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Contemporary communication 
protocol

– First Phase: Authentication (sometimes mutual)
 Public Key
 Symmetric Key

– Second Phase: Key Establishment (master key)
 Key agreement
 Key distribution

– Third Phase: Data Encryption
 KDF (master key)
 Symmetric key encryption



TLS 1.3 (example)

Handshake
•  Agree a cipher suite.
•  Agree a master secret.
•  Authentication using 
certificate(s).

Application Data
• Use KDF to generate sessions keys 
• Symmetric key encryption.

– AEAD cipher modes.

• Typically HTTP
(OWASP presentation)



KEY AGREEMENT/TRANSFER



ToC

• Bob and Alice must agree on a common key.
• Then, they use a key derivation function to 

produce several symmetric keys 



Protecting data confidentiality
 Public key encryption and decryption are expensive 

computations.
 Rarely used for plaintext confidentiality protection.

 Main schemes used in practice:
 KEM: Key Encapsulation Mechanism

Combine a public key encryption with key derivation functions (KDF)

 Non-KEM
Just traditional public key encryption (only two options in practice):

1. RSA-PKCS# 1 v1.5 
2. RSA-OAEP 

 Symmetric key based data protection.
 DEM: Data Encryption Mechanism



Protecting data confidentiality



Non-kem
 RSA-PKCS# 1 v1.5

 No modern security proof 
 Used in SSL/TLS protocol extensively (until v1.2) 
 The weak form of padding 
 Attacks on various cryptographic devices

 RSA-OAEP
 the preferred method of using the RSA primitive to encrypt a 

small message
 Provably secure in the random oracle model
 The hash functions used can be SHA-1 for legacy applications and 

SHA-2/SHA-3 for future applications



Key Encapsulation Mechanism (KEM)
 RSA-KEM

 Takes a random element m and encrypts it using the RSA 
 The output key is computed by applying a KDF to m
 Secure in the random oracle model

 PSEC-KEM
 It is based on elliptic curves. 
 Provable secure
 Based on the hardness of the (computational) DH problem
 More secure than ECIES-KEM, less efficient

 ECIES-KEM
 Discrete logarithm based encryption scheme
 Very popular



Key agreement

 1976: “New directions in Cryptography”

 Two entities agree upon a common secret over a public 
channel
 No pre-shared keys.

 Based on the discrete logarithm problem



The main idea - DH



Implementation

 p and g are both publicly available numbers
 Users, Alice and Bob, pick private random values (when used 

once are called ephemeral):
 Private Alice: a 
 Private Bob: b 

 They compute public values
 Public Alice: x = ga mod p
 Public Bob: y = gb mod p

 Public values x and y are exchanged



(Ephemeral) DH

BobAlice x = ga mod p

y = gb mod p

K = ka = ya mod p K= kb = xb mod p

 Algebraically it can be shown that ka = kb  
 Users now have a symmetric secret key to encrypt
 They use a KDF first…



Toy Example
• Alice and Bob get public numbers

– p = 23,  g = 9

• Alice and Bob compute public values
– X  =  94 mod 23 =  6561 mod 23  =  6
– Y  =  93 mod 23  =  729 mod 23    =  16

• Alice and Bob exchange public numbers

• Alice and Bob compute symmetric keys
– ka = ya mod p = 164 mod 23 = 9

– kb = xb mod p =  63  mod 23 = 9

• Alice and Bob now can talk securely!



Person-in-the-middle attack

Alice BobMallory

ga

gbgd

gc

Key1 = gad Key1 = gcb

Mallory gets to listen to everything.



Solution
 AKE protocols (authentication and key establishment protocols)

 Authenticate before key establishment
 Literally hundreds of AKE protocols

 Authentication:
 Use public key encryption (and usually certificates)
 Use pre-shared keys (like passwords)

 Two main types of key establishment:
 Key agreement (DH)
 Key distribution/transfer (key encryption/KEM) 



Authentications
 Use public key encryption (and usually certificates)
 Use pre-shared keys (like passwords or master key of the last session)



 Insecure!
 Can be easily eavesdroped 

Simple Transmission (PSK)

Alice BobI’m Alice, password

OK/error

19



Secure simple Transmission (PSK)

Alice Bob

I’m Alice, password

OK/error
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Establish secure channel



One-way Challenge-Response

Alice BobI’m Alice

challenge R

response Z
K = password

f() can be: 
 encryption function – Bob just decrypts and verifies time in within allowed 

skew
 hash – Bob needs to hash all times in allowable interval or Alice sends time 
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Z=f(password,R)
Z=? f(password,R)



One-way Challenge-Response (PSK)

Alice BobI’m Alice

challenge R

response Z
K = shared key

f() can be: 
 encryption function – Bob just decrypts and verifies time in within allowed 

skew
 hash – Bob needs to hash all times in allowable interval or Alice sends time 
 It is better to use MAC (usually HMAC)

22

Z=f(K,R)
Z=?f(K,R)



One-Way using Timestamp (PSK)

 Problems?
 Impersonate Alice if intercept and send message – race condition
 If use same K with multiple servers, could send message to another server and 

impersonate Alice
 Clock skew/synchronization

Alice BobI’m Alice, f(K,timestamp)
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 Authentication often needed in both directions
 Server trusting user is not only concern

 User must trust server 
 Ex. User accessing online bank account

24

2-Way Authentication



Mutual Authentication with Secret 
Key

Alice BobI’m Alice

R1

f(K,R1)

R2

f(K,R2)
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Mutual Authentication with Secret 
Key

Alice BobI’m Alice, R2

f(K,R1)
R1, f(K,R2)

More efficient version:
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Mutual Authentication with Secret 
Key

Trudy BobI’m Alice, R2

Doesn’t 
know K so 
can’t send
f(K,R1)

R1, f(K,R2)

Trudy BobI’m Alice, R1

Now use 
f(K,R1) in 
above attempt

R3, f(K,R1)

Reflection attack:
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 Solutions:
 Separate keys for each direction/different passwords
 Requirements on R values: odd in one direction, even in the other, concatenate 

with senders’ name
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Mutual Authentication with Secret 
Key



Password/Key Guessing

 Also note, Trudy can get Bob to encrypt a value (or a several 
of values) and then try an offline attack to guess K

 Have Bob return R1 value for Alice to encrypt

Alice BobI’m Alice

f(K,R2)
R2, f(K,R1)

R1

Now Bob would have to reuse R1 in order for 
Trudy, who eavesdrops,  to be able to use 
f(K,R1)  
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Timestamps

 Same issues as before plus clock skew
 Any modification to timestamp will work

Alice BobI’m Alice, f(K,timestamp)

f(K,timestamp+1)
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 We use public key cryptography
 Prove the possession of a public key
 Usually it is based on certificates
 Very popular

Certification based
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One-way Using Public Key

Alice BobI’m Alice

R

[R]Apriv

Bob decrypts with Alice’s 
public key and verifies R 
was returned.



One-way Using Public Key

Alice BobI’m Alice

R

[R]Apriv

[R]Ax  = R signed with 
Alice’s x key, where x is 
private (priv) or public 
(pub) key

Alice BobI’m Alice

[R]Apub

R

Bob decrypts with Alice’s 
public key and verifies R 
was returned.

Alice proves to Bob 
she has her private 
key by returning R
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One-way Problems
 First case:

 Can send anything to Alice as R and get Alice to sign it
 Second case:

 Intercepted an encrypted message for Alice, send it and get 
Alice to decrypt it 
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Mutual Authentication with Public 
Keys

 Always the same issue!
◦ how to obtain/store/validate Bob’s public key

Alice BobI’m Alice, [R2]Bpub

R1

[R1]Apub, R2
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gbmod p||CertB||SigB( Alice|| gb ||ga)

Ake based on DH:
Station-to-station protocol

gamod p||CertA

SigA( Bob||ga|| gb)

K = gab
K = gab



Password-based Authenticated Key 
Exchange (PAKE)

 1992, Bellovin and Merritt
 Encrypted Key Exchange (EKE)



KEY DERIVATION



Overview

* Algorithms, key size and parameters report. ENISA– 2014 



Key derivation function

 Key Derivation Functions (KDFs) are used to derive 
cryptographic keys

1. from a source of keying material shared random strings 
(in the case of key agreement protocols) and from an 
entropy source (in the case of key generation)

2. from passwords

 KDFs act both as a randomness extractor as well as an 
expander



Deriving many keys from one

Typical scenario.     a single source key (SK) is sampled from:
• Hardware random number generator
• A key exchange protocol   (discussed later)

Need many keys to secure session:
• unidirectional keys;  multiple keys for nonce-based CBC.

Goal:   generate many keys from this one source key

SK k1,  k2,  k3,  …KDF



When source key is uniform

F:   a PRF with key space K and outputs in {0,1}n

Suppose source key SK is uniform in K

• Define Key Derivation Function (KDF) as:

CTX:   a string that uniquely identifies the application

KDF( SK, CTX, L) :=
      F(SK,  (CTX ll 0))  ll  F(SK,  (CTX ll 1))  ll  ⋯  ll F(SK,  (CTX ll L)) 



What is the purpose of CTX?

KDF( SK, CTX, L) :=
      F(SK,  (CTX ll 0))  ll  F(SK,  (CTX ll 1))  ll  ⋯  ll F(SK,  (CTX ll L)) 

Even if two apps sample same SK they get indep. keys

It’s good practice to label strings with the app. name

It serves no purpose



What if source key is not uniform?

Recall:  PRFs are pseudo random only when key is 
uniform in K
•  SK not uniform     PRF output may not look random⇒

Source key often not uniformly random:

• Key exchange protocol:   key uniform in some subset of 
K

• Hardware RNG:    may produce biased output



Extract-then-Expand paradigm

Step 1:    extract  pseudo-random key  k  from source key  
SK

step 2:   expand  k  by using it as a PRF key as before

pr
ob

SK

pr
ob

k

extractor

salt

salt:   a fixed non-secret string chosen at random



HKDF:   a KDF from HMAC

Implements the extract-then-expand paradigm:

 extract:   use      k  =  HMAC( salt,  SK )

 Then expand using HMAC as a PRF with key  k  



HKDF in TLS



Key derivation function



Password-Based KDF   (PBKDF)

Deriving keys from passwords:
 Do not use HKDF:    passwords have insufficient entropy 
 Derived keys will be vulnerable to dictionary attacks

PBKDF defenses:       salt     and a     slow hash function

Standard approach:   PKCS#5  (PBKDF1)

H(c)(pwd ll salt):     iterate hash function  c  times



Password based key derivation
Goal: derive cryptographic keys from a secret random string (passwords)
 PBKDF2

 NIST SP 800-132 
Based on any secure PRF (for instance a hash function)

 The PRF is iterated several times (at least 103, recommended 4*104)
increase the workload of dictionary attacks

 Input is the password, a salt and the desired key length
 Possible to implement dictionary attacks on ASICs or GPUs 

 Bcrypt
 Based on block cipher (Blowfish)

 Scrypt
 Since 2009. Looks more resistant so far.

 Argon2
 From 2013 to 2015 the Password Hashing Competition  (https://password-hashing.net/)

 Main security goal is that these hash functions are ‘memory hard’, it is difficult to 
speed them up with dedicated hardware 

 Another similar proposal is Blocki

https://password-hashing.net/
https://password-hashing.net/


Overview

* Algorithms, key size and parameters report. ENISA– 2014 



ECIES
 EC Integrated Encryption Scheme (ECIES)
 KEM = Key Encapsulation Mechanism
 DEM = Data Encapsulation Mechanism

 ECIES  = ECIES-KEM + DEM



ECIES
 Bob generates public/private keys (EC) DH. 
 Bob publishes  public key.

Bob
 puB prB



ECIES
 Ephemeral key pair (prA,puA) (EC)DH
 Compute common key 

K = ECDH(prA,puB)
 Compute Session Key  

K’= KDF(salt,info, K)
 Use K’ to protect confidentiality and integrity of message 

M.
 Send to Bob 

 (C, tag, puA, other aux info)

Alice



ECIES
 Compute common key 

K = ECDH(prB,puA)
 Compute Session Key  

K’= KDF(salt,info, K)
 Use K’ to verify integrity and decrypt C ot retrieve 

message M.

Bob

prB



QUANTUM KEY DISTRIBUTION



quantum cryptography



Quantum Key distribution
 Symmetric key
 It is based on quantum mechanics 
 Two physically separated parties can create and share random 

secret keys
– Allows them to verify that the key has not been 

intercepted. 

• Establish an unconditionally secure communication channel
1. Quantum Key distribution
2. Switch to one-time-pad



Basic Idea



fundamentals
 Measurement causes perturbation

• No Cloning Theorem
 An unknown quantum state CANNOT be cloned. Therefore, 

eavesdropper, Eve, cannot have the same information as 
Bob.

 Single-photon signals are secure. 

 Thus, measuring the qubit in the wrong basis destroys the 
information



Quantum communications

• Transmitting information with a single-photon

• Use a quantum property to carry information

Liner States

= "0" = |0>

= "1" = |1>



Two basis



BB84 - Set-up

• Paper by Charles Bennett and Gilles Brassard in 1984 is 
the basis for QKD protocol BB84. Prototype developed in 
1991.

• Alice
Has the ability to create qubits in two orthogonal bases

• Bob
Has the ability to measure qubits in those two bases.



BB84



BB84

Alice's Bit Sequence

0     1     0     -     0     1     1     1     1     -      1     0

-      1     -     -      0    1      -      -     1     -      1     0

Bob's Bases

Bob's Results

Key

Alice

Bob

Polarizers

Horizontal - Vertical

Diagonal (-45 , +45 ) 

H/V Basis

45  Basis



Example



Eavesdropping
• Communication interception

• Use quantum physics to force spy to introduce errors in the 
communication

• The errors are detected

?|0> |0>

Eve

BobAlice



ASSSUMPTIONS
 Source: Emits perfect single photons. (No multi-

photons)
 Channel: noisy but lossless. (No absorption in 

channel)
Detectors: Perfect detection efficiency. (100 %)
 Basis Alignment: Perfect. (Angle between X and Z 

basis is exactly 45 degrees.)

 Conclusion: QKD is secure in theory.
 (Assumptions lead to security proofs)



Other schemes
• EPR
• Uses entangled qubits sent from a central source
• Alice and Bob measure qubits randomly and independently
• After measuring, they compare measurement bases and proceed as in 

BB84
• Advantage over BB84 is that Eve can now be detected using rejected 

qubits

• B92
• Uses only two non-orthogonal states
• Each bit is either successfully 
• received or an “erasure”



Current State of Affairs

• Commercial quantum key distribution 
products exist

• Current fiber-based distance 
• record: 200 km



Current State of Affairs

• Demonstrated free-space link: 10 km



Satellite-to-ground quantum key 
distribution

 Micius satellite
 Use QKD and symmetric encyrption
 ESA signed a contract with SES Techcom S.A. (LU) to develop the Quantum 

Cryptography Telecommunication System (QUARTZ)



KEY LENGTH



Key length
• Difference between symmetric and public key cryptography
 Symmetric key: best attack (must be) exhaustive search
 Public key: more efficient attacks due to the mathematical algorithms

– Several reports exist with recommendations: (www.keylength.com)
o Lenstra and Verheul Equations (2000)
o Lenstra Updated Equations (2004)
o ECRYPT-CSA Recommendations (2018)
o NIST Recommendations (2016)
o ANSSI Recommendations (2014)
o IAD-NSA CNSA Suite (2016)
o Network Working Group RFC3766 (2004)
o BSI Recommendations (2018)



Minimum symmetric key-size in bits for 
various attackers

ECRYPT II, Yearly Report on Algorithms and Keysizes (2011-2012)



Key-size Equivalence



Security levels (symmetric 
equivalent)



Key length
• Keys are getting older (with use)
 There are time/memory/pre-processing (generic) attacks.
 Based on the birthday paradox

 Use session keys 

 There is an attack against AES-128. It has only 85-bit security
• if 243 encryptions of an (arbitrary) fixed text under different keys are available to the attacker.



Key length

• D5.4. Algorithms, Key Size and Protocols Report (2018). ECRYPT-CSA



Key usage
• Principle of key separation: the cryptographic kerys must only be used for 

their intended purpose.
 For example to use a symmetric AES key as both the key to an application 

of AES in an encryption scheme, and also for the use of AES within a MAC 
scheme

  Using an RSA private key as both a decryption key and as a key to generate 
RSA signatures.

 Use the same encryption key on a symmetric channel between Alice and 
Bob for two way communication (as opposed to two unidirectional keys).

• Such usage can often lead to unexpected system behavior.
• It must be well investigated

• It is difficult to enforce the principle



Key deletion/backup/archive
• Key backup
 Critical operation
 If you lose the key, you lose encrypted data
 Key escrow

• Key archival
 Special type of backup
 Usually a legal requirement
 Public keys to verify signatures

• Key deletion
 Data sanitization
 Not a trivial task
 Repeatedly overwriting 
 Follow standards





OTHER KEY MANAGEMENT 
RELATED ISSUES



What is the best we can hope foR
1. The primitive is solid
2. The algorithm and the protocol are secure
3. The implementation flawless

• Then, it is all about the secret keys.

• Manage the circle of life of a key
• (generate the key, establish, use, store, delete/archive)

• Much more difficult than it sounds!!



Key management

 Secure design and implementation
 We are shifting the problem
 The key can be seen as special type of data

• Secure administration of (cryptographic) keys

• Standards
• NIST Special Publication 800-57. Recommendation for key management, Part 1: General (Revision 

3). National Institute of Standards and Technology, 2012

• NIST Special Publication 800-130. A framework for designing cryptographic key management 
systems. National Institute of Standards and Technology, 2013. 

 



Key lifecycle

1. Key Generation 
2. Key Registration/Certification 
3. Key Distribution and Installation 
4. Key Storage and backup 
5. Key Use 
6. Revocation/Change 
7. Key Archive/Destruction 

 



Key storage
• Store a password, symmetric key, private part of the public-key pair.

 No storage
 In the clear
 In hardware 
 Encrypted
• Store locally
• Use a web/cloud based secret manager
 Off-line (pen and paper)



Key storage - Secure hardware
 Secure tokens (eg. Smart cards)

 Hardware Security Module (HSM)

 FIPS PUB 140-2. SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC 
MODULES 

• Four levels of security
 FIPS 140-3 was approved on March 22, 2019 and will become 

effective on September 22, 2019
 NIST maintains a DB of validated cryptographic modeules



Key storage - Key wrapping 

• Use a block cipher to encrypt a secret key.



Key storage - Secret sharing 
schemes

• Main concept:
 Produce shares from the secret
Use distributed storage for the shares
 Each share looks random (no information leakage)
Delete the secret key
Use the shares to retrieve the secret key when 

needed

• key shares



Threshold scheme
• A  (k,n) threshold scheme has the following properties:

 From the secret n shares are produced.
 Any group of k share owners can reconstruct the secret, 
 Any a group of (k-1) or less shares cannot!

• Most of the schemes are based on Shamir’s scheme.



Shamir threshold scheme
 Invented by Adi Shamir in 1979.
 It is based on the fact that k points uniquely determine a 

polynomial of degree k-1.

• The algorithm:
• Pick a random polynomial of degree k-1

• where the secret S is the constant term S=q(0)=a0, and the 
shares Si are given by

2 1
0 1 2 1( ) k

kq x a a x a x a x 
    

1 2(1), (2), , ( )nS q S q S q n  



Shamir Approach (continued)

represent each share as a point (xi,q(xi)=yi)
All arithmetic done modulo a prime number p 

(integer ring)
All the coefficients are randomly chosen from a 

uniform distribution over the integers in [0,p)      
 

• With k shares we reconstruct the polynomial 
using the Lagrange Interpolation



Example: (3,5)threshold scheme

• Using the shares S1, S2, and S4 we have 

0

1

2

5

3

7

3

5

11

n

k

S

a S

a

a

p









2( ) 5 3 7 (mod11)q x x x  

2
1

2
2

2
3

2
4

2
5

(1) 5(1) 3(1) 7 (mod11) 4

(2) 5(2) 3(2) 7 (mod11) 0

(3) 5(3) 3(3) 7 (mod11) 6

(4) 5(4) 3(4) 7 (mod11) 2

(5) 5(5) 3(5) 7 (mod11) 4

S q

S q

S q

S q

S q

    

    

    

    

    



Exercise 

1. Let H:{0,1}*→T  be a collision resistant hash function. Is the 
following hash function collision resistant?

H′(m)=H1(H2(m))
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Proof (sketch)

• Let n1<n2
• Let H′(m)=H1(H2(m)) and let’s assume that H’(m) is not collision resistant. 

Thus, there is a polynomial algorithm A that can compute a pair of 
messages m1 and m2, more efficiently than O(2n1/2), such that: 

H’(m1)=H’(m2)
Thus, it holds H1(H2(m1))=H1(H2(m2)). We distinguish two cases:
1. H2(m1)=H2(m2). Then, the algorithm A can compute collisions for H2(m), 

more efficiently than O(2n2/2). This is a contradiction.
2. H2(m1)≠H2(m2). Then,  the messages y1=H2(m1) and  y2=H2(m2) 

H1(H2(m1))=H1(H2(m2)) <=> H1(y1)=H1(y2)
are collisions for H1(m). That is that, the algorithm A can compute collisions 
for H1(m), more efficiently than O(2n1/2).  This is a contradiction.
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Proof (sketch)

• Let n1>n2.
• Our goal is to find collisions for H′(m)=H1(H2(m)) more efficiently than 

O(2n1/2).
• Let H2(m1)=H2(m2). We can find them with random trials in O(2n2/2).
• Also , H′(m1)=H1(H2(m1))= H1(H2(m2))= H′(m2). Thus, we have a collision 

for H’ more efficiently than than O(2n1/2), since n1>n2

• When n1=n2, then it is secure (the same proof as for H(H(m)))
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Key lifetime
• A key is valid (can be used) for a specified period of time. 

When that period has expired, it is either destroyed or 
archived. 

 Key compromise
 Future attacks
 Key exposure
 Flexibility (key length/key lifetime)
 Key management failures
 Key management cycles

 



Key generation/derivation

• We want to generate/compute
 asymmetric key-pairs, 
 symmetric keys,
 initialization vectors (IVs) 
 Challenge-response protocols

• Generate the key
 Hardware based source of randomness
 Software based source of randomness

• Key derivation
 From other keys
 Password based derivation functions



Key generation
• Difficult to find random sources
 Random Number/bit Generators (RNGs) or True Random Number 

Generators (TRNGs) 
 TRNG device
 special-purpose hardware (e.g. electronic circuits, quantum devices)
 post-processing (noise whitening)
 operate at low output rates
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