PROJECTS 1+2: physical and technical hydrology

INTRO AND SHORT NOTE

These two projects are designed to allow the student to deal with real scientific and engineering problems using real world data.
They are accompanied by two xls files :

Thornwaite.xls
 Manning.xls

The first projects is within the scope of Physical Hydrology and aims at quantifying the water balance of a catchment. Climate change analysis can also be performed with the Thornwaite xls file.

The second project lies in the area of Technical Hydrology and more particularly its purpose is, for the student to be able to calculate a design discharge for a specific catchment, in order to decide the dimensions a hydraulic structure (culvert) using the Manning xls file.

PROJECT 1: WATER BUDGET WITH THE THORNWAITE METHOD

1. Choose a catchment in any region of any country(...)
2. You'll have to find a meteorological station within or near the catchment (for Greece search at http://climatlas.hnms.gr/sdi/)
3. Download average monthly temperatures and rainfall heights. We also need the geographical coordinates $\boldsymbol{\phi}, \boldsymbol{\lambda}$ and the altitude (elevation) of the station.
4. You'll check to see if you need to correct your data with the help of a altitude - rainfall grading curve. For this you need to search relevant publications and find references.
5. Construct monthly water budget with the use of the file Thornwaite Water Balance.xls
6. Make some more research and testing (climate change)
7. Structure and present your research accordingly (....)

Choose catchment

1. For Greece (...)

In Google Earth Pro import greekbasins.shp (+ greekrivers.shp)

Choose a catchment..

check catchment's attributes

1. For Greece (...)

From there you can find area (AREA in m^{2}), perimeter in m, and its average elevation (MEAN in m)

Press into a polygon and you'll get the polygon attribute table of the file.

Find meteorological station

2. For Greece http://climatlas.hnms.gr/sdi/

Download data from the meteo station

3. Monthly temperatures and rainfall for at least 30 years.

Download data from the meteo station

We also need the geographical coordinates $\boldsymbol{\phi}, \boldsymbol{\lambda}$ and the altitude of the station

Correct rainfall for elevation if necessary

4. Check to see the difference between catchment's mean elevation and station's elevation. If they differ greatly (more, say, than $\sim 300 \mathrm{~m}$) you might have to look for a elevation - rainfall gradient curve from relevant publications. In any case check your final rainfall series for credibility.

WATER BALANCE CALCULATIONS

5. With the file Thornwaite Water Balance.xls

RESULTS - PRESENTATION

6. Results come as tables and graphs such as the above.
7. Structure and present your study in a proper way.

A possible structure is
mhniaio YaAtiko izozy iio thornwaite - aekanh amoppohz:

1. Purpose and Scope ${ }^{100}$ f the study
2. Study area and avaflable data
3. Methods
4. Results and Discussion
5. References

FURTHER INVESTIGATION

6. YOU CAN INVESTIGATE FOR CLIMATE CHANGE.

For instance you can check your 30-years time series of temperature and rainfall to inspect for trends (or just compare the means of the three decades).

Then you can add to your temperatures (in the winter months) a couple of degrees, run again the xls and see what happens. This is for global warming. If there is a trend in rainfall depth then you can simulate that also.

Finally, you can test various values of SOIL MAX in the xls file. This is the maximum capacity the soil can retain and depends on local geology and other factors such as topography and physiography. For instance mountainous hilly valleys have shallow soils and low SOIL MAX while valleys in lesser slopy terrain can have thicker soils.

PROJECT 2: DIMENSIONING OF A HYDRAULIC STRUCTURE (CULVERT)

1. Choose a catchment in any region of any country, or take the one you used in the first project (...)
2. To complete the project you will need to find INTENSITY - DURATION - FREQUENCY (IDF) curves for your region.
3. In this project we use the RATIONAL method for the calculation of the design discharge and the MANNING formula to solve, and find the right dimension of the (rectangular) culvert. That is, height x width.
4. The design discharge will have to pass through the culvert allowing for a freeboard of 0.5 meters and with a velocity less than $5 \mathrm{~m} / \mathrm{s}$.

DESIGN DISCHARGE CALCULATION THE RATIONAL METHOD

Q = C i F / 3.6

where:
Q discharge (m³/s)
C runoff coefficient (dimensionless)
i rainfall intensity (mm/h)
F drainage area(km^{2})
Limitations and assumptions in the Rational Method are as follows:

- The drainage area should not be larger than 200 acres.
- The peak flow is assumed to occur when the entire watershed is contributing runoff.
- The rainfall intensity is assumed to be uniform over a time duration equal to or greater than the time of concentration, T_{c}.
- The peak flow recurrence interval is assumed to be equal to the rainfall intensity recurrence interval. In other words, the 10 -year rainfall intensity is assumed to produce the 10 -year flood.

THE RATIONAL METHOD Runoff coefficient

Table 1 Runoff Coefficients for the Rational Method

	FLAT	ROLLING	HILLY	
Pavement \& Roofs	0.90	0.90	0.90	
Earth Shoulders	0.50	0.50	0.50	
Drives \& Walks	0.75	0.80	0.85	
Gravel Pavement	0.85	0.85	0.85	
City Business Areas	0.80	0.85	0.85	
Apartment Dwelling Areas	0.50	0.60	0.70	
Light Residential: 1 to 3 units/acre	0.35	0.40	0.45	C depends
Normal Residential: 3 to 6 units/acre	0.50	0.55	0.60	mainly on
Dense Residential: 6 to 15 units/acre	0.70	0.75	0.80	
Lawns	0.17	0.22	0.35	- Slope
Grass Shoulders	0.25	0.25	0.25	- Vegetation /
Side Slopes, Earth	0.60	0.60	0.60	
Side Slopes, Turf	0.30	0.30	0.30	land cover
Median Areas, Turf	0.25	0.30	0.30	
Cultivated Land, Clay \& Loam	0.50	0.55	0.60	
Cultivated Land, Sand \& Gravel	0.25	0.30	0.35	
Industrial Areas, Light	0.50	0.70	0.80	
Industrial Areas, Heavy	0.60	0.80	0.90	
Parks \& Cemeteries	0.10	0.15	0.25	
Playgrounds	0.20	0.25	0.30	
Woodland \& Forests	0.10	0.15	0.20	
Meadows \& Pasture Land	0.25	0.30	0.35	
Unimproved Areas	0.10	0.20	0.30	

Note:

- Impervious surfaces in bold
- Rolling $=$ ground slope between 2 percent to 10 percent
- Hilly $=$ ground slope greater than 10 percent

THE RATIONAL METHOD Runoff coefficient

Table 1: General runoff coefficients for the rational method.

Description	
Business	
Residential	
Downtown Areas	$0.70-0.95$
Neighborhood Areas	$0.30-0.50$
Single-family Coefficient	
Multi-family detached	$0.40-0.60$
Multi-family attached	$0.60-0.75$
Residential suburban	$0.25-0.40$
Apartments	$0.50-0.70$
Parks, cemetaries	$0.10-0.25$
Playgrounds	$0.20-0.35$
Railroad yards	$0.20-0.40$
Unimproved areas	$0.10-0.30$
Drives and walks	$0.75-0.85$
Roofs	$0.75-0.95$
Lawns; sandy soils	
Asphalt	$0.70-0.95$
Concrete	$0.80-0.95$
Brick	$0.70-0.85$
Flat, 2\% slopes	$0.10-0.10$
Average, 2\%-7\% slopes	$0.15-0.20$
Steep, 7% slopes	Lawns; heavy soils
Flat, 2\% slopes	$0.13-0.17$
Average, 2\%-7\% slopes	$0.18-0.22$
Steep, 7\% slopes	$0.25-0.35$

C depends mainly on

- Slope
- Vegetation / land cover

THE RATIONAL METHOD Rainfall intensity -IDF curves

4. Storm Intensity

Storm intensity, i, is a function of geographic location and design exceedence frequency (or return interval). It is true that the longer the return interval (hence, the lower the exceedence frequency), the greater the precipitation intensity for a given storm duration. Furthermore, the longer the length of the storm, the lower the storm average precipitation intensity.

The relation between these three components, storm duration, storm intensity, and storm return interval, is represented by a family of curves called the intensity-durationfrequency curves, or IDF curves. The IDF curves can be determined by analysis of storms for a particular site or by the use of standard meteorological atlases, such as TP-40 (1963) and HYDRO-35 (1977).

For IDF curves, TxDOT^{4} uses a formula for approximating the intensity-durationfrequency curve. The formula is

$$
\begin{equation*}
i=\frac{b}{\left(t_{c}+d\right)^{e}}, \tag{3}
\end{equation*}
$$

THE RATIONAL METHOD Rainfall intensity -IDF curves

THE RATIONAL METHOD
Rainfall intensity -IDF curves

General expression

$$
i=\frac{c T^{m}}{(t+d)^{n}}
$$

Where
i rainfall intensity(mm / h) T return interval (years) t time of concentration (hr) $\mathrm{c}, \mathrm{d}, \mathrm{m}, \mathrm{n}$ coefficients

Simpler expression
$i=a / t^{b}$
where a,b coefficients

Return interval	a	b
$\mathrm{~T}=2$	18,10	0,254
$\mathrm{~T}=5$	24,95	0,241
$\mathrm{~T}=10$	29,49	0,235
$\mathrm{~T}=20$	33,81	0,232

IDF coefficients for Milos Island, Greece

THE RATIONAL METHOD Rainfall intensity -IDF curves

For IDF curves, TxDOT^{4} uses a formula for approximating the intensity-durationfrequency curve. The formula is

$$
\begin{equation*}
i=\frac{b}{\left(t_{c}+d\right)^{e}}, \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
i & =\text { design rainfall intensity }(\mathrm{in} / \mathrm{hr}), \\
t_{c} & =\text { time of concentration }(\mathrm{min}), \text { and } \\
b, d, e & =\text { parameters } .
\end{aligned}
$$

For Lubbock County, the parameters are shown on table 2.
Table 2: IDF parameters for Lubbock County.

	Return Interval (years)					
Parameter	2	5	10	25	50	100
e	0.830	0.821	0.813	0.816	0.808	0.810
b	47	60	69	82	88	101
d	10.0	10.1	10.1	10.1	10.1	10.0

THE RATIONAL METHOD
 Rainfall intensity - IDF curves - time of concentration

To calculate time of concentration t_{c}, that will be input in the IDF expression, we use various methods. The following is an empirical formula by Giandotti.

Formula Giandotti

where

$$
t_{c}=\frac{4 \sqrt{A}+1.5 L}{0.8 \sqrt{Z}}
$$

t_{c} time of concentration (hr)
A drainage area (km^{2})
L length of the main stream (km)
Z difference between the average elevation of the basin and the elevation at the outlet (m)

THE RATIONAL METHOD general view

project 2: dimensioning of hydraulic structures

In your basin a new road is constructed.
At some point the road's centerline meets the axis of a stream.
You will have to decide on the dimensions of a culvert that will accommodate the safe passage of the flood discharge of the stream under the road.

FIRST STEP：Find T，the storm return interval．

This depends on the significance（the category）of the road． Else，take T＝50 years．

		aváגoya nøos ra é¢ya（érl）			
			Spoov之גoyis fazay ка áv a yoyár	Kvérot ayayoi	
Кикіоророи́цєұа тйиата oías	Аитоктуто́роцоя		10	50	
			10	25	
			10	50	甲opiac＊
	 		10	25	
Кик久оророф́иеvа трйцата опиаoíaç oe ßatrá oпицía та поe anartoúv ávгोךŋך		50	50	50	
	EOvikés \＆Enapxiakéç oóof	50	25	25	
		－	50	50	بорі́ас＂
	 	－	25	25	
Аеvтepríov ठíkто	Seuteprionaes actukés oठo－ оубеร viepaotikéc ooioí	50	10	10	

[^0]
FOR GREECE LOOK HERE

https://floods.ypeka.gr/index.php?option=com content\&view=article\&id=174\&Itemid=604 EФAPMOГH OДHГIA乏 2007/60/EK

SECOND STEP: FIND THE IDF CURVES FOR THE REGION OF YOUR PROJECT

A日ŋ́va, Máıos 2016

THIRD STEP a: decide on the RUNOFF coef. - C-

- Average slope 15 \%.

GIVEN THE PHYSIOGRAPHIC AND TOPOGRAPHICAL FEATURES OF YOUR CATCHMENT, DECIDE ON THE RUNOFF COEFFICIENT -C- THAT YOU ARE GOING TO USE.
_ THIRD STEP b: CALCULATE THE TIME TO CONCENTRATION USING the Giandotti formula

$$
t_{c}=\frac{4 \sqrt{A}+1.5 L}{0.8 \sqrt{Z}}
$$

- Elevation at the project $\mathrm{H}_{\text {pri. }} \equiv 100 \mathrm{~m}$.

Length of main watercourse in the basin, $\mathrm{L} \equiv 2 \mathrm{~km}$ (in km).
Area, A ,in km²
Z is the difference between mean elevation of the basin and elevation at the project (in m)

After you calculate time of concentration (in hours usually) calculate the intensity of the rainfall (in mm / h, usually) from the IDF curve with $T \equiv 50$ years.

THIRD STEP c: CALCULATE THE storm intensity -i-

FOURTH STEP: CALCULATE Q Q = C i F $/ 3.6_{\mathrm{imms}}$

given:

Up to 3 meters of height. Longitudinal slope $S=0,5 \%$. V not over $5 \mathrm{~m} / \mathrm{s}$ and freeboard $=0.5 \mathrm{~m}$. That means that the height of the water in the prism -y - should not be more than the height of the structure minus half meter.

USE $n_{\text {Manning }}=0.015$.
YOU HAVE TO USE THE AVAILABLE DIMENSION GIVEN IN TABLE 9.1-. 1 next page.
If you need to use two rectangles side-by-side, for instance two 4×2 (height x width, $u x \beta$), solve Manning with $\mathrm{b}=8 \mathrm{~m}$.

AVAILABLE ORTHOGONAL CULVERTS DIMENSIONS:TABLE 9.1-.1

Пivakas 9.1-1: Tumomoinuévec ठıagtáaenç kiß

USE Manning.xls (resources, eclass) with the GOAL SEEK tool.

Note: for the prism to be rectangular, z has to be set to zero.

PRESENTATION:
11. SCOPE - STUDY AREA
2. METHODS AND AVAILABLE DATA 3. HYDRAULIC CALCULATIONS

[^0]: －$\Sigma \varepsilon$ периит

