Linear Feedback Shift Registers (LFSRs)

- Efficient design for Test Pattern Generators & Output Response Analyzers (also used in CRC)
 - FFs plus a few XOR gates External Feedback LFSR
 - better than counter
 - fewer gates
 - higher clock frequency
- Two types of LFSRs
 - External Feedback
 - Internal Feedback
 - higher clock frequency
- Characteristic polynomial
 - defined by XOR positions
 - $P(x) = x^4 + x^3 + x + 1$ in both examples

Internal Feedback LFSR

Characteristic polynomial of LFSR

- n = # of FFs = degree of polynomial
- XOR feedback connection to FF $i \Leftrightarrow$ coefficient of x^i
 - coefficient = 0 if no connection
 - coefficient = 1 if connection
 - coefficients always included in characteristic polynomial:
 - *xⁿ* (degree of polynomial & primary feedback)
 - $x^0 = 1$ (principle input to shift register)
- Note: state of the LFSR \Leftrightarrow polynomial of degree *n*-1
- Example: $P(x) = x^3 + x + 1$ $1x^0$ $1x^1$ $0x^2$ $1x^3$ $D Q \rightarrow D Q$ $D Q \rightarrow D Q$ 1 CK CK CK

C. Stroud, Dept. of ECE, Auburn Univ. 10/04

- An LFSR generates periodic sequence
 - must start in a non-zero state,
- The maximum-length of an LFSR sequence is 2ⁿ -1
 does not generate all 0s pattern (gets stuck in that state)
- The characteristic polynomial of an LFSR generating a maximum-length sequence is a *primitive polynomial*
- A maximum-length sequence is *pseudo-random*:
 - number of 1s = number of 0s + 1
 - same number of runs of consectuive 0s and 1s
 - 1/2 of the runs have length 1
 - 1/4 of the runs have length 2
 - ... (as long as fractions result in integral numbers of runs)

LFSRs (cont) Example: Characteristic polynomial is $P(x) = x^3 + x + 1$

- Beginning at all 1s state
 - 7 clock cycles to repeat
 - maximal length = 2^n -1
 - polynomial is primitive
- Properties:
 - four 1s and three 0s
 - 4 runs:
 - 2 runs of length 1 (one 0 & one 1)
 - 1 run of length 2 (0s)
 - 1 run of length 3 (1s)
- Note: external & internal LFSRs with same primitive polynomial do not generate same sequence (only same length) C. Stroud, Dept. of ECE, Auburn Univ. 10/04

- Reciprocal polynomial, $P^*(x)$
 - $-P^*(x) = x^n P(1/x)$
 - example: $P(x) = x^3 + x + 1$
 - then: $P^*(x) = x^3 (x^{-3} + x^{-1} + 1) = 1 + x^2 + x^3 = x^3 + x^2 + 1$
 - if P(x) is primitive, $P^*(x)$ is also primitive
 - same for non-primitive polynomials
- Polynomial arithmetic

$$- \mod 0 - 2 (x^{n} + x^{n} = x^{n} - x^{n} = 0)$$
Addition/Subtraction

$$(x^{5} + x^{2} + 1) + (x^{4} + x^{2})$$

$$x^{5} \quad x^{2} \quad 1$$

$$+ \quad x^{4} \quad x^{2}$$

$$x^{5} \quad x^{4} \quad 1$$

$$= x^{5} + x^{4} + 1$$

$$- \qquad x^{n} = 0$$
Multiplication

$$(x^{2} + x + 1) \times (x^{2} + 1)$$

$$x^{2} + x + 1$$

$$- \qquad x^{2} + x + 1$$

$$x^{4} + x^{3} + x^{2}$$

$$= x^{4} + x^{3} + x + 1$$

C. Stroud, Dept. of ECE, Auburn Univ. 10/04

 $(x^2 + 1)$

- Non-primitive polynomials produce sequences $< 2^{n}$ -1
 - Typically primitive polys desired for TPGs & ORAs
- Example of non-primitive polynomial

 $- P(x) = x^3 + x^2 + x + 1$

External Feedback LFSR

C. Stroud, Dept. of ECE, Auburn Univ. 10/04

• Primitive polynomials with minimum # of XORs

Degree (n)	Polynomial
2,3,4,6,7,15,22	$x^n + x + 1$
5,11,21,29	$x^n + x^2 + 1$
8,19	$x^n + x^6 + x^5 + x + 1$
9	$x^n + x^4 + 1$
10,17,20,25,28	$x^{n} + x^{3} + 1$
12	$x^n + x^7 + x^4 + x^3 + 1$
13,24	$x^n + x^4 + x^3 + x + 1$
14	$x^n + x^{12} + x^{11} + x + 1$
16	$x^n + x^5 + x^3 + x^2 + 1$
18	$x^n + x^7 + 1$
23	$x^n + x^5 + 1$
26,27	$x^{n} + x^{8} + x^{7} + x + 1$
30	$x^n + x^{16} + x^{15} + x + 1$
C. Stroud, Dept. of ECE, Auburn	

Univ. 10/04