir’s scheme.

Shamir threshold scheme
 Invented by Adi Shamir in 1979.
 It is based on the fact that k points uniquely determine a

polynomial of degree k-1.

• The algorithm:
• Pick a random polynomial of degree k-1

• where the secret S is the constant term S=q(0)=a0, and the
shares Si are given by

2 1
0 1 2 1() k

kq x a a x a x a x 
    

1 2(1), (2), , ()nS q S q S q n  

Shamir Approach (continued)

represent each share as a point (xi,q(xi)=yi)
All arithmetic done modulo a prime number p

(integer ring)
All the coefficients are randomly chosen from a

uniform distribution over the integers in [0,p)

• With k shares we reconstruct the polynomial
using the Lagrange Interpolation

Example: (3,5)threshold scheme

• Using the shares S1, S2, and S4 we have

0

1

2

5

3

7

3

5

11

n

k

S

a S

a

a

p









2() 5 3 7 (mod11)q x x x  

2
1

2
2

2
3

2
4

2
5

(1) 5(1) 3(1) 7 (mod11) 4

(2) 5(2) 3(2) 7 (mod11) 0

(3) 5(3) 3(3) 7 (mod11) 6

(4) 5(4) 3(4) 7 (mod11) 2

(5) 5(5) 3(5) 7 (mod11) 4

S q

S q

S q

S q

S q

    

    

    

    

    

Exercise

1. Let H:{0,1}*→T be a collision resistant hash function. Is the
following hash function collision resistant?

H′(m)=H1(H2(m))

95

Proof (sketch)

• Let n1<n2
• Let H′(m)=H1(H2(m)) and let’s assume that H’(m) is not collision resistant.

Thus, there is a polynomial algorithm A that can compute a pair of
messages m1 and m2, more efficiently than O(2n1/2), such that:

H’(m1)=H’(m2)
Thus, it holds H1(H2(m1))=H1(H2(m2)). We distinguish two cases:
1. H2(m1)=H2(m2). Then, the algorithm A can compute collisions for H2(m),

more efficiently than O(2n2/2). This is a contradiction.
2. H2(m1)≠H2(m2). Then, the messages y1=H2(m1) and y2=H2(m2)

H1(H2(m1))=H1(H2(m2)) <=> H1(y1)=H1(y2)
are collisions for H1(m). That is that, the algorithm A can compute collisions
for H1(m), more efficiently than O(2n1/2). This is a contradiction.

96

Proof (sketch)

• Let n1>n2.
• Our goal is to find collisions for H′(m)=H1(H2(m)) more efficiently than

O(2n1/2).
• Let H2(m1)=H2(m2). We can find them with random trials in O(2n2/2).
• Also , H′(m1)=H1(H2(m1))= H1(H2(m2))= H′(m2). Thus, we have a collision

for H’ more efficiently than than O(2n1/2), since n1>n2

• When n1=n2, then it is secure (the same proof as for H(H(m)))

97

Key lifetime
• A key is valid (can be used) for a specified period of time.

When that period has expired, it is either destroyed or
archived.

 Key compromise
 Future attacks
 Key exposure
 Flexibility (key length/key lifetime)
 Key management failures
 Key management cycles

Key generation/derivation

• We want to generate/compute
 asymmetric key-pairs,
 symmetric keys,
 initialization vectors (IVs)
 Challenge-response protocols

• Generate the key
 Hardware based source of randomness
 Software based source of randomness

• Key derivation
 From other keys
 Password based derivation functions

Key generation
• Difficult to find random sources
 Random Number/bit Generators (RNGs) or True Random Number

Generators (TRNGs)
 TRNG device
 special-purpose hardware (e.g. electronic circuits, quantum devices)
 post-processing (noise whitening)
 operate at low output rates

	Cryptography Lecture 8
	TOC
	Contemporary communication protocol
	TLS 1.3 (example)
	Key agreement/Transfer
	ToC
	Protecting data confidentiality
	Protecting data confidentiality (2)
	Non-kem
	Key Encapsulation Mechanism (KEM)
	Key agreement
	The main idea - DH
	Implementation
	(Ephemeral) DH
	Toy Example
	Person-in-the-middle attack
	Solution
	Authentications
	Simple Transmission (PSK)
	Secure simple Transmission (PSK)
	One-way Challenge-Response
	One-way Challenge-Response (PSK)
	One-Way using Timestamp (PSK)
	2-Way Authentication
	Mutual Authentication with Secret Key
	Mutual Authentication with Secret Key (2)
	Mutual Authentication with Secret Key (3)
	Mutual Authentication with Secret Key (4)
	Password/Key Guessing
	Timestamps
	Certification based
	One-way Using Public Key
	One-way Using Public Key (2)
	One-way Problems
	Mutual Authentication with Public Keys
	Ake based on DH: Station-to-station protocol
	Password-based Authenticated Key Exchange (PAKE)
	Key derivation
	Overview
	Key derivation function
	Deriving many keys from one
	When source key is uniform
	Slide 43
	What if source key is not uniform?
	Extract-then-Expand paradigm
	HKDF: a KDF from HMAC
	HKDF in TLS
	Key derivation function (2)
	Password-Based KDF (PBKDF)
	Password based key derivation
	Overview (2)
	ECIES
	ECIES (2)
	ECIES (3)
	ECIES (4)
	Quantum Key distribution
	quantum cryptography
	Quantum Key distribution (2)
	Basic Idea
	fundamentals
	Quantum communications
	Two basis
	BB84 - Set-up
	BB84
	BB84 (2)
	Example
	Eavesdropping
	ASSSUMPTIONS
	Other schemes
	Current State of Affairs
	Current State of Affairs (2)
	Satellite-to-ground quantum key distribution
	Key length
	Key length (2)
	Minimum symmetric key-size in bits for various attackers
	Key-size Equivalence
	Security levels (symmetric equivalent)
	Key length (3)
	Key length (4)
	Key usage
	Key deletion/backup/archive
	Slide 82
	Other Key management related issues
	What is the best we can hope foR
	Key management
	Key lifecycle
	Key storage
	Key storage - Secure hardware
	Key storage - Key wrapping
	Key storage - Secret sharing schemes
	Threshold scheme
	Shamir threshold scheme
	Shamir Approach (continued)
	Example: (3,5)threshold scheme
	Exercise
	Proof (sketch)
	Proof (sketch) (2)
	Key lifetime
	Key generation/derivation
	Key generation

