
Accumulator-based Generation for Serial TPG

Ioannis Voyiatzis, Costas Efstathiou
Department of Informatics, Technological Educational Institute of Athens, Greece

Abstract

Arithmetic modules can be utilized to generate test patterns

and compact test responses. In this work we investigate the

utilization of an accumulator whose inputs are driven by a

Feedback Shift Register as a candidate structure for bit-serial

test-pattern generation. The proposed scheme compares

favorably to previously proposed schemes with respect to the

length of the output sequence / hardware overhead tradeoff.

1. INTRODUCTION

Built-In Self-Test (BIST) [1]–[4] schemes reduce the need for

external testing equipment and can be used to determine faulty

parts during manufacturing and in the field. In BIST, pattern

generation and response evaluation are handled on chip with

the use of hardware structures. Arithmetic BIST [5]–[21] is

based on the use of adders, subtractors, multipliers, and shifter

modules that already exist in modern general-purpose

processors and digital signal processing units. The advantage

of arithmetic BIST is that due to the reuse of existing on-chip

modules, hardware overhead and performance degradation are

reduced.

Test-per-scan BIST is employed in sequential circuits with

scan paths, embedded cores with isolation ring, circuits with

boundary scan and portions of multichip modules, which

require the transfer of test data in a bit-serial way. The period

of the bit-serial test sequence generated by any bit position of

an accumulator accumulating a constant value is low [11],

therefore, simple arithmetic units are not efficient for bit-serial

test-pattern generation. Bit-serial test-pattern generation

schemes based on the use of adder–multiplier or accumulator–

multiplier pairs were proposed in [10]. These schemes achieve

similar fault coverage with similar number of test patterns

compared to Linear Feedback Shift Registers (LFSR) bit-

serial test-pattern generators. However, their applicability is

limited to cases in which the required configuration of the

adder–multiplier or accumulator–multiplier is available.

In [19] the modification of accumulators to operate in test

mode as nonlinear feedback shift registers was presented. The

quality of this scheme depends on the selection of a constant

additive value. However, finding an additive value to

guarantee maximum sequences requires exhaustive searching.

Furthermore, for some accumulator sizes, no additive value

that ensures maximum period of bit sequences was found. In

[20] another accumulator-based configuration is proposed that

generates a sequence with period 2
k
-1 for all values of k, the

accumulator width.

In this paper we propose an alternative bit-serial accumulator-

based scheme where the inputs of the accumulator are driven

by the outputs of an easily implemented feedback shift

register. Comparisons with the schemes in [19], [20] indicate

that the proposed here scheme results in lower hardware

overhead for the same length of the resulting sequence.

The paper is organized as follows. In Section 2 some

theoretical background is presented. In Section 3 the proposed

scheme is implemented and illustrated. In Section 4 the

scheme is compared with the previously proposed ones; in

Section 5 we conclude the work. Table 2 and Figure 3 can be

found at the end of the manuscript for layout reasons.

2. BACKGROUND

The analysis of this Section is similar to the one investigated

in [21] in a different context. First we note that if N and k are

non-negative integer numbers, then the following relation

holds (GCD and LCM denote the Greatest Common Divisor

and Least Common Multiple, respectively).

N × k = LCM(N, k) × GCD(N, k) =>
LCM N k

k

(,)
 =

N

GCD N k(,)

In the sequel, we shall denote with n the number of bits in the

number; N=2
n
, i.e. N is a power of 2. Hence, the only numbers

dividing N are 2
i
, 0<i≤n. Thus GCD(N, k)>1 if and only if k is

even, and GCD(N, k)=1 if and only if k is odd.

Lemma 1: If we start from any binary value A and

consecutively add a constant value k (modulo N) we shall

return to A in
N

GCD N k(,) cycles.

Proof: Suppose we return to A after m STEPS. Then

A + k×m ≡ A mod N => k×m ≡ 0 mod N => N×c = k×m = i

where c, i are integers. The smallest integer i satisfying the

above relation is LCM(N,k). Thus,

m =
LCM N k

k

(,)
 =

N

GCD N k(,) , Q.E.D.

Corollary 1: If we consecutively add an odd number modulo

N, then we will return to the initial value after N steps.

Corollary 1 states the well-known fact that if we repeatedly

accumulate an n-bit odd number in an n-stage accumulator we

will generate all n-bit patterns before returning to the initial

value.

Definition 1: A Sequence(k) is a sequence of all integer

numbers from 1 to k, where each number is taken exactly

once.

Note that for k>1 more than one Sequences(k) exist (in fact,

the number of Sequences(k) is 1×2×3..×k=k!) For example,

© 2015 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or
affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

PCI 2015, October 01-03, 2015, Athens, Greece
© 2015 ACM. ISBN 978-1-4503-3551-5/15/10…$15.00

DOI: http://dx.doi.org/10.1145/2801948.2801969

the Sequences(3) are {1,2,3}, {1,3,2}, {2,1,3}, {2,3,1},

{3,1,2}, {3,2,1}.

In the sequel we shall denote by Sk the sum of the values of

the elements of a Sequence(k). Sk is irrespective of the order

of the patterns in the Sequence(k) and is equal to k×(k+1)/2.

Definition 2: A Circle(k, N, A) is a sequence of vectors

generated starting from A and consecutively accumulating

(modulo N) the elements of a Sequence(k) until we return to

A after accumulating the last element of the Sequence(k).

According to the definition of the Circle, there are k! different

Circles(k, N, A) starting from the same starting value A, one

for each utilized Sequence(k). For example, let n=2 (N=4) and

k=2. The Sequences(2) are {1,2} and {2,1}. The Circles(2, 4,

0) that correspond to these sequences are presented below:

 Sequence(2)={1,2}

 A 1 2 1 2 1 2 1 2

Circle(2,4,0) 0 1 3 0 2 3 1 2 0

 Sequence(2)={2,1}

 A 2 1 2 1 2 1 2 1

Circle(2,4,0) 0 2 3 1 2 0 1 3 0

Theorem 1: If Sk is odd, a Circle(k, N, A) will return to A

(the initial value) after k×N steps,.

Proof: Let us consider an inclusive step stating when a

Sequence starts and completing when a Sequence completes.

From Lemma 1, is Sk is odd then N Sequences(k) will be

applied. Hence, since each Sequence generates k steps, the

number of applied steps is k×N. Q.E.D.

Corollary 2: A Circle(N-2, N, 0) generates (N-2)×N patterns

before returning to the initial state.

Proof: SN-2 is an odd number, since SN-2 =
() ()N N− × −1 2

2 =

() ()2 1 2 2

2

n n

− × −

= (2
n
-1)×(2

n-1
-1) which is odd as the product of

two odd numbers. Therefore the proof follows directly from

Theorem 1. Q.E.D.

For example, let us consider the case of a three bit generator.

The possible values that can be generated by an LFSR

implementing a primitive polynomial are (in decimal) 1, 2, 3,

4, 5, 6 and 7 in different arrangements. According to the

above discussion, if the sequence 1, 2, 3, 4, 5, 6 is repeatedly

applied to the inputs of a 3-stage accumulator, then a sequence

consisting of (2
n
-2)×2

n
 = 6×8= 48 patterns is generated.

Therefore, the (2
n
-2)×2

n
 sequence is non-repeated. Hence,

without need for extra control, the sequence generated is

distinct for these 2
n
×(2

n
-2) patterns.

After the above discussion, in order to generate a sequence

with period (2
n
-2)×2

n
 = (N-2) × N, we can feed an

accumulator with a Sequence(N-2). In the next Section we

shall present an implementation of the scheme along with the

design of a Non-linear Feedback Shift Register (NFSR) to

generate the Sequence(N-2). The design of the NFSR stems

from Theorem 2.

Theorem 2: If an n-stage maximal cycle external LFSR is

initialized to the pattern 011...1 and clocked until the pattern

11...10 is generated, then a Sequence(N-2) is generated at the

outputs of the LFSR.

Proof: First, note that in the sequence of vectors generated by

an external maximal cycle LFSR, if {11...1} is generated at

cycle number t, then

(a) {11...10} is generated at cycle t-1 (i.e. in the previous

cycle) and

(b) {011...1} is generated at cycle t+1 (i.e. in the next cycle).

Indeed, let P denote the vector generated at cycle t-1 and S

denote the vector generated at cycle t+1. The n-1 high-order

bits of P are 1, since they are shifted to the right (in the next

cycle) to form the n-1 low-order bits of {11...1}; the high-

order bit is 0 (since if it were 1, then no change would occur

in the LFSR); thereby, P={111...0}.

Similarly, the n-1 low-order bits of S are 1, since they were

(in the previous cycle) the n-1 high-order bits of {11...1},

which are shifted to the right. The high-order bit of S is 0

(since if it were 1, then no change in the state of the LFSR

would occur); thereby, S={011...1}.

From the above it is implied that if the LFSR is initialized to S

and clocked until P is generated, N-2 non-zero n-bit patterns

are generated (all non-zero patterns except from {11...1}).

Therefore, N-2 distinct vectors are generated, whose decimal

values are from 1 to N-2. Q.E.D.

According to Theorem 2, if an LFSR is initialized to 011...1

(=
N

2 -1 decimal) and clocked for N-2 cycles, all non-zero

vectors except 11...1 are generated. This will be exploited in

the next Section for the design of the NFSR structure.

3. Implementation

Following the results of the previous Section, the

implementation is based on a binary accumulator whose

inputs are driven by a Non-Linear Feedback Shift Register

(NFSR) than can generate the Sequence(N-2), as shown in

Figure 1.

Figure 1: NFSR-based hardware implementation

For the implementation of the NFSR that generates the

Sequences(N-2), the results of Theorem 2 are used. More

precisely, what is needed is a maximal cycle LFSR modified

in such way that it cycles through all the patterns except from

the all-1 pattern. This can be achieved by inserting gates with

(n+1) inputs in total.

For example, let us consider the 3-stage maximal cycle LFSR

presented in Figure 2(a). The NFSR of Figure 2(b) stems from

the LFSR of Figure 2(a) with the addition of gates with totally

5 inputs. If the structure of Figure 2(b) is initialized to the

pattern 011, the following sequence of vectors is repeatedly

generated: N[3:1]: {011, 101, 010, 001, 100, 110}, i.e. the

Sequence(6)={3,5,2,1,4,6}.

In Table 1 we present the sequence generated from a 3-stage

accumulator whose inputs are driven from the 3-stage NFSR

of Figure 2(b). In Table 1 in the first column we present the

cycle number; in the second column we present the value

added to the input of the accumulator; in the 3
rd
, 4

th
, 5

th

column we present the values of the output bits of the

accumulator. From Table 1 it is trivial to note that the period

of the leftmost bit is 48 (after cycle #48, the patterns 6 will be

accumulated, that will return the accumulator to state 000 and

the sequence will start from the beginning).

Table 1: Sequence generated by applying the sequence

{3, 5, 2, 1, 4, 6} in a 3-stage accumulator

Added
value

#3 #2 #1 #
Added
 value

#3 #2 #1

1 0 0 0 25 6 1 0 0

2 3 0 1 1 26 3 1 1 1

3 5 0 0 0 27 5 1 0 0

4 2 0 1 0 28 2 1 1 0

5 1 0 1 1 29 1 1 1 1

6 4 1 1 1 30 4 0 1 1

7 6 1 0 1 31 6 0 0 1

8 3 0 0 0 32 3 1 0 0

9 5 1 0 1 33 5 0 0 1

10 2 1 1 1 34 2 0 1 1

11 1 0 0 0 35 1 1 0 0

12 4 1 0 0 36 4 0 0 0

13 6 0 1 0 37 6 1 1 0

14 3 1 0 1 38 3 0 0 1

15 5 0 1 0 39 5 1 1 0

16 2 1 0 0 40 2 0 0 0

17 1 1 0 1 41 1 0 0 1

18 4 0 0 1 42 4 1 0 1

19 6 1 1 1 43 6 0 1 1

20 3 0 1 0 44 3 1 1 0

21 5 1 1 1 45 5 0 1 1

22 2 0 0 1 46 2 1 0 1

23 1 0 1 0 47 1 1 1 0

24 4 1 1 0 48 4 0 1 0

4. COMPARISONS

In order to investigate the merit of the proposed scheme we

compare it with previously proposed accumulator-based serial

sequence generators that have been proposed in the literature

[19], [20]. These schemes utilize a k-stage accumulator

comprising a properly modified adder and a register; the

modifications of the adder consists of a series of n 2-to-1

multiplexers, and one XOR gate to generate a sequence with

length. Therefore, assuming the availability of an k-stage

accumulator and considering that a multiplexer requires 1.7

gates, the hardware overhead is 1.7×k+1.3 (for [19]) and

1.7×k + 3.3 (for [20]); the resulting schemes can generate a

sequence with length 2
k
-1.

For the implementation of the proposed scheme, considering

the availability of an n-stage accumulator and the register that

will form the NFSR to feed the accumulator inputs, the

hardware overhead will be (n+1) input gates plus one XOR

gate to form the linear feedback. Therefore (we consider a

XOR gate requires 1.7 gates as is the case for the multiplexer)

the overhead is (n+1)+1.7 = n+2.7; the length of the resulting

sequence is 2
n
×(2

n
-2).

It should be noted that the values of k (for the schemes in

[19], [20]) and n (for the proposed scheme) are different. This

is due to the fact that the proposed scheme generates

sequences of the order 2
n
×(2

n
-2), while the schemes in [19],

[20] generate patterns of the order 2
k
-1.

Table 2 summarizes, for various values of the length of the

sequence, the hardware overhead of the three schemes. In

Table 2, in the first column we present the number of the

stages of the modules for [19] and [20]. In the second and

fourth column we present the length of the generated

sequence; in the third and fifth column we present their

respective hardware overhead. In the sixth through the eighth

column we present the respective data for the proposed

scheme. Finally, in the ninth column we present the decrease

in hardware presented by the proposed scheme.

From Table 2, the value of n is roughly half of k, since they

result in test lengths of the same order.

Figure 3 graphically illustrates the hardware overhead of the

various schemes as a function of the binary logarithm of L,

the length of the required sequence.

Figure 3: Accumulator-based bit-serial TPG schemes:

comparison

It should be also noted that, since the proposed scheme is

based on a smaller data path (roughly half the size of the

previously proposed schemes) the maximum operation

frequency is expected to be higher. Furthermore, in case a

large datapath is not available the proposed scheme is further

favoured. For example, if a length of 4×10
10
 is required, then

the previously proposed schemes require a 32-bit datapath,

while the proposed scheme can generate the same length with

a 16-bit datapath.

5. CONCLUSIONS

We have proposed the utilization of binary accumulators

whose inputs are fed by the output of an NFSR structure, in

order to generate bit serial patterns. Comparisons with

previously proposed accumulator-based schemes indicate that

the proposed here scheme results in considerably lower

hardware overhead for the same length of the generated

sequence.

ACKNOWLEDGMENT

This research has been co-financed by the European Union

(European Social Fund – ESF) and Greek national funds

through the Operational Program "Education and Lifelong

Learning" of the National Strategic Reference Framework

(NSRF) - Research Funding Program: Archimedes III,

Investing in knowledge society through the European Social

Fund.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital

Systems Testing and Testable Design. New York: Computer

Science, 1990.

[2] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for

VLSI:Pseudo-Random Techniques. New York: Wiley, 1987.

[3] M. Bushnell and V. Agrawal, Essentials of Electronic Testing

for Digital, Memory & MixedSignal VLSI Circuits. Boston,

MA: Kluwer, 2000.

[4] H. J. Wunderlich, “BIST for systems-on-a-chip,” Integr. VLSI

J., vol. 26, no. 1/2, pp. 55–78, Dec. 1998.

[5] J. Rajski and J. Tyszer, Arithmetic Built-In Self-Test for

Embedded Systems. Upper Saddle River, NJ: Prentice-Hall,

1998.

[6] J. Rajski and J. Tyszer, “Test response compaction in

accumulators with rotate carry adders,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 12, no. 4, pp. 531–539,

Apr. 1993.

[7] A. P. Stroele, “Test response compaction using arithmetic

functions,” in Proc. 14th IEEE VLSI Test Symp., Princeton,

NJ, Apr./May 1996, pp. 380–386.

[8] S. Gupta, J. Rajski, and J. Tyszer, “Arithmetic additive

generators of pseudo-exhaustive test patterns,” IEEE Trans.

Comput., vol. 45, no. 8, pp. 939–949, Aug. 1996.

[9] A. P. Stroele, “BIST pattern generators using addition and

subtraction operations,” J. Electron. Test.—Theory Appl., vol.

11, no. 1, pp. 69–80, Aug. 1997.

[10] J. Rajski and J. Tyszer, “Multiplicative window generators of

pseudorandom test vectors,” in Proc. Eur. Design and T est

Conf., Paris, France, Mar. 1996, pp. 42–48.

[11] A. P. Stroele, “Bit serial pattern generation and response

compaction using arithmetic functions,” in Proc. IEEE VLSI

Test Symp., Monterey, CA, Apr. 1998, pp. 78–84.

[12] I. Voyiatzis, "An Accumulator - based compaction scheme

with reduced aliasing for on-line BIST of RAMs", IEEE

Transactions on VLSI Systems, vo. 16, no. 9, September 2008,

pp. 1248-1251.

[13] S. Chiusano, S. Di Carlo, P. Prinetto, and H. J. Wunderlich,

“On applying the set covering model to reseeding,” in Proc.

Design, Automation Test Eur. Conf., Munich, Germany, Mar.

2001, pp. 156–160.

[14] D. Magos, I. Voyiatzis, S. Tarnick, “An Accumulator-Based

Test-per-clock Scheme”, IEEE Transactions on VLSI Systems,

(Volume:19 , Issue: 6), June 2011, Page(s): 1090 - 1094.

[15] I. Voyiatzis, “An ALU based BIST scheme for Word-

organized RAMs”, IEEE Transactions on Computers, vol. 57,

no. 58, May 2008, pp. 577-590.

 [16] S. Manich, L. Garcia, L. Balado, E. Lupon, J. Rius, R.

Rodriguez, and J. Figueras, “On the selection of efficient

arithmetic additive test pattern generators,” in Proc. IEEE Eur.

Test Workshop, Maastricht, The Netherlands, May 2003, pp.

9–14.

[17] I. Voyiatzis, “Test vector embedding into accumulator-

generated sequences: A linear-time solution,” IEEE Trans.

Comput., vol. 54, no. 4, pp. 476–484, Apr. 2005.

[18] I. Voyiatzis, “Aliasing Reduction in Accumulator-based

Response Verification”, Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on (Volume: 33 ,

Issue: 11), Page(s): 1746 – 1750.

 [19] G. Dimitrakopoulos, D. Nikolos, D. Bakalis, "Bit-Serial Test

Pattern Generation by an Accumulator Behaving as a Non-

Linear Feedback Shift Register", 8th IEEE International On-

Line Testing Workshop, Isle of Bendor, France, July 8-10,

2002

[20] D. Kagaris, P. Karpodinis, D. Nikolos: On Obtaining

Maximum-Length Sequences for Accumulator-Based Serial

TPG. IEEE Trans. on CAD of Integrated Circuits and Systems

25(11): 2578-2586 (2006)

[21] I. Voyiatzis, A. Paschalis, D. Nikolos, C. Halatsis,

“Accumulator-based BIST Approach for two-pattern testing”,

Journal of Electronic Testing: Theory and Applications,

Volume 15, Issue 3 (December 1999), pp. 267 - 278.

Figure 2: 3-stage LFSR and corresponding NFSR

Table 2: Comparisons

[19] [20] Proposed

k Length h/w Length h/w n Length h/w %Decr

6 63 12 63 14 3 48 6 65%

8 255 15 255 17 4 224 7 66%

10 1.023 18 1.023 20 5 960 8 67%

12 4.095 22 4.095 24 6 3.968 9 68%

14 16.383 25 16.383 27 7 16.128 10 68%

16 65.535 29 65.535 31 8 65.024 11 68%

18 262.143 32 262.143 34 9 261.120 12 68%

20 1.048.575 35 1.048.575 37 10 1.046.528 13 69%

22 4.194.303 39 4.194.303 41 11 4.190.208 14 69%

24 16.777.215 42 16.777.215 44 12 16.769.024 15 69%

26 67.108.863 46 67.108.863 48 13 67.092.480 16 69%

28 268.435.455 49 268.435.455 51 14 268.402.688 17 69%

30 1073.741.823 52 1.073.741.823 54 15 1.073.676.288 18 69%

32 4.294.967.295 56 4.294.967.295 58 16 4.294.836.224 19 69%

34 17.179.869.183 59 17.179.869.183 61 17 17.179.607.040 20 69%

36 68.719.476.735 63 68.719.476.735 65 18 68.718.952.448 21 69%

38 274.877906.943 66 274.877.906.943 68 19 274.876.858.368 22 70%

