MEDICAL IMAGE PROCESSING

GLOTSOS DIMITRIS

dimglo@uniwa.gr

Medical Image and Signal Processing Lab (MEDISP)

Department of Biomedical Engineering

University of West Attica

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ . Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- η. Hybrid Systems (PET-CT, MRI-PET)
- θ . Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ . Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- η. Hybrid Systems (PET-CT, MRI-PET)
- θ . Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Perception

Nine People

There are 9 people in the attached picture.

If you find 6, you have ordinary powers of observation

Find 7, you have above average powers of observation.

Find 8, you are very observant. Congratulate yourself!

Find 9, you are extremely observant, very intuitive, and creative. You can rival the observant powers of Sherlock Holmes!

Perception

Information Processing System

The basic model of information system for humans involves thee distinctive stages: 1.Input: The information perceived by the human senses (vision, hearing, touch, taste, smell) 2.Processing/Storage: Coding, storing, forwarding and interpreting of the information (brain, memory) 3.Output: Response (behavior)

Source: https://en.wikipedia.org/wiki/Human_brain https://www.livescience.com/60752-human-senses.html

Information Processing System

Example: Breast cancer diagnosis

1.Input: The physician reviews an x-ray mammogram (senses, information, data)

2.Processing/Storage: The visual stimulus is converted into an electrical signal that is being forward to the central processing unit, the brain. The brain compares the x-ray mammogram in question with the knowledge of other x-ray mammograms that the physician learnt from his previous experience (brain, central processing unit)

3.Output: The physician makes the necessary correlations and he/she decides whether this new x-ray mammogram has imaging findings indicative of pathology (response, outcome)

Information Processing System

1.Input: The information perceived by the human senses (vision, hearing, touch, taste, smell)

Source: http://www.biologymad.com/nervoussystem/eyenotes.htm

-senses

Cones: Color detection (6-7 million)
Rods: Photons detection (90-120 millions), more sensitive, peripheral vision, night vision

•Digital Detectors!!! 0 or 1

Information Processing System

1.Input: The information perceived by the human senses (vision, hearing, touch, taste, smell)

-Visible light (detected by the human visual system) -Light waves have amplitude (intensity) and wavelength (color)

-Light sources emit all wavelengths, however, each light source has a predominant spectrum of wavelengths giving the light source its distinct color (i.e. candle light is at 560-600nm and is perceived as yellowish)

-If the light source emits all wavelengths equally, then we have white light

-What the human visual system perceives as color is the reflection of specific wavelengths of light

Source: <u>http://www.well.ox.ac.uk/_asset/file/the-zeiss-guide-to-the-basics-of-light-microscopy.pdf</u>

Information Processing System

2. Processing/Storage: Coding, storing, forwarding and interpreting of the information (brain, memory)

Memory models

1. Senses memory: Vey short, <1sec, i.e. looking a something, when you close your eyes the image remains for a short time

2.Short Term Memory: Relatively short, <1min, i.e. you read a sentence and when you reach the end of the sentence you can still remember the begging of the sentence 3.Long Term Memory: Very long, lifetime memory. Practically endless in size. The information travels from the short term memory to the long term memory and it can be stored using the process of repetitions and correlations.

Source: https://en.wikipedia.org/wiki/Action_potential

Information Processing System

3. Output: Response (behavior)

What is a medical image

Definition:

Monitoring/recording of the geometric distribution of certain physical property

physical property: X-rays attenuation

physical property: Distribution drug labeled with radioisotope

-characteristics

•Anatomical: Static distribution of a certain physical property, Skeleton.

•Physiological/Functional: Functionality or Metabolism of organs, Glucose consumption in brain.

physical property: Ultrasound reflection

physical property: Electromagnetic signals

Visual Perception – A low contrast system

-BRIGHTNESS PERCEPTION

•The visual system may differentiate about 64 different grades of brightness – Low contrast

What is medical image processing

Definition:

Digital image processing refers to the <u>reversible</u> modification of the image in the form of a matrix of numerical values.

[Gonzalez RC, Woods RE, "Digital image processing", Prentice Hall; 2002]

Aim: Enhance, restore, extract, understand and code information

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

a. X-ray radiography

- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- η. Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Projection x-ray radiography/radiology

Brief historical survey

Year	Researcher	Accomplishment
1895	<u>Röntgen</u>	Discovery of x-rays
1896	Edwin Frost	First radiographs for medical purposes
1901	<u>Röntgen</u>	Nobel price
1902	Codman	First scientific report that x-rays may induce carcinogenesis
1913	Coolidge	X-ray tube construction

Wilhelm Conrad Roentgen: 1845 – 1923, German engineer and physicist

W.C. Routgen

Source: https://en.wikipedia.org/wiki/Wilhelm_R%C3%B6ntgen, https://en.wikipedia.org/wiki/X-ray

Projection x-ray radiography/radiology

Basic principles

Projection x-ray radiography/radiology

Image enhancement: Goal: Improve details

•Low frequency

•Basic shape-overview (no noise)

•If interested in retaining the basic information of the image, then keep low frequencies, reduce high frequencies, thus, reduce noise optical effect: blurring

Improve

Deta

visibility of

Visualize information

Contrast Adjust and optimize

Reduce

Noise

•Details + noise

•If interested in enhancing details, then keep high frequencies, reduce low frequencies, thus, increase noise—optical effect: edge enhancement

•High frequency

Projection x-ray radiography/radiology

Image enhancement: Goal: Improve details

Projection x-ray radiography/radiology

Image enhancement: Goal: Improve details

Projection x-ray radiography/radiology

Applications: Lung examinations

pathological

Projection x-ray radiography/radiology

Applications: Bone fracture examinations

Source: https://commons.wikimedia.org/wiki/File:Monteggia_Fracture.jpg

Projection x-ray radiography/radiology

Applications: Bone fracture examinations

Source: Offieach et al (Clinical Radiology) 2006

Projection x-ray radiography/radiology

Applications: Bone composition

Πηγές: https://commons.wikimedia.org/wiki/File:Morbus Fabry DXA 01.jpg, https://en.wikipedia.org/wiki/Dualenergy X-ray absorptiometry

Projection x-ray radiography/radiology

Applications: Teeth examination

Πηγές: https://www.radiologyinfo.org/en/info.cfm?pg=panoramic -xray, https://commons.wikimedia.org/wiki/File:Xray of all 32 human teeth.jpg

Projection x-ray radiography/radiology

Applications: Soft tissues

Πηγές: <u>https://en.wikipedia.org/wiki/Abdominal_x-ray</u>, <u>https://www.radiologyinfo.org/en/info.cfm?pg=abdominr</u> <u>ad</u>

Projection x-ray radiography/radiology

Applications: Pyelography

Πηγές: https://en.wikipedia.org/wiki/Intravenous_pyelogram, https://medlineplus.gov/ency/imagepages/19245.htm

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

a. X-ray radiography

β. X-ray mammography

- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- **η.** Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Mammography (x-ray)

Brief historical survey

Year	Researcher	Accomplishment
1913	Albert Salomon	He studies 3000 mammograms, recognizes the need and the contribution of x-ray radiography in breast cancer detection
1949	Raul Leborgne	He proposes breast compression for better imaging quality
1966		Presentation of the first system designed only for mammography
1990s		Digital mammography, less dose, higher imaging quality

Albert Salomon: 1883 – 1976, German surgeon

Source: https://en.wikipedia.org/wiki/Albert_Salomon_(surgeon)

Mammography (x-ray)

Basic principles

Πηγές: https://www.cancer.gov/publications/dictionaries/cancerterms/def/mammogram, https://bnmedical.com/digital-andanalog-mammography-machines-advantages-anddisadvantages/

Mammography (x-ray)

Contrast Enhancement: Improve the contrast between region of interest and background

Original Image				
7	4	5	6	
1	4	3	5	
5	3	2	1	
4	3	3	5	
			\overline{V}	

Histogram modification with histogram equalization: redistribution of image tones in such a way that each tone will appear with the same frequency at the final image

Mammography (x-ray)

Contrast Enhancement: Improve the contrast between region of interest and background

Original Image				
7	4	5	6	
1	4	3	5	
5	3	2	1	
4	3	3	5	
			V	7

Histogram modification with histogram equalization: redistribution of image tones in such a way that each tone will appear with the same frequency at the final image

Enhanced Image				
	7	3	5	7
	0	4	1	5
	6	2	1	0
	4	2	3	6
\square				
Visualize information				
prove Reduce				
ib	ility of	1/2-1	-	Noise

Contrast

Adjust and optimize

Mammography (x-ray)

Applications: Normal, benign and malignant breasts

Source: The Digital Database for Screening Mammography, Michael Heath, Kevin Bowyer, Daniel Kopans, Richard Moore and W. Philip Kegelmeyer, in Proceedings of the Fifth International Workshop on Digital Mammography, M.J. YAfe, ed., 212-218, Medical Physics Publishing, 2001. ISBN 1-930524-00-5.

Mammography (x-ray)

Applications: Mass detection

Source: Sakellaropoulos et al, British Journal of Radiology, 2000

Mammography (x-ray)

Applications: Micro calcifications detection

Mammography (x-ray)

Applications: Micro calcifications detection

Source: Sakellaropoulos et al, British Journal of Radiology, 2000

MAMMOGRAPHY

Mammography (x-ray)

MICROCALCIFICATIONS DETECTION

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography

γ. X-ray Computed Tomography (CT)

- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- **η.** Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Computed Tomography (x-ray)

Brief historical survey

Year	Researcher	Accomplishment
1895	<u>Röntgen</u>	X-ray discovery
1896	Edwin Frost	First radiographies on film
1936	Turing	Turring Machine, a hypothetical computer
1943	Tommy Flowers	Colossus (a machine for decoding encrypted messages of Germans during the 2 nd world war)
1946	John Mauchly and J. Presper Eckert	ENIAC (Electronic Numerical Integrator And Computer), 50 tones, 1800 square meters!!!
1965	Pier Giorgio Perotto	Olivetti, First personal computer, Programma 101, 3200 dollars, NASA uses this computer for the expedition on the moon, 1969

Πηγές: https://en.wikipedia.org/wiki/Atanasoff%E2%80%93Berry_computer https://el.wikipedia.org/wiki/ENIAC, http://www.impactscan.org/CThistory.htm , https://en.wikipedia.org/wiki/Programma_101

Computed Tomography (x-ray)

Brief historical survey

Year	Researcher	Accomplishment
1963, 1968	Cormack, Hounsfield	First experimental designs of computed tomography

Computed Tomography (x-ray)

Brief historical survey

Year	Researcher	Accomplishment
1971		First installation of CT unit in a hospital, London, UK
1972		First clinical scan, patient with suspected brain lession

Computed Tomography (x-ray)

Brief historical survey

Year	Researcher	Accomplishment	
1979	Cormack, Hounsfield	Nobel price	
TIN11D''		Heurofield: 1010	2004 English Electrical

The Nobel Prize in Physiology or Medicine 1979

Hounsfield: 1919 – 2004, English Electrical Engineer

Cormack: 1924 – 1998, South African physicist

Allan M. Cormack Prize share: 1/2

Godfrey N. Hounsfield Prize share: 1/2

The Nobel Prize in Physiology or Medicine 1979 was awarded jointly to Allan M. Cormack and Godfrey N. Hounsfield *"for the development of computer assisted tomography"*

Source: https://www.nobelprize.org/nobel_prizes/medicine/laureates/1979/

Computed Tomography (x-ray)

Basic principles

Source: https://en.wikipedia.org/wiki/X-ray_machine

Computed Tomography (x-ray)

Image Visualization: Goal: Transform Numbers to Image

0	0	255	255	128	100	255	0	0	0
0	255	120	123	130	179	130	200	0	0
150	255	90	140	158	178	150	200	255	0
140	255	110	120	137	120	138	180	255	0
160	255	100	130	120	190	130	156	255	130
0	40	255	255	130	170	160	140	255	0
0	0	50	255	255	255	255	255	0	0
0	0	60	255	255	255	255	0	0	0

Computed Tomography (x-ray)

Image Visualization: Goal: Transform Numbers to Image

Hounsfield scale

The range of tones between black and white seen on the picture can be restricted to a very small part of the scale. This "window" can be raised or lowered according to the absorption value of the material we wish to compare: for example, it must be raised to see the tissue of the heart or lowered to see detail within the air of the lung. The sensitivity can be increased by reducing the "window" width, where the absorption difference between the liver and other organs can be more clearly differentiated.

Computed Tomography (x-ray)

Image Visualization: Intensity Windowing Simple Window

REGION 1 : If $I_x < WS$ then $I_y = y_1$ REGION 2 : If $WS <= I_x <= WE$ then $\frac{WE - WS}{I_x - WS} = \frac{y_2 - y_1}{I_y - y_1}$ REGION 3 : If $I_x > WE$ then $I_y = y_2$

> WW (Window Width) WL (Window Level) WS (Window Start) WE (Window End) $WS = WL - \frac{WW}{2}$ Implies $WE = WL + \frac{WW}{2}$

Computed Tomography (x-ray)

Computed Tomography (x-ray)

Image Visualization: Intensity Windowing Applications: Brain

Linear display

Computed Tomography (x-ray)

Image Visualization: Intensity Windowing Applications: Lungs

Source: Source: LM Fayad et al., Chest CT Window Settings With Multiscale Adaptive Histogram Equalization: Pilot Study, Radiology 223 (3), 845-852. 6 2002

Computed Tomography (x-ray)

Applications: Soft tissues

Computed Tomography (x-ray)

Applications: Soft tissues (fatty liver)

Normal Liver

Fatty Liver

- At enhanced CT, the comparison of liver and spleen attenuation value is not reliable.
- Fatty liver can be diagnosed at contrastenhanced CT if absolute attenuation is less than 40 HU, but this threshold has limited sensitivity.

Computed Tomography (x-ray)

Applications: Soft tissues (stone in kidney)

Computed Tomography (x-ray)

Applications: Vessel studies

Computed Tomography (x-ray)

Applications: Brain hemorrhage

Computed Tomography (x-ray)

Applications: Brain cancer

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)

δ. Ultrasonography

- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- **η.** Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Ultrasonography

Brief historical survey

Year	Researcher	Accomplishment
1936	Turing	Turring Machine, a hypothetical machine that could perform automatically calculations
1942	John Vincent Atanasoff and Clifford Berry	Atanasoff-Berry Computer (ABC), a computer able to solve linear equations
1942	Karl Dussik	Fist ultrasound system used for imaging of brain cancer

Karl Dussik: 1908 – 1968, Austrian neurologist and psychiatrist

Karl Theo (Theodore) Dussik 1908 - 1968

Dussik and his ultrasonic apparatus in 1946

Ultrasonography

Basic principles

Ultrasonography

Image enhancement: Goal: Reduce noise

•Low frequency

Improve

Deta

visibility of

•Basic shape-overview (no noise)

•If interested in retaining the basic information of the image, then keep low frequencies, reduce high frequencies, thus, reduce noise optical effect: blurring

•Details + noise

•If interested in enhancing details, then keep high frequencies, reduce low frequencies, thus, increase noise—optical effect: edge enhancement

•High frequency

Visualize information

Reduce

Noise

Transformation

Ultrasonography

Image enhancement: Goal: Reduce noise

STEP 1: columns

STEP 2:

columns

Original Image

30	31	12	9
17	12	25	10
12	8	17	9
31	12	26	22
			\square

Smooth out variations

3x3 median filter	
TEP 1: Matrix scan rows 1:3, olumns 1:3 30 31 12 9 17 12 25 10 12 8 17 9 31 12 26 22	30 31 12 17 12 25 12 8 17 SORT: 8 12 12 12
TEP 2: Matrix scan rows 1:3, olumns 2:4 30 31 12 9 17 12 25 10 12 8 17 9 31 12 26 22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Enhanced Image			
30	31	12	9
17	17	12	10
12	17	12	9
31	12	26	22
			r

Ultrasonography

Image enhancement: Goal: Reduce noise

Original Image

30	31	12	9
17	12	25	10
12	8	17	9
31	12	26	22
			\square

Smooth out variations

Transformation 3x3 median filter STEP 3: Matrix scan rows 2:4, columns 1:3 12 25 17 12 25 30 31 12 9 17 12 25 10 12 8 17 → 12 **17** 17 17 31 26 31 12 26 12 8 17 9 12 31 12 26 22 SORT: 8 12 12 12 17 17 25 26 31 X3=17 STEP 4: Matrix scan rows 2:4, columns 2:4 12 25 10 12 25 10 30 31 12 9 25 10 17 12 8 17 9 → 8 **12** 9 12 26 22 12 26 22 12 8 17 9 22 31 12 26 SORT: 8 9 10 12 12 17 22 25 26 X4=12

Enł	nance	d Ima	age
30	31	12	9
17	17	12	10
12	17	12	9
31	12	26	22

Ultrasonography

DENOISING - LOW PASS

Original image

Πηγές: <u>https://www.lpi.tel.uva.es/node/510</u>

Denoised image

Ultrasonography

Applications: Thyroid

normal

Πηγές: http://www.radiologyinfo.org/en/photocat/gallery3.Cm?pid=1&image =gen-us-thyroid.jpg&pg=us-thyroid

Ultrasonography

Applications: Vessel studies

Source: https://en.wikipedia.org/wiki/Medical_ultrasound

Atheromatic plaques

Ultrasonography

Applications: Vessel studies (triplex)

Πηγές: http://www.ultrasoundpaedia.com/normal-prostate/, http://epmonthly.com/article/second-chance-on-bladder-ultrasound/

Ultrasonography

Applications: Prostate cancer

Πηγές: http://www.ultrasoundpaedia.com/normal-prostate/, http://epmonthly.com/article/second-chance-on-bladder-ultrasound/

Ultrasonography

Applications: Breast cancer

Non ionizing radiation

Safe and economical examination

Source: Sidiropoulos et al. Multimodality GPU-based computerassisted diagnosis of breast cancer using ultrasound and digital mammography images (2013) International Journal of Computer Assisted Radiology and Surgery, 8 (4), pp. 547-560.

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography

ε. Nuclear Magnetic Resonance Imaging (MRI)

στ. Scintigraphy (Nuclear Medicine – SPECT, PET gamma camera)

- ζ. Thermography
- **η.** Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Nuclear Magnetic Resonance Imaging (MRI)

Brief historical survey

Year	Researcher	Accomplishment
1946	Bloch, Purcell	First researchers that studied the phenomena of nuclear magnetic resonance imaging
1952	Bloch, Purcell	Nobel price
1971	Damadian	He showed that NMRI can be used to discriminate normal from cancerous tissues
1977		First application with humans
2003	Lauterbur, Mansfield	Nobel price

Raymond Damadian: 1936 – , American physician

Paul Christian Lauterbur: 1929 – 2007, American chemist

Peter Mansfield: 1933 – 2017, English physicist

Nuclear Magnetic Resonance Imaging (MRI)

Basic principles

Source: http://www.iambiomed.com/equipments/mri.php,

Nuclear Magnetic Resonance Imaging (MRI)

Image Segmentation: Define the borders of the region of interest

Original Image					
100	128	110	90		
128	210	220	240		
90	214	210	180		
90	200	64	30		
			\square		

- Fast and effective
- Define a value (the threshold)
- All pixels with value greater (or lower) than the threshold are marked with 1 (region of interest), whereas all remaining values are marked with 0 (background regions)

Segmented Image					
0	0	0	0		
0	1	1	1		
0	1	1	1		
0	1	0	0		

Nuclear Magnetic Resonance Imaging (MRI)

Applications: Soft tissues

Source: Roel G.J. Kierkels, Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer, International Journal of Radiation Oncology*Biology*Physics, 77(2), 400-408, 2010
Nuclear Magnetic Resonance Imaging (MRI)

Applications: Bones, knee

Nuclear Magnetic Resonance Imaging (MRI)

Applications: Brain cancer

Nuclear Magnetic Resonance Imaging (MRI)

Applications: Spinal cord, neck

Nuclear Magnetic Resonance Imaging (MRI)

Applications: Vessel studies

Nuclear Magnetic Resonance Imaging (MRI)

Applications: Mammography

Nuclear Magnetic Resonance Imaging (MRI)

Applications: Heart

Source: https://en.wikipedia.org/wiki/Cardiac_magnetic_resonance_imaging

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)

от. Scintigraphy (Nuclear Medicine – SPECT, PET gamma camera)

- ζ. Thermography
- **η.** Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Nuclear medicine

Brief historical survey

Year	Researcher	Accomplishment
1896	Henri Bequerel	Experiments with Uranium
1898	Marie Skłodowska Curie	Discovery of Polonium and Radium
1903	Bequerel + Marie Curie	Nobel price
1934	Frédéric Joliot-Curie και Irène Joliot-Curie	Artificial production of 30P
1935	Hevesy	He performed experiments with living organism
1957	Hal Anger	First gamma camera

Πηγές: <u>https://en.wikipedia.org/wiki/Marie_Curie,</u> <u>https://en.wikipedia.org/wiki/Henri_Becquerel</u> Marie Skłodowska Curie : 1867 – 1934, Polish Physicist and chemist

Henri Becquerel: 1852 – 1908, French Physicist

Nuclear medicine

Basic principles (gamma camera)

Gamma camera SPECT PET

Nuclear medicine

Applications: Bones

Nuclear medicine

Applications: Thyroid

Nuclear medicine

Applications: Cardiac studies

Source:

https://www.google.gr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjZ_LOdhZfaAhXDKVAKHdLTCjcQjhx6BAgAEAM&url=http s%3A%2F%2Fcommons.wikimedia.org%2Fwiki%2FFile%3ACardiac_nuclear_medicine_scans_comparing_attenuation_correction.jpg&psig=AOv Vaw2wbv1BmCdduCOL8jo9Vh_q&ust=1522602106628139

Nuclear medicine

Applications: Breast, soft tissues

Nuclear medicine

Applications: Brain cancer

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)

ζ. Thermography

- **η.** Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Infrared imaging

Brief historical survey

Year	Researcher	Accomplishment		
1595	Gallileo Gallilei	Discovery of the thermometer		
1871	Carl Wunderlich	Discovery of medical thermometer		
1800s	William Herschel	He discovers a part of light spectrum that corresponds to thermal radiation		
1929	UK	Construction of thermal camera for military purposes		
1940s	Horvath and Hollander	Utilization of temperature for medical purposes		
1959	Pyroscan	First examination of thermography for joints		
Source:				

https://academic.oup.com/rheumatology/article/43/6/800/1784527

Infrared imaging

Basic principles

Source: https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/nightvision2.htm

Infrared imaging

Applications: Mammography

Infrared imaging

Applications: Vessel investigation

Infrared imaging

Applications: Diabetes

Source: https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/nightvision2.htm

Infrared imaging

Applications: Spinal cord

Source: https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/nightvision2.htm

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- **η. Hybrid Systems (PET-CT, MRI-PET)**
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Anatomy (Morphology) + Functionality (Metabolism)

Brief historical survey

Year	Researcher	Accomplishment
1999	Townsend, Nutt	First hybrid PET-CT

Source: http://www.mdanderson.org/education-and-research/departments-programs-and-labs/labs/pet-development-laboratory/research/micro-pet-ct-camera/index.html

Anatomy (Morphology) + Functionality (Metabolism)

PET-CT

1. Quick body scan to specify region of interest

2.Thorough CT scan

3.PET scan

4.Registration and fusion of CT and PET images

Anatomy (Morphology) + Functionality (Metabolism) -PET-CT applications:

•Oncology

- PET/CT improves sensitivity in staging of cancer with 84% accuracy against 63-64% accuracy when using only PET or only CT CT (Antoch et al. (2004))
- PET/CT provides about 50% more information thatn using only PET or only CT (BarShalom et al. (2003)), something that changes treatment planning in 14% of patients included in the study
- PET/CT contributes in optimal treatment radiotherapy planning (Herrmann (2005);Scarfone et al. (2004))

Anatomy (Morphology) + Functionality (Metabolism)

PET-MRI

-Sometimes CT doesn't obtain sufficient contrast for soft tissues even though contrast agents might be utilized

-The necessary dose is high for CT

-The significant advantage of PET/CT is when imaging lungs and bones

-For soft tissues (i.e. brain, vital organs), PET/MRI has excellent resolution and contrast

-MRI does not use ionizing radiation

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Brain

Source: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101722/

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Brain

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Soft tissues

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Soft tissues

Source: <u>http://www.intechopen.com/books/inflammatory-bowel-disease/the-imaging-of-inflammatory-bowel-disease-current-concepts-and-future-directions</u>

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Soft tissues (intestines)

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Lung

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Cardiac studies

Anatomy (Morphology) + Functionality (Metabolism)

Applications: Mammography

Source: <u>http://ipelsdf1.lsdf.kit.edu/index.php/nav-pro-projects/nav-pro-act-mbir</u>

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ. Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- **η.** Hybrid Systems (PET-CT, MRI-PET)
- **θ. Microscopy**

3. Decision Support Systems

4. Case study: Early detection of melanoma:

MICROSCOPY

Tissues, cells, proteins, genes

Basic principles

Year	Researcher	Accomplishment
1670	Robert Hooke	Presents a study for the investigation of seemingly invisible objects. First time reference to the work 'cell'
Oil Lamp	Eyep	Robert Hooke : 1635 – 1703, English philosopher, architect, scientist
	Flask	-Μικρό (Micro-small)
	Focusing S Objective	-Σκοπώ (Scope-to visually observe, to examine, to investigate)
Specim Holde	en Hooke N r (circ	Microscope a 1670)
Tissues, cells, proteins, genes

Basic principles

Tissues, cells, proteins, genes

Deconvolution: Model sources of image degradation and apply an inverse process to remove them

•Improve visual presentation of the image + prepare image for segmentation

•Why the image has poor quality? Why we need to enhance the image?

Degradation model

Tissues, cells, proteins, genes

Deconvolution: Model sources of image degradation and apply an inverse process to remove them

After 3D **Raw images** deconvolution

Source: https://www.sccp.sc.edu/Microscop y Flow Cytometry Core Facilities

Tissues, cells, proteins, genes

Applications: Histology

Stomach wall

Skin

Πηγές: http://www.nikon.com/products/instruments/resources/tech/guide/overview/index_04.htm , http://micro.magnet.fsu.edu/primer/anatomy/brightfieldgallery/plantarskin10xlarge.html

Tissues, cells, proteins, genes

Applications: Histology

Mouse kidney

Neural cells

Πηγές: http://www.nikon.com/products/instruments/resources/tech/guide/overview/index_04.htm, http://www.piercenet.com/method/fluorescent-probes

Tissues, cells, proteins, genes

Applications: Ophthalmology

Edema in a diabetic patient

Source: http://diabetesmanager.pbworks.com/w/page/17680181/Diabetic%20Retinopathy

Tissues, cells, proteins, genes

Applications: Uterus cancer

Tissues, cells, proteins, genes

Applications: Electronic microscope

Blood cells

Source: http://www.nature.com/nnano/journal/v6/n4/fig_tab/nnano.2011.55_F1.html

Tissues, cells, proteins, genes

Applications: Study of genes and proteins (microarrays)

(d)

Tissues, cells, proteins, genes

Applications: Study of biomarkers (proteomics)

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ . Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- η. Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Second Opinion – Standardization - Automation

Why decision support systems?

1/ Improving medical decision making (accuracy, intra, inter observer variability)

2/ Automation, requirement to investigate at the same time Cite this as: BMJ 2016;353:12139 hundreds of different parameters

3/ Standardization

Medical errors can be as high as 15%, Graber, The incidence of diagnostic error in medicine, BMJ Qual Saf 2013

Medical errors comprise the 3rd biggest death factor in USA (Medical error—the third leading cause of death in the US, BMJ 2016;)

Decision support systems have been shown to improve medical decision accuracy by 10-20% (Brown, David G. 2001, Kunio Doi, 2007, Ayman El-Baz, 2013)

Second Opinion – Standardization - Automation

Brief historical survey

Year	Researcher	Accomplishment
1936	Turing	Turring Machine, a hypothetical computer
1943	Tommy Flowers	Colossus (a machine for decoding encrypted messages of Germans during the 2 nd world war)
1954	Nash	He expresses the idea that computers might be used as second opinion tools in medicine
1959	Ledley	Proposes a mathematical model that could be applied in diagnosis
1961	Warner	Proposes a mathematical model that could be applied in cardiac studies
1970	University of Pittsburgh	INTERNIST I, maybe the first integrated decision support system

Second Opinion – Standardization - Automation

Basic principles

Original Image

Image enhancement **Boundary detection**

Diagnosis, prognosis, treatment planning, ...

Applications: Early detection of melanoma

Source: S. A. Kostopoulos, P. A. Asvestas, I. K. Kalatzis, G. C. Sakellaropoulos, Th. H. Sakkis, D. A. Cavouras, D. T. Glotsos, Adaptable Pattern Recognition System for discriminating Melanocytic Nevi from Malignant Melanomas using plain photography images from different image databases., International Journal of Medical Informatics, 2017

Diagnosis, prognosis, treatment planning, ...

Applications: Early detection of melanoma

mole to be characterized

DSS assessment: probably melanoma

Source: S. A. Kostopoulos, P. A. Asvestas, I. K. Kalatzis, G. C. Sakellaropoulos, Th. H. Sakkis, D. A. Cavouras, D. T. Glotsos, Adaptable Pattern Recognition System for discriminating Melanocytic Nevi from Malignant Melanomas using plain photography images from different image databases., International Journal of Medical Informatics, 2017

Diagnosis, prognosis, treatment planning, ...

Applications: Early detection of melanoma

Diagnosis, prognosis, treatment planning, ...

Applications: Breast cancer

Source: Sidiropoulos et al. Multimodality GPU-based computer-assisted diagnosis of breast cancer using ultrasound and digital mammography images (2013) International Journal of Computer Assisted Radiology and Surgery, 8 (4), pp. 547-560.

Diagnosis, prognosis, treatment planning, ...

Applications: Malignancy grading in histopathology

Πηγές: Glotsos, D., Kalatzis, I., Spyridonos, P., Kostopoulos, S., Daskalakis, A., Athanasiadis, E., Ravazoula, P., Nikiforidis, G., Cavouras, D. Improving accuracy in astrocytomas grading by integrating a robust least squares mapping driven support vector machine classifier into a two level grade classification scheme (2008) Computer Methods and Programs in Biomedicine, 90 (3), pp. 251-261. Kostopoulos, S., Glotsos, D., Cavouras, D., Daskalakis, A., Kalatzis, I., Georgiadis, P., Bougioukos, P., Ravazoula, P., Nikiforidis, G.Computer-based association of the texture of expressed estrogen receptor nuclei with histologic grade using immunohistochemicallystained breast carcinomas (2009) Analytical and Quantitative Cytology and Histology, 31 (4), pp. 187-196.

Diagnosis, prognosis, treatment planning, ...

Applications: Localization of atheromatic plaques

Source: N. Piliouras, I. Kalatzis, P. Theocharakis, N. Dimitropoulos, and D. Cavouras, "Development of the Probabilistic Neural Network - Cubic Least Squares Mapping (PNN-LSM3) classifier to assess carotid plaque's risk", Pattern Recognition Letters, Vol. 25, No 2, pp. 249-258, January 2004.

Diagnosis, prognosis, treatment planning, ...

Applications: Risk evaluation of thyroid nodules

Source: Tsantis S., Glotsos D., Kalatzis I., Dimitropoulos N., Nikiforidis G., Cavouras D. "Automatic Contour Delineation of Thyroid Nodules in Ultrasound Images Employing the Wavelet Transform Modulus-Maxima Chains", 1st International Conference "From Scientific Computing to Computational Engineering" (1st IC-SCCE), Athens, Greece, September 18-10, 2004.

Diagnosis, prognosis, treatment planning, ...

Applications: Discriminating patients with diabetes

Source: Kalatzis, D. Pappas, N. Piliouras, and D. Cavouras, "Support Vector Machines Based Analysis of Brain SPECT Images for Determining Cerebral Abnormalities in Asymptomatic Diabetic Patients", Medical Informatics and the Internet in Medicine, Vol. 28, No 3, pp. 221-230, September 2003.

Figure 3. "Standard deviation-Entropy' plots (normalized values) and decision boundaries drawn by (a) the LSMD classifier and (b) the SVM classifier, for the ROI corresponding to the right occipital lobule.

Diagnosis, prognosis, treatment planning, ...

Applications: Commercial packages

	Indicative commercial software packages	Pathology
1	R2 Image Checker	Breast cancer, FDA Approval-First FDA approved system
2	CADX (qualia)	Breast cancer, FDA Approval
3	Kodak	Breast cancer, FDA Approval
4	SecondLook® Digital	Breast cancer
5	Advantage ALA, GE, v7.4.63; Extended Brilliance Workspace, Philips, EBW v3.0; Lungcare I, Siemens, Somaris 5 VB 10A-W; Lungcare II, Siemens, Somaris 5 VE31H; OncoTreat, MEVIS v1.6; Vitrea, Vital images v3.8.1	Lung cancer

Diagnosis, prognosis, treatment planning, ...

Applications: Breast cancer

Significant increase in detection rate for all reader types No significant difference in detection rate between reader types

Source: Brown et al, Computeraided Lung Nodule Detection in CT, 2005

LECTURE CONTENTS

1. Introduction

2. Digital Imaging Systems

- a. X-ray radiography
- β. X-ray mammography
- γ. X-ray Computed Tomography (CT)
- δ . Ultrasonography
- ε. Nuclear Magnetic Resonance Imaging (MRI)
- στ. Scintigraphy (Nuclear Medicine SPECT, PET gamma camera)
- ζ. Thermography
- η. Hybrid Systems (PET-CT, MRI-PET)
- θ. Microscopy

3. Decision Support Systems

4. Case study: Early detection of melanoma:

Decision Support System Workflow

MATERIAL: DERMOSCOPY + PLAIN PHOTOGRAPHY IMAGES

- 44 dysplastic (clark's nevi) and 44 malignant melanoma lesions
- dermatology database Dermnet, <u>www.dermnet.com</u>

atypical nevi

melanoma

METHODS: IMAGE PRE-PROCESSING

METHODS: IMAGE SEGMENTATION

Segmentation:

a/ separate brighter from darker pixels, Otsu threshold

- b/ elimination of stray pixels outside and inside the mole's region
- c/ morphological opening/closing for smoothing of boundaries
- d/ edge-detection Roberts filter

e/ gradient flow vector for final segmentation

METHODS: FEATURE EXTRACTION

Feature calculations:

- ■i/ textural feature
- ■ii/ morphological features
- ■iii/ symmetry features
- ■iv/ color features

METHODS: PATTERN RECOGNITION SYSTEM

PATTERN RECOGNITION

- PNN classifier
- Exhaustive search
- Leave-one-out
- ECV

IMPLEMENTATION

 Design on GPU card (GeForce 580GTX) using CUDA programming framework and C++ programming language

0.4

0.2

Π

Ω

....

1 2

3

5

Color bins

6 7

4

1/ Decision support based on ABCD criteria

Mole's Color Analysis

ABCD diagn: suspicious for melanoma

2/ Decision support based on correlation of images

mole to be characterized

similar melanoma

similar melanoma

similar melanoma

3-MI-matching diagn: probably melanoma

3/ Decision support based on nearest neighbors

mole to be characterized

similar melanoma

similar melanoma

similar melanoma

3-NN-matching diagn: probably melanoma

4/ Decision support based on pattern recognition

mole to be characterized

Benign Vs Malignant Moles

SD

DSS assessment: probably melanoma

1/ Decision support based on ABCD criteria

CASE 2

Mole's Color Analysis

6

2

ABCD diagn: propably benign mole
2/ Decision support based on correlation of images

similar melanoma

similar melanoma

similar melanoma

3-MI-matching diagn: probably melanoma

3/ Decision support based on nearest neighbors

mole to be characterized

similar melanoma

similar melanoma

similar benign

3-NN-matching diagn: probably melanoma

4/ Decision support based on pattern recognition

mole to be characterized

Benign Vs Malignant Moles

DSS assessment: probably melanoma

CASE 2

MARK1 Application – Physician	MARKI		
R MARKI		\$	
NAVICATION Dashboard Reguests Patients		Send for Analysis	
€ 2015 - MARKI EU PROJECT	cropped Image	Cenerate Report	
	ABCDE Criteria	Color Descriptor	
	Asymmetry: 1 Border Irregular: 0 Color Variegated: 1 Diameter Above 6: 1 Evolving: 0	Mean Red: 0.6985 Std Red: 0.6055 Mean Green: 0.5683 Std Green: 0.0861 Mean Blue: 0.3268	148
© 2015 - MARKI EU PROJECT		Std Blue: 0.1386	

MARK1 Application – Patie	<u>nt</u> M&RK(1)	
► 14:36	■ ▼ 1 4:37	► ▼ ↓ ↓ 14:37
← Physicians	← Images	← Reports
2 physicians available!	Available Images	Available Reports
Emerald Physician Dermatologist 7 Imber Street, 6th Floor, Petach Tikva, Israel	2015-07-05 10:29:27 Sent to: George Papadopoulos Dx Pending	2015-06-22 10:00:30 To: George Papadopoulos
George Papadopoulos Dermatologist Ermou 123, Athens, Greece	2015-07-03 21:49:34 Sent to: George Papadopoulos	
	2015-07-01 18:05:41 Sent to: George Papadopoulos	
	2015-07-01 17:17:28 Sent to: George Papadopoulos Dx Pending	
	2015-06-29 11:17:11 Sent to: George Papadopoulos	

MÅRK

MARK1 web site: http://medisp.bme.teiath.gr/mark1/

Staff:

ISP LAB	HOME MARK1 - RESEARCH - EDUCATION - FUNE	DED PROJECTS - PEOPLE ALUMNI LINKS
DICAL IMAGE & NAL PROCESSING Department of		
nedical Engineering – . of Athens	HOME	NEWS & EVENTS
NTACT	Welcome to Medical Image & Signal Processing (MED.I.S.P.) Lab.	There are no upcoming events at this time.
ENTS		
	Medical Image and Signal Processing (MEDISP) Lab is part of the	
	Department of Biomedical Engineering of the Technological Educa-	
IN	tional Institution (TEI) of Athens, Greece, and it is dedicated to re-	
in	search and education in the areas of:	
	 Medical Signal and Image Processing 	
	 Medical Signal and Image Analysis – Pattern Recognition 	
	 Medical Informatics & Medical Statistics 	
	Director of MEDISP: Prof. D. Cavouras, Ph.D.	
	General Information	
	• MEDISP was established in 1002	
	• Director: Prof D. Cavouras Ph.D.	

Post Doc:

FURTHER READING

- 1. Gonzalez RC, Woods RE, "Digital image processing", Prentice Hall; 2002
- 2. Pratt K. William, Digital Image Processing, John Wiley & Sons, 2001
- 3. Martinez W.L., Martinez A.R., Computational Statistics Handbook with MATLAB®, Chapman & Hall/CRC, 2002
- 4. Young I. et al, Fundamentals of Image Processing, link
- 5. Housfield, Computed medical imaging, link
- 6. Cormack, Early two dimensional reconstruction and recent topics stemming from it, link
- 7. Mather S., The Principles of Diagnostic Imaging, link

Source: <u>https://www.extremetech.com/extreme/188908-darpas-tiny-implants-will-hook-</u> directly-into-your-nervous-system-treat-diseases-and-depression-without-medication