Cryptography
Lecture 8

Dr. Panagiotis Rizomiliotis

TOC

* Key derivation function
— HKDF

* key agreement/transfer
— Diffie Hellman
— (non)-KEM
— KEM
— Quantum Key distribution

* Key size

YV VYV

YV VYV

YV VYV

Contemporary communication
protocol

— First Phase: Authentication (sometimes mutual)
Public Key

Symmetric Key

— Second Phase: Key Establishment (master key)
Key agreement

Key distribution

— Third Phase: Data Encryption
KDF (master key)

Symmetric key encryption

TLS 1.3 (example)

Handshake

* Agree a cipher suite.

* Agree a master secret.
* Authentication using

certificate(s).

Application Data
* Use KDF to generate sessions keys

* Symmetric key encryption.
— AEAD cipher modes.

* Typically HTTP

Open Socket

Handshake

'

E Application Data

;

Alert

P Y

A

Close Socket

(OWASP presentation)

KEY AGREEMENT/TRANSFER

ToC

* Bob and Alice must agree on a common key.

* Then, they use a key derivation function to
produce several symmetric keys

Alice @_, Bob
[= [2
[l N, _hd
Encapuslation ublic Key
e Shared Key
© =5 Decapuslation

Protecting data confidentiality

» Public key encryption and decryption are expensive
computations.

» Rarely used for plaintext confidentiality protection.

» Main schemes used in practice:

KEM: Key Encapsulation Mechanism
Combine a public key encryption with key derivation functions (KDF)

Non-KEM

Just traditional public key encryption (only two options in practice):
RSA-PKCS# | vI.5
RSA-OAEP

» Symmetric key based data protection.
DEM: Data Encryption Mechanism

Protecting data confidentiality

Classification

Scheme Legacy | Future
RSA-OAEP v v
RSA-KEM v v
PSEC-KEM v v
ECIES-KEM v v
RSA-PKCS# 1 v1.5 X X

Non-kem
» RSA-PKCS# | vI.5

No modern security proof
Used in SSL/TLS protocol extensively (until vI.2)
The weak form of padding

Attacks on various cryptographic devices

» RSA-OAEP

the preferred method of using the RSA primitive to encrypt a
small message

Provably secure in the random oracle model

The hash functions used can be SHA-I for legacy applications and
SHA-2/SHA-3 for future applications

Key

Cncapsulation Mechanism (K

» RSA-KEM

Takes

a random element m and encrypts it using the RSA

The output key is computed by applying a KDF to m

Secure in the random oracle model

» PSEC-KEM

It is based on elliptic curves.

Provable secure

Based on the hardness of the (computational) DH problem

More

secure than ECIES-KEM, less efficient

» ECIES-KEM

Discrete logarithm based encryption scheme

Very popular

(1]

'l.l“l}l'HlTFIELD DIFFIE & MARTIN HELLMAN

Invented public-key 4
cryptography

Key agreement

» 1976:“New directions in Cryptography”

» Two entities agree upon a common secret over a public
channel

No pre-shared keys.

» Based on the discrete logarithm problem

The main idea - DH

Diffie-Helman Key Exchange

Alice's
Private
Key

N9

Bob's Bob's Alice's
Private Public Public
Key Key OPTIONAL: Key
@ @ CA Certifies @
Public Keys.
L~
Bob's Alice's
©< Private Public
Key Key
M

&

Implementation

» pand g are both publicly available numbers

» Users, Alice and Bob, pick private random values (when used
once are called ephemeral):

» Private Alice: a
> Private Bob: b

» They compute public values
> Public Alice: x = g2 mod p
» Public Bob:y =gt mod p

» Public values x and y are exchanged

(Ephemeral) DH

AIice x=g mod P Bob
y =g> mod p \or
) 4 »r
K:kaZ)/amodP K=kb=Xbmodp

» Algebraically it can be shown that k =k,

Users now have a symmetric secret key to encrypt
They use a KDF first...

Toy Example

Alice and Bob get public numbers
— p=23,8=9

Alice and Bob compute public values
— X =9"mod23=6561mod23 =6
— Y =9mod23=729mod 23 = 16

Alice and Bob exchange public numbers

Alice and Bob compute symmetric keys
— k,=y*mod p=16*mod 23 =9
— k,=x*modp=6® mod23=9

Alice and Bob now can talk securely!

Person-in-the-middle attack

Alice Mallory Bob

Key, = g* Key, = g

Mallory gets to listen to everything.

Solution

» AKE protocols (authentication and key establishment protocols)
Authenticate before key establishment

Literally hundreds of AKE protocols

» Authentication:
Use public key encryption (and usually certificates)

Use pre-shared keys (like passwords)

» Two main types of key establishment:
Key agreement (DH)
Key distribution/transfer (key encryption/KEM)

Authentications

» Use public key encryption (and usually certificates)

» Use pre-shared keys (like passwords or master key of the last session)

Simple Transmission (PSK)

I’'m Alice, password

@g@) OK/error
Bod

» Insecure!

» Can be easily eavesdroped

Secure simple Transmission (PSK)

Establish secure channel

—
A~ A
@g@ I’m Alice, password @W@
OK/error

—

» 20

One-way Challenge-Response

I’'m Alice -
@g@) challenge R
) ' K = password
response Z - N
Z=f(password,R)
Z=? f(password,R)
f() can be:
— encryption function — Bob just decrypts and verifies time in within allowed
skew

— hash — Bob needs to hash all times in allowable interval or Alice sends time

21

One-way Challenge-Response (PSK)

I’'m Alice

v

@g@ challenge R OIC)

) s K = shared key
response Z - N
Z=f(K,R)
Z="f(K,R)
f() can be:
— encryption function — Bob just decrypts and verifies time in within allowed
skew

— hash — Bob needs to hash all times in allowable interval or Alice sends time
— Itis better to use MAC (usually HMAC)

22

One-Way using Timestamp (PSK)

I’m Alice, f(K,timestamp)

|

c %

> Problems!?
Impersonate Alice if intercept and send message — race condition

If use same K with multiple servers, could send message to another server and
impersonate Alice

Clock skew/synchronization

» 23

2-Way Authentication

» Authentication often needed in both directions

» Server trusting user is not only concern
User must trust server

Ex. User accessing online bank account

24

Mutual Authentication with Secret
Key

I’'m Alice

e R1 0.0
~ f(K.R1) w

R2

f(K,R2)

25

Mutual Authentication with Secret
Key

More efficient version:

I’'m Alice, R2 .
>
@g 4 R1, f(K,R2)
N

f(K,R1) . Be

26

Mutual Authentication with Secret
Key

Reflection attack:

Trudy I’m Alice, R2 .

, (A~ A
Doesn’t @ . R1, f(K,R2) e
know K so)
can’t send
f(K,RT1)

Trudy I’m Alice, R1 .

Now use
f(K,R1) in @ p R3, f(K,R1)

above attempt

27

Mutual Authentication with Secret
Key
» Solutions:

Separate keys for each direction/different passwords

Requirements on R values: odd in one direction, even in the other, concatenate
with senders’ name

» 28

Password /Key Guessing

» Also note, Trudy can get Bob to encrypt a value (or a several
of values) and then try an offline attack to guess K

» Have Bob return R1 value for Alice to encrypt

I’'m Alice .
/a—5\ R1
B 0@
= R2, f(K,R1) . 'V‘
f(K,R2)

A

Now Bob would have to reuse R1 in order for
29 Trudy, who eavesdrops, to be able to use
f(K.R1)

Timestamps

I’m Alice, f(K,timestamp)

@g@‘ f(K,timestamp+1)

\4

A

» Same issues as before plus clock skew
> Any modification to timestamp will work

30

Certification based

> We use public key cryptography
» Prove the possession of a public key
» Usually it is based on certificates

» Very popular

31

One-way Using Public Key

I’'m Alice

o R Bob decrypts with Alice’s

g) “ public key and verifies R

[Rlaoriv was returned.

v

N
»

One-way Using Public Key

I’'m Alice

@@ R Bob decrypts with Alice’s

g) h\"‘ public key and verifies R

Rl was returned.

v

v

L |
g I’'m Alice

\4

Alice proves to Bob) [Rlau6
she has her private) N
key by returning R R S

[R],, = R signed with
Alice’s x key, where x is

33 private (priv) or public
(pub) key

One-way Problems

» First case:
Can send anything to Alice as R and get Alice to sign it

» Second case:

Intercepted an encrypted message for Alice, send it and get
Alice to decrypt it

34

Mutual Authentication with Public
Keys

I'm Alice, [R2],,,,
S
R1

» Always the same issue!
how to obtain/store/validate Bob’s public key

35

Ake based on DH:
Station-to-station protocol

g'mod p||CertA

—

g'mod p||CertB]|Sigy(Alice]| g|lg?)

P

Sig,(Bob||g?(| g°)

Password-based Authenticated Key
Exchange (PAKE)

» 1992, Bellovin and Merritt

» Encrypted Key Exchange (EKE)

e I

- = I
=
| @
. o
rk = hash{salt, pasaword) anc rk{gnrm d p) rk = hash(salt,password)

_ 2%
k = hash(g mod p) enc,(g?mod p), enc, (desafiol)

:k = hash(g"™ " mod p)
eng (challengel, challenge2) ;

enc(challengel)

KEY DERIVATION

Overview

ECIES
ECIES-KEM DEM
/ OCB CCM Encrypt-then-MAC EAX C\VC GCM
ECDLP Size

256-bits 512-bits

N

MAC Function IND-CPA Encryption

ANEA

HMAC EMAC CMAC CTR mode CBC mode

= \\/~

Hash Function Block Clpher

X9.63-KDF
NIST-800-108-KDF

NIST-800-56-KDF-A /B
NIST-800-56-KDF-C

SHA-256 SHA-512 SHA-3 AES—128 AES-192 AES-256

* Algorithms, key size and parameters report. ENISA- 2014

Key derivation function

» Key Derivation Functions (KDFs) are used to derive
cryptographic keys

1. from a source of keying material shared random strings
(in the case of key agreement protocols) and from an
entropy source (in the case of key generation)

2. from passwords

» KDFs act both as a randomness extractor as well as an
expander

Deriving many keys from one

Typical scenario. a single source key (SK) is sampled from:
* Hardware random number generator
* A key exchange protocol (discussed later)

Need many keys to secure session:

* unidirectional keys; multiple keys for nonce-based CBC.

Goal: generate many keys from this one source key

SK B k, k,, ks ..

When source key is uniform

F: a PRF with key space K and outputs in {0,1}"

Suppose source key SK is uniform in K

* Define Key Derivation Function (KDF) as:

« ™
KDF(SK, CTX, L) :=

F(sk, (cTXN0)) Il F(sk, (cTxn1)) I --- 1l F(sk, (CTXIIL))
N Y,

CTX: astring that uniquely identifies the application

P
KDF(SK, CTX, L) :=
F(sk, (cTXN0)) Il F(sk, (cTXxM1)) Il --- Il F(sk, (CTXNL))

A

/

What is the purpose of CTX?

Even if two apps sample same SK they get indep. keys
It’s good practice to label strings with the app. name

It serves no purpose

What if source key is not uniform?

Recall: PRFs are pseudo random only when key is
uniform in K

* SK not uniform = PRF output may not look random
Source key often not uniformly random:

* Key exchange protocol: key uniform in some subset of
K

* Hardware RNG: may produce biased output

Extract-then-Expand paradigm

Step 1: extract pseudo-random key k from source key
SK | |

/\/\ extractor

| SK \ | K
salt

salt: a fixed non-secret string chosen at random

prob
prob

step 2: expand k by using it as a PRF key as before

HKDF: a KDF from HMAC

Implements the extract-then-expand paradigm:

» extract: use k = HMAC(salt, SK)

» Then expand using HMAC as a PRF with key k

HKDF in TLS

TLS Tunnel

|
Symmetric key (eg Secret Secret
AES or ChaCha20) HKDF (HMAC ' key (K) |
SHA-256) .
@\ %, Salt passed | . =l
Salt _@l Infa s @ Info

Diffie-Hellman 3
(ECDH)

Secret (h) Secret (a)

B=bG — —— — A=ai
K=ab(® g — _I_ jt:l-(:ahﬁ‘-

- Data
"Hello" R |

Key derivation function

Primitive

Classification

Legacy

Future

Building Block

NIST-800-108-KDF (all modes)| v v |A PRF

X9.63-KDF v v" |Any hash function
NIST-800-56-KDF-A /B v v" |Any hash function
NIST-800-56-KDF-C v v’ |A MAC function

HKDF v v |HMAC based PRF

IKE-v2-KDF v v' |HMAC based PRF

TLS-v1.2-KDF v v |HMAC (SHA-2) based PRF
IKE-v1-KDF v X |HMAC based PRF

TLS-v1.1-KDF v X |HMAC (MD-5 and SHA-1) based PRF

Password-Based KDF (PBKDF)

Deriving keys from passwords:
» Do not use HKDF: passwords have insufficient entropy

» Derived keys will be vulnerable to dictionary attacks

PBKDF defenses: salt anda slow hash function

Standard approach: PKCS#5 (rexDFI)
HC(pwd Il salt): iterate hash function ¢ times

Password based key derivation

Goal: derive cryptographic keys from a secret random string (passwords)

» PBKDF2

NIST SP 800-132
Based on any secure PRF (for instance a hash function)

The PRF is iterated several times (at least 103, recommended 4*104)
increase the workload of dictionary attacks

Input is the password, a salt and the desired key length
Possible to implement dictionary attacks on ASICs or GPUs

> Bcrypt
Based on block cipher (Blowfish)
> Scrypt
Since 2009. Looks more resistant so far.
> Argon2
From 2013 to 2015 the Password Hashing Competition (/)

Main security goal is that these hash functions are ‘memory hard’, it is difficult to
speed them up with dedicated hardware

Another similar proposal is Blocki

https://password-hashing.net/
https://password-hashing.net/

Overview

ECIES

\

ECIES-KEM

/

ECDLP Size
Q

DEM

OCB CCM Encrypt-then-MAC EAX CWC GCM

N

™ MAC Function IND-CPA Encryption

ANEA

X9.63-KDF HMAC EMAC CMAC CTR mode CBC mode

NIST-800-108-KDF
NIST-800-56-KDF-A/B
NIST-800-56-KDF-C

Hash Function Block Clpher

256-bits 512-bits

SHA-256 SHA-512 SHA-3 AES—128 AES-192 AES-256

* Algorithms, key size and parameters report. ENISA- 2014

ECIES
» EC Integrated Encryption Scheme (ECIES)

.

» KEM = Key Encapsulation Mechanism
» DEM = Data Encapsulation Mechanism

» ECIES = ECIES-KEM + DEM

ECIES
» Bob generates public/private keys (EC) DH.

.

» Bob publishes public key.

Bob

™

Prs

Alice

ECIES
» Ephemeral key pair (pr,,pu,) (EC)DH

.

» Compute common key
K = ECDH(pr,,pug)
» Compute Session Key
K’= KDF(salt,info, K)

» Use K’ to protect confidentiality and integrity of message
M.

» Send to Bob
(C, tag, pu,, other aux info)

Bob m
ECIES TS %
» Compute common key
K = ECDH(prg,pu,)
» Compute Session Key
K’= KDF(salt,info, K)

» Use K’ to verify integrity and decrypt C ot retrieve
message M.

QUANTUM KEY DISTRIBUTION

guantum cryptography

-
Cryptography

involving quantum
mechanics

~

\

/N

Security against
quantum computers

>

.

Using quantum
mechanics in crypto
protocols

~

4

Quantum Key distribution

> Symmetric key
> It is based on quantum mechanics

» Two physically separated parties can create and share random
secret keys

— Allows them to verify that the key has not been
intercepted.

* Establish an unconditionally secure communication channel
1. Quantum Key distribution
2. Switch to one-time-pad

Basic Idea

Alice Bob
(the sender) _ Eve (the receiver)
plaintext (the eavesdropper) plaintext

encryption public channel decryption
algorithm (i.e. telephone or intemet) algorithm
key kiesy
quantum state quantum channel quantum state:
denerator ii.e. optical fiber or free space) detactor

Figure 1. Quantum Key Distribution,

fundamentals

» Measurement causes perturbation

No Cloning Theorem

» An unknown guantum state CANNOT be cloned. Therefore,
eavesdropper, Eve, cannot have the same information as
Bob.

» Single-photon signals are secure.

» Thus, measuring the qubit in the wrong basis destroys the
information

Quantum communications

* Transmitting information with a single-photon

* Use a quantum property to carry information

<> ="0"=|0>

II =”1"= |1>

Two basis

ol
Binary 1, Binary 0
135° 45 any %
Binary 0,
»0°

Photon Polarization

Rectilinear Basis Diagonal Basis

BB34 - Set-up

Paper by Charles Bennett and Gilles Brassard in 1984 is
the basis for QKD protocol BB84. Prototype developed in
1991.

* Alice

Has the ability to create qubits in two orthogonal bases

* Bob
Has the ability to measure qubits in those two bases.

Random
numbsr
qenerator

Bit | Polarization
vale | state
3 VT
% D ——— ——
2 0 e |
E 1|7 _
E—1—
= [} e

- - -

BB34

Diagonal
detector

Palarizing
baam splitter A1

Quarmum channel

R a1

Palarizing

.,',‘(: beam splitter
» T 1

Random

numbsr

qeneratar » Rectilinear
Q detector

BB34

Bob

H/V Basis ==
*/m 45° Basis

=T
T

@ Alice's Bit Sequence

1 1T 0 1 0 01 0 1 O

1 0
O <[x X [H <[H
0

Bob's Results !1 0 - o0 1 1 1 1 - 1 o0

Key - 1 - - 01 - - 1 - 10

Example

Alice’s bit

o110} 1 001
Alice’s basis + + X + X X X +
Alice’s polarization T — |) T X | A A —>
Bob’s basis + | X I x I x|+ | x| + 1| +
Bob’s measurement T AN || —> A | — | —
Public discussion
Shared Secretkey | () 1 0 1

Eavesdropping

Communication interception

Alice

|0><—> O =

r

<)
ﬁ 70
t J

Eve

Bob
= <> |O>

Use quantum physics to force spy to introduce errors in the

communication
The errors are detected

ASSSUMPTIONS

» Source: Emits perfect single photons. (No multi-
photons)

” Channel: noisy but lossless. (No absorption in
channel)

> Detectors: Perfect detection efficiency. (100 %)

” Basis Alignment: Perfect. (Angle between X and Z
basis is exactly 45 degrees.)

> Conclusion: QKD is secure in theory.

» (Assumptions lead to security proofs)

Other schemes

EPR
Uses entangled qubits sent from a central source
Alice and Bob measure qubits randomly and independently

After measuring, they compare measurement bases and proceed as in
BB84

Advantage over BB84 is that Eve can now be detected using rejected
qubits

B92

Uses only two non-orthogonal states 1 d b

0 ?
Each bit is either successfully 40 " N\

received or an “erasure”

Current State of Affairs

* Commercial quantum key distribution
products exist

e

- " =
! FECR 2
=
o 7

* Current fiber-based distance
* record: 200 km

Current State of Affairs

* Demonstrated free-space link: 10 km

Alice v &) ,;—;,{E, Euﬁ'é /59?

V- “H” basis | | V" *H" besls I
TS A - N
5 i LT E IF
P N) VR T

o/ g |=45°I:auls‘§

Satellite-to-ground quantum key
distribution

» Micius satellite

» Use QKD and symmetric encyrption

> ESA signed a contract with SES Techcom S.A. (LU) to develop the Quantum
Cryptography Telecommunication System (QUARTZ)

Date !
06/18/2017
06/19/2017
06/23/2017
06/26/2017

Micius — Graz, Austria
Sifted key | QBER | Final key

1361 kb

711 kb

700 kb
| 1220 kb

(23% | 103 /’

s

1.4% | 266 kb

2. 4%##103 kb
5%~ 361 kb

| Micius — Nanshan, China -
Date Siftedkey QBER Finalkey A
kb 10% S05kom . -

07/07
b N

05/06/2017

-

7600km

1.7% 398%kh.

Micius — Xinglong, China

Dt | sifted key | QBER | Final key |
06/04/20TMM279 kb | 1.2% | 61kb
06/15/2017 | 609G | 1.1% | 141kb

06/24/2017 | 848 kb ™ 1.1% | 198 kb

3)
Iy .". ~
o

KEY LENGTH

Key length

* Difference between symmetric and public key cryptography
L Symmetric key: best attack (must be) exhaustive search
L Public key: more efficient attacks due to the mathematical algorithms

— Several reports exist with recommendations: (www.keylength.com)
Lenstra and Verheul Equations (2000)
Lenstra Updated Equations (2004)
ECRYPT-CSA Recommendations (2018)
NIST Recommendations (2016)
ANSS|I Recommendations (2014)
IAD-NSA CNSA Suite (2016)
Network Working Group RFC3766 (2004)
BSI Recommendations (2018)

O O OO0 O o O O

Minimum symmetric key-size in bits for
various attackers

Attacker Budget Hardware Min security
“Hacker” 0 PC 58
< $400 PC(s)/FPGA 63
0 “Malware” 7

Small organization $10k PC(s)/FPGA 69
Medium organization $300k FPGA /ASIC 69
Large organization $10M FPGA /ASIC 78
Intelligence agency $300M ASIC 84

ECRYPT Il, Yearly Report on Algorithms and Keysizes (2011-2012)

Key-size Equivalence

—— -y —

_— - — -

Security (bits)

DLOG

EC

RSA
field size|subfield
48| 480 480 96 |96
56| 640 640 112 [112
64| 816 816/ 128 [128
80| 1248 1248 160 |160
112 2432 2432 224 (224
128 3248 3248 256 |256
160 5312 5312 320 (320
192| 7936 7936 384 |384
256|15424| 15424 512 [512

Security levels (symmetric
equivalent)

W ITHT TS N = E = ’

Comment

Security Security Protection

Level (bits)

1. 32 Attacks in “real-time” Only acceptable for
by individuals auth. tag size

2% 64 Very short-term Should not be used for
protection against confidentiality in new
small organizations systems

3. 72 Short-term protection
against medium
organizations, medium-
term protection against
small organizations

4. 80 Very short-term protection Smallest general-purpose
against agencies, long- level, < 4 years protection
term prot. against small ~ (E.g. use of 2-key 3DES,
organizations < 2%0 plaintext /ciphertexts)

5. 96 Legacy standard level 2-key 3DES restricted

to ~ 10° plaintext/ciphertexts,
~ 10 years protection

6. 112 Medium-term protection = 20 years protection
(E.g. 3-key 3DES)
7. 128 Long-term protection Good, generic application-

indep. recommendation,
~ 30 years

8. 256 “Foreseeable future” Good protection against
quantum computers unless
Shor’s algorithm applies.

ECRYPT Il, Yearly Report on Algorithms and Keysizes (2011-2012)

Key length

* Keys are getting older (with use)
v There are time/memory/pre-processing (generic) attacks.
v Based on the birthday paradox

v Use session keys

No. of keys (Data) Time Memory Pre-processing

¢ 2 o 2P
on/4 on/2 on/2 93n/4
2n/3 22n/3 2n/3 22n/3
on/2 on/2 on/2 on/2

ECRYPT I, Yearly Report on Algorithms and Keysizes (2011-2012)

U There is an attack against AES-128. It has only 85-bit security

if 243 encryptions of an (arbitrary) fixed text under different keys are available to the attacker.

Key length

k 4(N) £(q)

k_4(N) (q)

k_L(N) £q)

k_4N) £q)

k_4(N) £(q)

80 1184 142

Lenstra—Verheul 2000 [369] =

112 3808 200

128 5888 230

80 1329 160

L

112 3154 224

128 4440 256

192 20160 350

256 46752 474

enstra 2004 [366] *

192 12548 384

256 26268 512

80 1233 148

112 2448 210

128 3253 242

80 1024 160

112 2048 224

SECG 2009 [5
128 3072 256

80 1024 160

112 2048 224

128 3072 256

IETF 2004 [444] *

192 7976 367

256 15489 494

20]
192 7680 384

256 15360 512

NIST 2012 [437]

192 7680 384

256 15360 512

80 1248 160

ECRYPT?2 2012

112 2432 224

128 3248 256

[187]
102 7936 384

256 15424 512

D5.4. Algorithms, Key Size and Protocols Report (2018). ECRYPT-CSA

Key usage

* Principle of key separation: the cryptographic kerys must only be used for
their intended purpose.

» For example to use a symmetric AES key as both the key to an application
of AES in an encryption scheme, and also for the use of AES within a MAC
scheme

» Using an RSA private key as both a decryption key and as a key to generate
RSA signatures.

» Use the same encryption key on a symmetric channel between Alice and
Bob for two way communication (as opposed to two unidirectional keys).

* Such usage can often lead to unexpected system behavior.
* It must be well investigated

* |tis difficult to enforce the principle

¢ vV VvV Vv * vV Vv °*

vV V V V

Key deletion/backup/archive

Key backup

Critical operation

If you lose the key, you lose encrypted data
Key escrow

Key archival

Special type of backup

Usually a legal requirement
Public keys to verify signatures

Key deletion

Data sanitization

Not a trivial task
Repeatedly overwriting
Follow standards

OTHER KEY MANAGEMENT
RELATED ISSUES

What is the best we can hope foR

1. The primitive is solid
2. The algorithm and the protocol are secure

3. The implementation flawless

* Then, itis all about the secret keys.

* Manage the circle of life of a key

* (generate the key, establish, use, store, delete/archive)

* Much more difficult than it sounds!!

Key management

v" Secure design and implementation
v We are shifting the problem

v" The key can be seen as special type of data
* Secure administration of (cryptographic) keys

* Standards

* NIST Special Publication 800-57. Recommendation for key management, Part 1: General (Revision
3). National Institute of Standards and Technology, 2012

* NIST Special Publication 800-130. A framework for designing cryptographic key management
systems. National Institute of Standards and Technology, 2013.

N o U s W

Key lifecycle

Key Generation

Key Registration/Certification
Key Distribution and Installation
Key Storage and backup

Key Use

Revocation/Change

Key Archive/Destruction

*'VV VY

Key storage

Store a password, symmetric key, private part of the public-key pair.

No storage

In the clear

In hardware

Encrypted

Store locally

Use a web/cloud based secret manager
Off-line (pen and paper)

= L
T : > "L g e
; il I;H“ I}
RS — o

(e “ : i‘, IR: T
o - LS

— ¥

Key storage - Secure hardware

Secure tokens (eg. Smart cards)

Hardware Security Module (HSM)

FIPS PUB 140-2. SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC
MODULES

Four levels of security

FIPS 140-3 was approved on March 22, 2019 and will become
effective on September 22, 2019

NIST maintains a DB of validated cryptographic modeules

Key storage - Key wrapping

* Use a block cipher to encrypt a secret key.

Categorisation
Scheme |Legacy|Future
KW
TKW
KWP
AESKW
TDKW
AKWI1
AKW2
SIV

IR S N N NN W

N X X X X X X X

Key storage - Secret sharing
schemes

* Main concept:

» Produce shares from the secret

» Use distributed storage for the shares

» Each share looks random (no information leakage)
» Delete the secret key

» Use the shq=—-*- “*‘“ ~ -~ += secret key when
needed 3

-"E: - "‘"l! T""""‘*
> *::" ""i Tf
* key st -4

&1

Threshold scheme

* A (k,n) threshold scheme has the following properties:

v" From the secret n shares are produced.
v" Any group of k share owners can reconstruct the secret,

v" Any a group of (k-1) or less shares cannot!

* Most of the schemes are based on Shamir’s scheme.

"K
BAy |
S
W 4

>
>

Shamir threshold sche

Invented by Adi Shamir in 1979.

It is based on the fact that k points uniquely determine a
polynomial of degree k-1.

The algorithm:

Pick a random polynomial of degree k-1
q{)x) =aq,tax+a,x +---+a, x

k-1

where the secrgt S is the censtant term S=q{0)=a,, and the
shares S, are givgvén_bg 2 T q(tjsﬂ" ’ 9%2 = ?3'6”?

Shamir Approach (continued)

» represent each share as a point (x,q(x)=y,)
» All arithmetic done modulo a prime number p
(integer ring)

> All the coefficients are randomly chosen from a
uniform distribution over the mtegers in [0,p)

P(x)= Zy H

P X =X

o Withek shares wedregonstruct the polynomial--.

Using the Tagtange Thterpolation W0 %t .

Example: (3,5)threshold scheme

n=>5 g(x)=5x"+3x+7 (mod11)

k =3

S =17 S, =q(1)=51)*+3(1)+7 (modll) =4
a,=S j> S, = q(2)=5(2)* +3(2)+ 7 (mod11) =0
a =3 S, =q(3)=5(3)* +3(3)+7 (modl1) =6
a, =5 S, =q(4)=5(4)* +3(4)+7 (mod11) =2
p =11

S, =q(5)=5(5)> +3(5)+7 (mod1l) =4

P(x)=[4 37207 o GmDOe=0) L o D=y
(1-2)1-5 @2-DE-5 G-DG-2)

P(x)=[(x=2)(x=3)+4(x—1)(x-2)] (mod11) =5x" +3x+7 (mod11)
Ussiggj&hg ,sl"‘/"es S1, S2, and S4 we have

1.

Exercise

Let H:{0,1}"—>T be a collision resistant hash function. Is the
following hash function collision resistant?

H'(m)=H1(H2(m))

95

Proof (sketch)

* Letnl<n2

* Let H'(m)=H1(H2(m)) and let’s assume that H’(m) is not collision resistant.
Thus, there is a polynomial algorithm A that can compute a pair of
messages m1 and m2, more efficiently than O(2"/2), such that:

H'(m1)=H’(m2)
Thus, it holds H1(H2(m1))=H1(H2(m2)). We distinguish two cases:

1. H2(m1)=H2(m2). Then, the algorithm A can compute collisions for H2(m),
more efficiently than O(2"%2). This is a contradiction.

2. H2(m1)#H2(m?2). Then, the messages yl=H2(m1) and y2=H2(m?2)
H1(H2(m1))=H1(H2(m2)) <=> H1(y1)=H1(y2)

are collisions for H1(m). That is that, the algorithm A can compute collisions

for H1(m), more efficiently than O(2"/2). This is a contradiction.

96

Proof (sketch)

* Letnl>n2.

* Qurgoalisto find collisions for H'(m)=H1(H2(m)) more efficiently than
O(2"1/2),

* Let H2(m1)=H2(m?2). We can find them with random trials in O(2"%2).

* Also, H'(m1)=H1(H2(m1))=H1(H2(m?2))= H'(m2). Thus, we have a collision
for H more efficiently than than O(2"/?), since n1>n2

* When nl=n2, then it is secure (the same proof as for H(H(m)))

97

Key lifetime

A key is valid (can be used) for a specified period of time.
When that period has expired, it is either destroyed or
archived.

4 Key compromise

U Future attacks

4 Key exposure

U Flexibility (key length/key lifetime)
4 Key management failures

 Key management cycles

YV V V VY

Key generation/derivation

We want to generate/compute

asymmetric key-pairs,
symmetric keys,

initialization vectors (IVs)
Challenge-response protocols

Generate the key

Hardware based source of randomness
Software based source of randomness

Key derivation

From other keys
Password based derivation functions

Key generation

* Difficult to find random sources

» Random Number/bit Generators (RNGs) or True Random Number
Generators (TRNGs)

» TRNG device

» special-purpose hardware (e.g. electronic circuits, quantum devices)
» post-processing (noise whitening)

» operate at low output rates

	Cryptography Lecture 8
	TOC
	Contemporary communication protocol
	TLS 1.3 (example)
	Key agreement/Transfer
	ToC
	Protecting data confidentiality
	Protecting data confidentiality (2)
	Non-kem
	Key Encapsulation Mechanism (KEM)
	Key agreement
	The main idea - DH
	Implementation
	(Ephemeral) DH
	Toy Example
	Person-in-the-middle attack
	Solution
	Authentications
	Simple Transmission (PSK)
	Secure simple Transmission (PSK)
	One-way Challenge-Response
	One-way Challenge-Response (PSK)
	One-Way using Timestamp (PSK)
	2-Way Authentication
	Mutual Authentication with Secret Key
	Mutual Authentication with Secret Key (2)
	Mutual Authentication with Secret Key (3)
	Mutual Authentication with Secret Key (4)
	Password/Key Guessing
	Timestamps
	Certification based
	One-way Using Public Key
	One-way Using Public Key (2)
	One-way Problems
	Mutual Authentication with Public Keys
	Ake based on DH: Station-to-station protocol
	Password-based Authenticated Key Exchange (PAKE)
	Key derivation
	Overview
	Key derivation function
	Deriving many keys from one
	When source key is uniform
	Slide 43
	What if source key is not uniform?
	Extract-then-Expand paradigm
	HKDF: a KDF from HMAC
	HKDF in TLS
	Key derivation function (2)
	Password-Based KDF (PBKDF)
	Password based key derivation
	Overview (2)
	ECIES
	ECIES (2)
	ECIES (3)
	ECIES (4)
	Quantum Key distribution
	quantum cryptography
	Quantum Key distribution (2)
	Basic Idea
	fundamentals
	Quantum communications
	Two basis
	BB84 - Set-up
	BB84
	BB84 (2)
	Example
	Eavesdropping
	ASSSUMPTIONS
	Other schemes
	Current State of Affairs
	Current State of Affairs (2)
	Satellite-to-ground quantum key distribution
	Key length
	Key length (2)
	Minimum symmetric key-size in bits for various attackers
	Key-size Equivalence
	Security levels (symmetric equivalent)
	Key length (3)
	Key length (4)
	Key usage
	Key deletion/backup/archive
	Slide 82
	Other Key management related issues
	What is the best we can hope foR
	Key management
	Key lifecycle
	Key storage
	Key storage - Secure hardware
	Key storage - Key wrapping
	Key storage - Secret sharing schemes
	Threshold scheme
	Shamir threshold scheme
	Shamir Approach (continued)
	Example: (3,5)threshold scheme
	Exercise
	Proof (sketch)
	Proof (sketch) (2)
	Key lifetime
	Key generation/derivation
	Key generation

