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[Tpocoxn oTnVv opoAoyid

Ol HETAPPATEIC TWV OPWV OE AUTO TO TTEdIO Eival akavlwdes ATNUA..
O1 TTEpIcOOTEPOI EAANVIKOI OPOI TTOU €XOUV TTPOTABEI €ival 0€ axpnoTia
Regression = NaAivdpoéunon

Class = KAaon, 1ag¢n

Machine Learning = Ekuabnon pnxavig (i pnxavikr yaénon..)
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Artificial intelligence
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To teoT ToU Turing (1950)

I.—COMPUTING MACHINERY AND
INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

I PROPOSE to consider the question, ‘Can machines think?” This should
begin with definitions of the meaning of the terms ‘machine’ and
‘think’. The definitions might be framed so as to reflect so far as
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(Supervised learning)
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Regression

Model Model

Real world input _ Model Real world output
Input output
6000 squarge feet, 6000
4 bedrgoms, 4 Predicted price
previougly sold for — 2203005 — — [340}— is $340k
1 Supervised learning
model
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Tacivopnon Accewv
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Semantic Segmentation

isha, S., et al. "Semantic segmentation of UAV aerial videos using convolutional neural networks." 2019 IEEE International
erence on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 2019.



Semantic Segmentation

Fig. 1. Example images and labels from UAVid dataset. First row shows the images captured by UAV. 5econd row shows the corresponding ground truth labels. Third
row shows the prediction results of MS-Dilation net +PRT + F50 model as in Table L.

LYu\Y., Vosselman, G, Xia, G. S., Yilmaz, A, & Yang, M. Y. (2020). UAVid: A semantic segmentation dataset for UAV imagery. ISPRS
JourRal of Photogrammetry and Remote Sensing, 165, 108-119.
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Fig. 12. Examples of spatial-temporal
regularization for UAVid image se-
mantic segmentation. The left column
shows the prediction without FSO
plus 3D CRF refinement. The right
column shows the corresponding re-
fined prediction with F50 plus 3D
CRF refinement. The most obvious
improvements are high-lighted with
circles. The spatial-temporal regular-
ization achieves a more coherent
prediction for different objects.

Y., Vosselman, G, Xia, G. S, Yilmaz, A., & Yang, M. Y. (2020). UAVid: A semantic segmentation dataset for UAV imagery. ISPRS

rhal of Photogrammetry and Remote Sensing, 165, 108-119.
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LW ASiyu, et al. "Light-Weight Semantic Segmentation Network for UAV Remote Sensing Images." IEEE Journal of Selected Topics in
\ed Earth Observations and Remote Sensing 14 (2021): 8287-8296.



Object detection
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(b) SlimYOLOv3-SPP3-95

Figure 8. Visualized detection results of SlIimYOLOv3-SPP3-95
and YOLOvV3-SPP3 on a challenging frame captured by our drone.

g, Pengyi, Yunxin Zhong, and Xiaogiong Li. "SlimYOLOv3: Narrower, faster and better for real-time UAV applications."
Preceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019.



Object detection
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jtrakopoulos, Panagiotis, Giorgos Sfikas, and Christophoros Nikou. "Variational Feature Pyramid Networks." International
rence on Machine Learning. PMLR, 2022.



Salient object detection

ir, Victor, et al. "Salient Object Detection with Pretrained Deeplab and k-Means: Application to UAV-Captured Building Imagery."
ational Conference on Pattern Recognition Workshops. Springer, Cham, 2021.



Mabnon xwpic etiAsyn
(Unsupervised learning)

Figure 1.5 Generative models for images. Left: two images were generated from
a model trained on pictures of cats. These are not real cats, but samples from a
probability model. Right: two images generated from a model trained on images

of buildings. Adapted from Karras et al. (2020b).
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Figure 1.6 Short story synthesized from a generative model of text data. The
model describes a probability distribution that assigns a probability to every
output string. Sampling from the model creates strings that follow the statistics
of the training data (here, short stories) but have never been seen before.
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Figure 1.7 Inpainting. In the original image (left), the boy is obscured by metal
cables. These undesirable regions (center) are removed and the generative model
synthesizes a new image (right) under the constraint that the remaining pixels
must stay the same. Adapted from Saharia et al. (2022a).
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I was a little nervous bhefore my first lecture at the University of Bath. It seemed like there were
hundreds of students and they looked intimidating. I stepped up to the lectern and was about to speak
when something bizarre happened.

suddenly, the room was filled with a deafening noise, like a giant roar. It was so loud that 1
couldn’t hear anything else and 1 had to cover my ears. | could see the students looking around, con-
tused and frightened. Then, as quickly as it had started, the noise stopped and the room was silent again
[ stood there for a few moments, trying to make sense of what had just happened. Then I realized that
the students were all staring at me, waiting for me to say something. | tried to think of something witty

or clever to say. but my mind was blank. So I just said, *Well, that was strange,” and then | started my

Figure 1.8 Conditional text synthesis. Given an initial body of text (in black),
generative models of text can continue the string plausibly by synthesizing the
“missing” remaining part of the string. Generated by GPT3 (Brown et al., 2020).
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Figure 1.9 Variation of the human face. The human face contains roughly 42
muscles, so it's possible to describe most of the variation in images of the same
person in the same lighting with just 42 numbers. In general, datasets of images,
music, and text can be described by a relatively small number of underlying
variables although it is typically more difficult to tie these to particular physical

mechanisms. Images from Dynamic FACES database (Holland et al., 2019).
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Normal Latent Model Model output  Real world output
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Figure 1.10 Latent variables. Many generative models use a deep learning model
to describe the relationship between a low-dimensional “latent” variable and the
observed high-dimensional data. The latent variables have a simple probability
distribution by design. Hence, new examples can be generated by sampling from
the simple distribution over the latent variables and then using the deep learning
model to map the sample to the observed data space.



Mabnon xwpic etiAsyn
Unsupervised learning

Figure 1.11 lmage interpolation. In each row the left and rght images are real
and the three imapges in between represent a sequence of interpolations created
by a generative model. The generative models that underpin these interpolations
have learned that all images can be created by a set of underlving latent variables.
By finding these variables for the two real imapes, ili11-!'|rtllelt:|ll'_', their values, and
then using these intermediate variables to create new images, we can generate
intermediate results that are both visually plausible and mix the characteristics
of the two original images. Top row adapted from Sauer et al. (2022), Bottom
row adapted from Ramesh et al. (2022).




EvioxuTtiki paénon
(Reinforcement learning)

State Model input Model Model output Action

1
0
0
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Figure 1.13 Policy networks for reinforcement learning. One way to incorporate
deep neural networks into reinforcement learning is to use them to define a map-

ping from the state (here position on chesshoard) to the actions (possible moves).
This mapping is known as a policy. Adapted from Pablok (2017).



ETTipeTpO:
Texvntn Nonuoaouvn Kal Kolvwvia

Bias and Fairness
Explainability
Weaponizing Al

Concentrating power

Existential risk

Problem of «alignment»
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https://ethics-of-ai.mooc.fi/




AvakepaAaiwaon

Me Tn popPN KATTOIWYV XPHNOINWY KATNYOPIWV

< Al vs Machine Learning vs Deep Learning
<« Supervised vs Unsupervised vs Reinforcement learning
< MovTéAo vs MEBodo¢

< Classification vs Regression

< Discrete vs Continuous
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< Baoika xpnong git kai github

< Baolkad padnuatikd kai Python
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