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On Obtaining Maximum-Length Sequences for
Accumulator-Based Serial TPG

D. Kagaris, P. Karpodinis, and D. Nikolos

Abstract—Arithmetic-function modules, which are available in many
circuits, can be utilized to generate test patterns and compact test re-
sponses. An accumulator-based scheme along with a procedure to find
maximum-length nonlinear sequences for bit-serial test-pattern generators
is proposed. The proposed scheme achieves good fault coverage with low
hardware overhead and short test sequences.

Index Terms—Arithmetic BIST, built-in self-test (BIST), nonlinear test
pattern generation (TPG).

I. INTRODUCTION

Built-In Self-Test (BIST) [1]–[4] is a design for a testability strategy
that reduces the need for an external test and can be used to determine
faulty parts at all levels in the hierarchy (core to chip to board to
system) during manufacturing and to diagnose problems in the field.
In BIST test-pattern generation, response monitoring and evaluation
are handled on chip with the use of extra hardware structures. Common
BIST schemes used in practice are based on the use of linear feedback
shift registers (LFSRs) or cellular automata for test-pattern genera-
tion and response compaction. Such conventional approaches impose
hardware overhead and may lead to performance degradation, during
normal operation mode, due to the insertion of extra multiplexers in
the signal paths.

Recently, new arithmetic-BIST [5]–[17] schemes were proposed
based on the use of adders, subtracters, multipliers, and shifter modules
that already exist in modern general-purpose processors and digital
signal processing units. The advantage of arithmetic BIST against
the LFSR-based BIST is that due to the reuse of existing on-chip
modules, hardware overhead and performance degradation are re-
duced or virtually eliminated. Arithmetic-BIST schemes for test-per-
clock as well as for test-per-scan environments have been considered
[6]–[17]. In this paper, we concentrate on the arithmetic test-per-
scan BIST environment. Test-per-scan BIST can find application in
sequential circuits with scan paths, embedded cores with an isolation
ring, circuits with boundary scan, and portions of multichip modules,
which require the transfer of test data in a bit-serial way.

The quality of the random properties of the bit-serial test sequence
generated by a bit position of an accumulator or an adder is poor [11].
Although the fault coverage can be improved using a parallel/serial
accumulator (in which case the register of the parallel accumulator is
modified to function as a shift register), it remains generally low even
for long test sequences. Therefore, these simple arithmetic units are not
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Fig. 1. Proposed ACC-XOR scheme.

efficient for bit-serial test-pattern generation. To this end, three new
bit-serial test-pattern generation schemes based on the use of adder–
multiplier or accumulator–multiplier pairs were proposed in [10] and
[11]. These schemes, compared to an LFSR bit-serial test-pattern gen-
erator (TPG), have the advantage of achieving similar fault coverage
with similar number of test patterns, while not requiring any hardware
overhead, as they are already part of the functional circuit. The disad-
vantages of the schemes proposed in [10] and [11] can be summarized
as follows: 1) their applicability is limited to applications in which the
required configuration of the adder–multiplier or accumulator–multi-
plier is available and 2) since a multiplier–adder or multiplier–
accumulator is used for test-pattern generation, these schemes have in-
creased power and energy consumption during testing. A comparative
study of the schemes proposed in [10] and [11] can be found in [15].

Recently, it was shown [12] that an accumulator can be modified to
operate in test mode as a nonlinear feedback shift register (NLFSR)
and that it can be used effectively for bit-serial test-pattern generation
[15] as well as for test-response compaction [12], [18]. The length and
quality of the test bit sequences generated by the above scheme depend
on the suitable selection of a constant additive value (CAV) u. Several
CAVs have been derived experimentally in [15] for accumulator size
K = 5 up to K = 20 (note: the actual state bits in [15] are K + 1
as an extra flip-flop is used besides the K-bit accumulator register).
However, finding a suitable pair of initial value and CAV such that
the period of bit sequences is maximum requires exhaustive searching.
Moreover, for some values of K (such as 7, 10, 12, 13, 17, and 20),
there are no CAVs that ensure maximum period of bit sequences.
Hereafter, the above scheme will be referred to as accumulator-based
NLFSR (ANLFSR). A modification having better random properties
was also presented in [15], where the most significant bits of the upper
and the lower half of the register are XORed together to yield the test
bit sequence. This scheme will be referred to as enhanced ANLFSR
(EANLFSR).

In this paper, we propose a slightly different accumulator-based
configuration that compares favorably to LFSRs and the other

arithmetic-function-based bit-serial sequence generators with respect
to the attainable fault coverage and the required test length.

The rest of the paper is organized as follows. The next section
presents the new accumulator-based bit-serial test-pattern-generation
scheme. Section III gives comparative experimental results of the
proposed scheme with previous schemes, and Section IV concludes.

II. PROPOSED SCHEME

A. Hardware Description

The proposed test-pattern-generator scheme is shown in Fig. 1. In
normal mode, i.e., T = 0, the ith bit of the register, denoted by Ri,
0 ≤ i ≤ K − 1, drives the ith bit of the B input of the adder Bi. In
test mode, bit Ri, 0 ≤ i ≤ K − 2, drives the Bi+1 input of the adder.
The inputs Ai, 0 ≤ i ≤ K − 1, of the adder are set to the CAV value
u (u ≤ 2K − 1). The most significant bit of the register RK−1, along
with one other appropriately selected bit Rb, 0 ≤ b ≤ K − 2, drive
the extra XOR gate. The output of the extra XOR gate drives the least
significant bit B0 of the adder.

Let s(t) be a K-bit vector denoting the state of the K-bit register.
Also, let X denote the output of the extra XOR gate. Then, the next
state s(t+ 1) can be described by

s(t+ 1) = [2s(t) + u+X] mod 2K . (1)

(The above operation can optionally be implemented in a software in
a microprocessor environment, as is the case also for the schemes in
[10], [11], and [15].) We will refer to the accumulator-XOR (ACC-
XOR) scheme with accumulator size K, bit position for the XOR b,
and CAV u as A(K, b, u). The interest is for A(K, b, u) schemes
with maximum period sequences. An ACC-XOR scheme with period
2K − 1 will be referred to as “primitive,” borrowing the term from the
linear case.

It can be observed that by keeping the CAV value to zero and
by initializing the register to a nonzero value, the resulting scheme
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[i.e., A(K, b, 0)] functions as a trinomial K-bit LFSR. We note that a
separate LFSR could be embedded by inserting the multiplexers in the
register. However, in this case, the delay of the accumulator, and most
likely the delay of the whole circuit, would be affected. In the proposed
scheme, the insertion of the multiplexers in the feedback path may not
deteriorate the delay of the whole circuit, as the feedback path of the
accumulator is less likely to be critical. Moreover, for u �= 0, the use
of nonlinearity in the generation of the test bit sequence gives better
results with respect to test length and fault coverage, as experimental
results show.

Stroele has proven [9] that if the transition diagram of an arbitrary
finite-state machine with K-state bits contains state sequences of
period 2K − 1, then the generated bit sequence of each bit position
i, 0 ≤ i ≤ k − 1, has period 2K − 1. Therefore, when the proposed
TPG, with K state bits, operates under a constant input and produces
a state cycle of length 2K − 1, then the sequence generated from
the jth bit position, 0 ≤ j ≤ K − 1, also has period 2K − 1. For
bit-serial test-pattern generation, one can choose, in principle, any of
these bit positions. We have chosen to use the most significant bit of
the register (RK−1) as the source of the random test sequence, based
upon the observation in [19], which states that the least significant bits
of a pseudorandom number sequence are much less “random” than
the most significant ones.

The hardware overhead required for the proposed accumulator
scheme is equal to 1.7K + 3.3 gate equivalents. The hardware over-
head for the ANLFSR and EALFSR schemes in [15] is equal to
1.7K + 1.3 and 1.7K + 3.3 gate equivalents, respectively, under the
provision that the external D flip-flop and the XOR gate driving it
have been incorporated in the accumulator logic. The hardware over-
head of the multiply-and-accumulate (MAC) [10], multiply–add, and
multiply–accumulate schemes [11] is zero. However, these schemes
assume the existence of a multiplier–accumulator or multiplier–adder
pair in the circuit. In the proposed scheme, only the existence of an
accumulator is required. In most LFSR-based schemes, the LFSR
is a dedicated circuit. In that case, the hardware required for the
implementation is equal to 3.6K + 2m, where m is the number of
the XOR gates, as determined by the characteristic polynomial of the
LFSR. It can be noted that the hardware overhead for modifying the
accumulator in the proposed scheme is well less than half the cost of
a separate LFSR. In the case that an existing register with size K is
modified to function in test mode as aK-bit LFSR, the cost is equal to
1.7K + 2m equivalent gates. In the case of a trinomial LFSR, the lat-
ter cost becomes 1.7K + 2, which is similar to the cost of our scheme.

We also note that in an accumulator-based scheme of sizeK, a num-
ber q, q < K, of least significant bits may prove enough for the gen-
eration of a test sequence with the desired characteristics. In that case,
the hardware overhead of the proposed scheme can be reduced by set-
ting, in test mode,AK−1=AK−2= · · ·=Aq−1=0 (see Fig. 1), feed-
ing the XOR gate with register bitsRq−1andRb, b<q−1, and inserting
multiplexers only at the q least significant inputs of adder input B.

B. Finding Primitive A(k, b, u) Schemes

A brute-force approach to test for primitive A(K, b, u) schemes is
prohibitive, as it requiresK · 2k · 2k simulation steps. In the following,
we propose a procedure to speed up the search.

Lemma 1: The result of XORing the bit at position b (starting from
zero) with the most significant bit (at position K − 1) is given by

r =
(⌊

s

2K−1

⌋
+
⌊
s

2b

⌋)
mod 2.

Proof: The result of XORing the bit at position b (indexing
starting from 0) with the most significant bit (at position K − 1) can,

by definition, be expressed mathematically as

r =

(⌊
s

2K−1

⌋
+

⌊
s mod 2b+1

2b

⌋)
mod 2. (2)

Let the quotient and remainder of s in the division by 2b+1 be q1 and
r1, respectively; that is, s = q1 · 2b+1 + r1. Also, let q2 and r2 be
the quotient and remainder of r1 in the division by 2b; that is, r1 =
q2 · 2b + r2. Finally, let q3 and r3 be the quotient and remainder of s
in the division by 2b; that is, s = q3 · 2b + r3. Then, s = q1 · 2b+1 +
q2 · 2b + r2 = q3 · 2b + r3, from which it follows simultaneously that
r2 = r3 and q3 = 2q1 + q2 due to the integer-division property. In
particular, q3 mod 2 = q2 mod 2, and so by replacing q3 and q2 with
their equivalent expressions, we have �s mod 2b+1/2b� mod 2 =
�s/2b� mod 2. Therefore, (2) can be rewritten as r = (�s/2K−1�+
�s/2b�) mod 2. �

The search for ACC-XOR schemes of a given K resulting in
maximum-length sequences involves, in principle, the trial of all pairs
of b and u values, where 0 ≤ b ≤ K − 2, 1 ≤ u ≤ 2K − 1, and the
identification through simulation of the cyclic structure of the result-
ing states. To speed up the search, we eliminate several A(K, b, u)
schemes based on the following criteria:

1) elimination of certain A(K, b, u) schemes that cannot be
primitive, based only on mathematical formulas, and not on
simulation;

2) elimination of certain A(K, b, u′) schemes that cannot be prim-
itive, based on the identification, through simulation of a certain
nonprimitive A(K, b, u) scheme with u′ > u.

1) Elimination Without Simulation: The nonprimitiveness of sev-
eral A(K, b, u) schemes can be determined a priori through
mathematical formulas, based on the following lemmas and
theorems.
Lemma 2: If �(2K − u)/2b� is odd, then A(K, b, u), with 0 ≤ b <

K − 1 and 0 < u < 2K−1, contains a cycle of length one (consisting
of state s = 2K − u).

Proof: Let s be a state such that s = 2K − u. Then, the next
state is s′ = [2s+ u+ (�s/2K−1�+ �s/2b�) mod 2] mod 2K ; that
is, s′ = [2 · 2K − 2 · u+ u+ (�(2K − u)/2K−1�+�(2K − u)/2b�)
mod 2] mod 2K . Since 0 < u < 2K−1, we have that �(2K − u)/
2K−1� = 1. Since �(2K − u)/2b� is odd, the term inside the paren-
theses above is even, and so it is equal to 0 mod 2. Therefore, s′ =
[2 · 2K−2 · u+ u]mod2K=(2K+(2K−u))mod2K=2K−u =s.

�
Similarly, the following lemma can be shown.
Lemma 3: If �(2K − u− 1)/2b� is even, thenA(K, b, u), with 0 ≤

b < K − 1 and u < 2K−1, contains a cycle of length one (consisting
of state 2K − u− 1).

If the relations in the Lemmas 2 and 3 above hold simultaneously
for some A(K, b, u), then we have the following theorem.
Theorem 1: If for some A(K, b, u) scheme, with 0 ≤ b < K − 1

and 0 < u < 2K−1, �(2K − u)/2b� is odd and �(2K − u− 1)/2b� is
even, then that scheme is not primitive.

A similar theorem can also be shown as follows.
Theorem 2: If for some A(K, b, u) scheme, with 0 ≤ b < K − 1

and 2K−1 < u < 2K , �(2K − u)/2b� is even and �(2K − u− 1)/2b�
is odd, then that scheme is not primitive.

Notice that Theorem 1 refers to CAVs with the most significant
bit equal to zero, while Theorem 2 refers to CAVs with the most
significant bit equal to one. As an illustration, we have that scheme
A(6, 3, 24) is not primitive by Theorem 1 as it contains two cycles
of length one on states 40 and 39. Also, scheme A(6, 3, 48) is not
primitive according to Theorem 2, as it contains two cycles of length 1
on states 16 and 15.
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TABLE I
SAMPLE OF BIT POSITIONS AND CAVS THAT ENSURE MAXIMUM PERIOD FOR EACH K

2) Elimination Through Simulation: The general idea here is the
following. Assume that for some scheme A(K, b, u′), we have found,
by simulation, that it contains a cycle of length l < 2K − 1 and the
states in the cycle satisfy certain conditions specified below. Then, a
cycle of the same length will also be present in scheme A(K, b, u′ +
x), for an appropriate value of x, preventing A(K, b, u′ + x) from
being primitive. This is based on the following lemma.
Lemma 4: Successive states s1, s2, . . . , sl of A(K, b, u) corre-

spond to successive states s′1, s
′
2, . . . , s

′
l of A(K, b, u′), with s′i =

si − x, where u′ − u = x > 0, provided that(⌊
si

2K−1

⌋
+
⌊
si
2b

⌋)
mod 2 =

(⌊
si − x
2K−1

⌋
+
⌊
si − x
2b

⌋)
mod 2.

Proof: Consider states s1 and s′1 of A(K, b, u) and
A(K, b, u′) = A(K, b, u+ x), respectively, such that s′1 = s1 − x.

The next state s′i+1 is given as

s′i+1 =

(
2 · s′i + u′ +

(⌊
s′i

2K−1

⌋
+

⌊
s′i
2b

⌋)
mod 2

)
mod 2K .

Since s′i = si − x and u′ − u = x, we get

s′i+1 =

(
2 · (si − x) + (u+ x)

+
(⌊
si − x
2K−1

⌋
+
⌊
si − x
2b

⌋)
mod 2

)
mod 2K .

However

si+1 =
(
2 · si + u+

(⌊
si

2K−1

⌋
+
⌊
si
2b

⌋)
mod 2

)
mod 2K
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TABLE II
FAULT COVERAGE FOR K = 17 UNDER 64 000 VECTORS AND NUMBER OF VECTORS IN CASE OF A TIE

from which it follows that

s′i+1 = si+1 − x

provided that(⌊
si

2K−1

⌋
+
⌊
si
2b

⌋)
mod 2=

(⌊
si − x
2K−1

⌋
+
⌊
si − x
2b

⌋)
mod 2.

�
Theorem 3: If schemeA(K, b, u) contains a cycle s1, s2, . . . , sl, s1

of length l < 2K − 1 such that the cycle contains no state si, 0 < si <
2K−1, that is a multiple of 2b, then a cycle of the same length con-
taining states s1 − 1, s2 − 1, . . . , sl − 1, s1 − 1 exists also in scheme
A(K, b, u+ 1).

Proof: According to Lemma 4, the following relation must be
satisfied (setting x = 1):(⌊

si
2K−1

⌋
+
⌊
si
2b

⌋)
mod 2=

(⌊
si − 1

2K−1

⌋
+
⌊
si − 1

2b

⌋)
mod 2.

Therefore >(⌊
si

2K−1

⌋
−
⌊
si − 1

2K−1

⌋
+
⌊
si
2b

⌋
−
⌊
si − 1

2b

⌋)
mod 2 = 0.

The range of values for si is [0, . . . , 2K − 1]. Consider the follow-
ing cases.

1) si = 2K−1: The first term �si/2K−1� in the relation above
equals one, the second term �(si − 1)/2K−1� equals zero, the
third term �si/2b� is even, and the fourth term �(si − 1)/2b�
is odd, making the overall sum even, and thus satisfying the
condition.

2) si = 0: The first and third terms are zero. The second term
equals �−(1/2K−1)� in this case, and since �−a� = −�a� for
any real number a, �−(1/2K−1)� = −�1/2K−1� = −1. For
the same reason, the fourth term equals one, making the overall
sum even, and thus satisfying the condition.

3) si �= λ2b, for any positive integer λ, i.e., si is not a multiple of
2b. Then, the first and second terms are equal, and the third and
fourth terms are equal also, making the overall sum even, and
thus satisfying the condition.

4) si = λ2b, for any positive integer λ, 0 < λ < 2K−1−b, i.e., si
is a multiple of 2b other than zero or 2K−1. Then, the first
and second terms equal zero, the third term equals λ, and the
fourth term equals λ− 1, making the overall sum odd, and thus
violating the condition. �

Theorem 4: If schemeA(K, b, u) contains a cycle s1, s2, . . . , sl, s1
of length l < 2K − 1 such that the cycle contains no state si
with 2K−1 ≤ si < 2K−1 + 2b+1 or 0 ≤ si < 2b+1, then a cycle
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TABLE III
FAULT COVERAGE FOR K = 25 UNDER 64 000 VECTORS AND NUMBER OF VECTORS IN CASE OF A TIE

TABLE IV
ADDITIONAL RESULTS FOR LARGER CIRCUITS: FAULT COVERAGE UNDER 64 000 VECTORS AND NUMBER OF VECTORS IN CASE OF A TIE

of the same length containing states s1 − 2b+1, s2 − 2b+1, . . . , sl −
2b+1, s1 − 2b+1 exists also in scheme A(K, b, u+ 2b+1).

Proof: According to Lemma 4, the following relation must be
satisfied (setting x = 2b+1):(⌊

si
2K−1

⌋
+
⌊
si
2b

⌋)
mod 2

=

(⌊
si − 2b+1

2K−1

⌋
+

⌊
si − 2b+1

2b

⌋)
mod 2.

Therefore(⌊
si

2K−1

⌋
−
⌊
si − 2b+1

2K−1

⌋
+
⌊
si
2b

⌋
−
⌊
si − 2b+1

2b

⌋)
mod 2=0.

Consider the following cases.

1) 2K−1 ≤ si < 2K−1 + 2b+1: Since the maximum value of si is
2K − 1, term �si/2K−1� in the relation above equals one, and
term �(si − 2b+1)/2K−1� equals zero. Term �(si − 2b+1)/2b�
equals �(si/2b)− 2� = �si/2b� − 2. Therefore, the overall sum
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TABLE V
STANDARD DEVIATION OF FAULT COVERAGE (K = 17)

is odd; that is, these values of si violate the condition (for the
special case b = K − 2, the value si = 2K−1 also violates the
condition as the term �(si − 2b+1)/2K−1� equals two).

2) 0≤si<2b+1: Term �si/2K−1� equals zero (assuming b < K−
2). Term �(si− 2b+1)/2K−1� equals �(si − 2b+1)/2K−1� =
�(2b+1 − si)/2K−1� = 1. The last two terms have even sum
for the same reasons as in 1) above. Therefore, the overall
sum is odd; that is, these values of si violate the condition
(for the special case b = K − 2, the value si = 2b+1 also vi-
olates the condition as the first term equals �2K−1/2K−1� = 1,
but the second term equals �(2K−1 − 2K−1)/2K−1� = 0). For
the remaining values of si, the first term equals the second term
and the third term equals the fourth, making the overall sum
even, and thus satisfying the condition. �

The value of x in Theorem 2 is x = 1 and in Theorem 3 is x =
2b+1. The eliminated A(K, b, u′) schemes are obtained as follows.

1) Assume that we have found, by simulation, that scheme A(K,
b, u) contains a cycle satisfying the condition in Theorem 3.
Let d be the minimum amount among all states in the cycle by
which a state can be decreased without becoming a multiple of
2b greater than zero and smaller than 2K−1. Then, we know that
all schemes A(K, b, u+ 1), A(K, b, u+ 2), . . . , A(K, b, u+

(d+ 1)) are also nonprimitive. For example, by examining
(through simulation) schemeA(7, 3, 30), we find that it contains
a cycle [12, 55, 12] of length two. The maximum decrease in
the values of the states in this cycle so that no state becomes
a multiple of 23 = 8 (other than zero or 64) is d = 3. There-
fore, a cycle of the same length is also present in schemes
A(7, 3, 31), A(7, 3, 32), A(7, 3, 33) and A(7, 3, 34), i.e., these
schemes do not need to be examined as they are nonprimitive.

2) Assume that we have found, by simulation, that scheme A(K,
b, u) contains a cycle satisfying the condition in Theorem 4. Let
d be the minimum number of times among all states in the cycle
by which a state can be decreased by 2b+1 each time, without
falling in the forbidden regions [2K−1, 2K−1 + 2b+1) or
[0, 2b+1). Then, we know that all schemes A(K, b, u+ 2b+1),
A(K, b, u+ 2 · 2b+1), . . . ,A(K, b, u+ (d+ 1) · 2b+1) are also
nonprimitive. For example, by examining (through simulation)
scheme A(7, 3, 36), we find that it contains a cycle [32, 100,
109, 126, 32] of length four. The maximum multiple of 23+1 =
16 by which the values of the states in this cycle can be decreased
so that no state falls in the forbidden regions [64, 80) or [0, 16)
is 16, i.e., d = 1. Therefore, a cycle of the same length is
also present in schemes A(7, 3, 52) and A(7, 3, 68), i.e., these
schemes do not need to be examined as they are nonprimitive.
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C. Representative Values

The search procedure using the above criteria is quite effective.
For instance, it finds the two primitive schemes A(21, 8, 181808) and
A(21, 8, 866768), which are the only possible ones for K = 21 and
b = 8, by doing only 10 838 simulations instead of the 221 − 1 =
2 097 151 simulations (that is, one for each value of u, 1 ≤ u ≤
2K − 1), which would be required under the brute-force approach.
Note that each simulation in either case requires 2K = 221 basic steps
to determine the cyclic structure of the candidate scheme A(21, 8, u).
Due to this, the search is still CPU extensive, but building a database
of A(K, b, u) schemes is a one-time cost.

In Table I, we present a sample of bit positions and CAVs that
ensure maximum period for eachK. As can be observed, the proposed
scheme yields maximum-length sequences for all values of K from
K = 6 up to K = 32 (in each case, we report at most eight repre-
sentatives). In contrast, in the case of an ANLFSR or EANLFSR,
maximum-length sequences do not exist for several accumu-
lator sizes.

We finally note that in contrast with an LFSR where the looping
state is always zero, the looping state in a primitiveA(K, b, u) scheme
depends on the scheme and is determined by the following lemma.
Lemma 5: In any primitive A(K, b, u) scheme, the looping state is

either s = 2K − u or 2K − u− 1 (the actual state can be identified by
a simulation of one cycle).

Proof: Since the scheme A(K, b, u) is primitive, it contains a
cycle of length 2K − 1 and a cycle of length one. Let s be the state in
the latter cycle (looping state). From (1), we have that s = [2s+ u+
X] mod 2K . Since s < 2K , we get 0 = [s+ u+X] mod 2K , from
which s = 2K − u−X , where X is the result of the XOR operation,
which can be either one or zero. That is, the looping state is either
s = 2K − u or 2K − u− 1, and can be identified by simulation of
one cycle. �

For example, in the primitive scheme A(7, 2, 26), the looping state
is s = 128− 26 = 102, whereas in the primitive scheme A(7, 2, 38),
the looping state is s = 128− 38− 1 = 89.

III. EVALUATION AND COMPARISONS

In order to evaluate the quality of the test sequences generated by the
proposed scheme, a variety of experiments were conducted using
the ISCAS’89 benchmarks [20]. We assume that the primary inputs,
the internal flip-flops, and the primary outputs are connected to a single
scan chain. The fault coverage in every case was calculated as the
fraction of the number of faults detected by the test vectors of the TPG
over the total number of faults.

For each one of the bit-serial TPGs that are evaluated, the number of
clock cycles that are used to produce and shift in a new test vector were
chosen to be relatively prime to the period of the generated sequence,
in order to guarantee that a maximum number of different patterns can
be applied to the circuit under test (CUT).

Two sets of experiments were performed. Using the 16- and
24-bit accumulator-based schemes in [15] as base cases, we compare
their performance against 17- and 25-bit ACC-XOR schemes and 17-
and 25-bit primitive trinomial LFSRs. The difference in the sizes
by one is due to the fact that the schemes in [15] have an extra
flip-flop that extends the size of the accumulator register. For each
type of TPG scheme, 20 experiments with different configurations
(in terms, accordingly, of primitive polynomial, input constants, CAV,
etc.) and seeds were tried for each benchmark circuit. The input
constants for the arithmetic bit-serial test-pattern-generation structures
where chosen according to the results reported in [10] for the MAC
structure and the theorems presented in [11] for the multiply–add and
multiply–accumulate schemes.

TABLE VI
SAMPLE OF ABSOLUTE DEVIATIONS OF π APPROXIMATION

BY CESARO METHOD

The CAVs for the ANLFSR and EANLFSR schemes were selected
from the values given in [15] for the case of 16-bit accumulator,
while they were randomly selected for the case of 24-bit accumulator,
because there are no satisfying values in that case.

Each entry in Tables II–IV gives the smallest number of test vectors
required to achieve 100% single stuck-at fault coverage, or the fault
coverage obtained after applying 64 000 patterns to the corresponding
CUT, or the fault coverage obtained along with the required number of
test vectors when more than one scheme achieves the same fault cover-
age. The best results obtained for each benchmark circuit are shaded.

Tables II and III clearly show that the bit sequences produced by
the proposed scheme in most cases outperform both the LFSR and the
other arithmetic-module-based TPGs. The increase of the accumulator
size has clearly resulted in certain improvements in the obtained fault
coverage and, in many cases, has led to a considerable reduction of
the required test length to achieve 100% fault coverage. Additional
experimental results for the three more efficient schemes and for three
generator sizes are given in Table IV (for the EANLFSR and K = 32,
no CAV yielding a close-to-maximal length sequence was available).
The conclusions are similar.

Apart from the achievable fault coverage and the required test-
sequence length, another feature is very significant, which is the effort
required for finding an efficient test sequence, with respect to fault
coverage and its length. To have an estimation of the required effort, we
give in Table V the maximum, the average, and the standard deviation
of the fault coverage over the 20 test sequences generated for the
case K = 17 in our experiments. From Table V, we can easily see
that the standard deviation of the fault coverage for the test sequences
generated by the proposed scheme, an LFSR, or MAC [10] is very
small, while for the rest of the arithmetic-function-based methods
[11], [12] is significantly larger. From Table V, we can also see that in
most cases, the average fault coverage obtained by the test sequences
generated by the proposed method is larger than the average fault
coverage obtained by other schemes. Therefore, we conclude that the
effort required for finding an efficient test sequence generated by the
proposed method is small.

Finally, as an indication of the randomness quality of the generated
bit sequences, we applied the Cesaro test [19] for the computation of
6/π2. Table VI shows a sample of the values of the absolute deviations
from the correct value of π obtained for K = 28 for the LFSR (with
primitive trinomial), ANLFSR, EANLFSR, and ACC-XOR schemes.
The bit sequence was taken each time from the (K − 1)th bit while
the bit width of the numbers considered in the test ranged from 8 to
16. As can be observed, the proposed scheme exhibits in general good
behavior even on this metric.
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IV. CONCLUSION

In this paper, we have shown that an accumulator-based TPG can
be used efficiently for bit-serial test-pattern generation and that it
compares favorably to LFSR and other arithmetic-function-based bit-
serial sequence generators. The proposed scheme also constitutes an
example of a nonlinear TPG where maximum-length sequences can
be found without resorting to the brute-force approach.

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems
Testing and Testable Design. New York: Computer Science, 1990.

[2] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for VLSI:
Pseudo-Random Techniques. New York: Wiley, 1987.

[3] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,
Memory & Mixed Signal VLSI Circuits. Boston, MA: Kluwer, 2000.

[4] H. J. Wunderlich, “BIST for systems-on-a-chip,” Integr. VLSI J., vol. 26,
no. 1/2, pp. 55–78, Dec. 1998.

[5] J. Rajski and J. Tyszer, Arithmetic Built-In Self-Test for Embedded Sys-
tems. Upper Saddle River, NJ: Prentice-Hall, 1998.

[6] ——, “Test response compaction in accumulators with rotate carry
adders,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 12,
no. 4, pp. 531–539, Apr. 1993.

[7] A. P. Stroele, “Test response compaction using arithmetic functions,”
in Proc. 14th IEEE VLSI Test Symp., Princeton, NJ, Apr./May 1996,
pp. 380–386.

[8] S. Gupta, J. Rajski, and J. Tyszer, “Arithmetic additive generators of
pseudo-exhaustive test patterns,” IEEE Trans. Comput., vol. 45, no. 8,
pp. 939–949, Aug. 1996.

[9] A. P. Stroele, “BIST pattern generators using addition and subtraction
operations,” J. Electron. Test.—Theory Appl., vol. 11, no. 1, pp. 69–80,
Aug. 1997.

[10] J. Rajski and J. Tyszer, “Multiplicative window generators of pseudo-
random test vectors,” in Proc. Eur. Design and Test Conf., Paris, France,
Mar. 1996, pp. 42–48.

[11] A. P. Stroele, “Bit serial pattern generation and response compaction using
arithmetic functions,” in Proc. IEEE VLSI Test Symp., Monterey, CA,
Apr. 1998, pp. 78–84.

[12] D. Bakalis, D. Nikolos, and X. Kavousianos, “Test response compaction
by an accumulator behaving as a multiple input non-linear feedback shift
register,” in Proc. IEEE Int. Test Conf., Atlantic City, NJ, Oct. 2000,
pp. 804–811.

[13] S. Chiusano, S. Di Carlo, P. Prinetto, and H. J. Wunderlich, “On applying
the set covering model to reseeding,” in Proc. Design, Automation Test
Eur. Conf., Munich, Germany, Mar. 2001, pp. 156–160.

[14] E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, “On-the-
fly reseeding: A new reseeding technique for test-per-clock BIST,”
J. Electron. Test.—Theory Appl., vol. 18, no. 3, pp. 315–332, Jun. 2002.

[15] G. Dimitrakopoulos, D. Nikolos, and D. Bakalis, “Bit-serial test pattern
generation by an accumulator behaving as a non-linear feedback shift
register,” in Proc. IEEE Int. On-Line Testing Workshop, Bendor, France,
Jul. 2002, pp. 152–157.

[16] S. Manich, L. Garcia, L. Balado, E. Lupon, J. Rius, R. Rodriguez,
and J. Figueras, “On the selection of efficient arithmetic additive test
pattern generators,” in Proc. IEEE Eur. Test Workshop, Maastricht,
The Netherlands, May 2003, pp. 9–14.

[17] I. Voyiatzis, “Test vector embedding into accumulator-generated se-
quences: A linear-time solution,” IEEE Trans. Comput., vol. 54, no. 4,
pp. 476–484, Apr. 2005.

[18] D. Bakalis, D. Nikolos, H. T. Vergos, and X. Kavousianos, “On
accumulator-based bit-serial test response compaction schemes,” in Proc.
IEEE Int. Symp. Quality Electronic Design, San Jose, CA, Mar. 2001,
pp. 350–355.

[19] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumeri-
cal Algorithms. Reading, MA: Addison-Wesley, 1997.

[20] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of se-
quential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Systems,
Portland, OR, May 1989, pp. 1929–1934.

Low-Power BIST With a Smoother and Scan-Chain
Reorder Under Optimal Cluster Size

Nan-Cheng Lai, Sying-Jyan Wang, and Yu-Hsuan Fu

Abstract—The authors propose a low-power testing methodology for
the scan-based built-in self-test. This approach combines a low-power test
pattern generator (TPG) with scan-chain reordering to achieve low-power
testing without losing fault coverage. Three main issues are addressed.
First, a smoother is included in the TPG to reduce the average power
consumption. However, the fault coverage may be adversely affected by
the smoother; hence, a cluster-based scan-chain reordering is employed
to remedy this problem. If a very-large power reduction is necessary,
the fault-coverage drop can become significant. This can be addressed by
reseeding. The second topic of this paper is to give a detailed analysis on the
optimal cluster size to minimize the scan-chain length. Finally, a fast and
efficient algorithm is developed for scan-chain reorder in order to improve
the fault coverage. The reordering algorithm is very efficient in terms
of computation time, and the routing length of the reordered scan chain
is comparable to or smaller than the result given by commercial tools.
Experimental results show that the proposed method provides a significant
and consistent reduction in the average test power, and the fault coverage
is similar to previous methods with the same test lengths.

Index Terms—Built-in self-test (BIST), design for testability, low-power
design, routing, testing.

I. INTRODUCTION

Predesigned intellectual-property (IP) cores are commonly used in
system-on-chip (SOC) designs. Due to the large number of IP cores
and the limited pin count, the long test time required becomes a great
challenge for SOC testing. The built-in self-test (BIST) is an attractive
alternative to SOC testing. This technique can conduct at-speed testing,
and it alleviates the burden of external testers. However, the existence
of random-pattern-resistant faults often causes an unacceptably long
test sequence to attain high fault coverage. Several techniques have
been proposed to address this problem, including Markov-source BIST
[1], [2] and reseeding [3].

Another serious problem associated with pseudorandom BIST is the
higher power consumption [4]. Most contemporary designs employ
low-power design techniques to reduce power dissipation during nor-
mal operation. The power constraints defined under normal opera-
tions are usually much lower than the power consumed in the test
mode [5]. Techniques for average power reduction will help prevent
unwanted test failures. In order to perform a nondestructive test, we
have to satisfy power constraints defined in the design phase. Several
techniques have been proposed, including low-power BIST [6]–[8]
and minimizing power during scan testing [1], [2], [9]–[11].

Scan-based BIST architectures are popular because of their low im-
pact on area and performance. However, they also generate excessive
heat dissipation in the scan-shift operations. We propose an approach
to reduce the average power consumption during scan-shift operations
without degrading the normal-mode performance. The proposed test
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