Hypothesis testing

E. Papageorgiou, G. Katsouleas

University of West Attica

June 17, 2024

∃⇒

Introduction

Means comparisons

- Single sample mean test
- Independent samples means comparison
- Non-parametric alternatives in SPSS: Mann-Whitney U
- Dependent samples means comparison
- Non-parametric alternatives in SPSS: Wilkoxon's signed rank test

3 Proportion & Variance tests

Analysis of Variance

• Non-parametric alternatives in SPSS: Kruskal-Wallis test

- Hypothesis testing is a data-based decision procedure that can produce a conclusion about some system.
- A statistical hypothesis is an assertion or conjecture concerning one or more populations.
- The null hypothesis, denoted by H_0 , is a tentative assumption about some population parameter.
- The alternative hypothesis, denoted by H_1 , is the opposite of what is stated in the null hypothesis. (usually set to what the test is attempting to establish):

2-sided
$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta \neq \theta_0 \end{cases}, \quad \text{left-sided} \begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta < \theta_0 \end{cases}, \quad \text{right-sided} \begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta > \theta_0 \end{cases}$$

• The conclusion that the research hypothesis is true is based on sample data that contradict the null hypothesis and is not reached with absolute certainty.

Type I and Type II errors

- Because hypothesis tests are based on sample data, we must allow for the possibility of errors.
- A Type I error is rejecting H₀ when it is true. The probability of making a Type I error when the null hypothesis is true as an equality is called level of significance:

$$\alpha = P(\text{reject } H_0 | H_0 \text{ true})$$

- Applications of hypothesis testing that only control the Type I error are often called significance tests.
- A Type II error is accepting β_0 when it is false:

 $\beta = P(\text{accept } H_0 | H_0 \text{ false})$

- It is difficult to control for the probability of making a Type II error. Statisticians avoid the risk of making a Type II error by using "do not reject H₀" and not "accept H₀".
- Power of a test is defined by

$$\gamma = 1 - \beta = P(\text{reject } H_0 | H_0 \text{ false})$$

• Computation of β and γ depends on the actual value of a population parameter.

	Null hypothesis is TRUE	Null hypothesis is FALSE
Reject null	Type I Error	Correct outcome!
hypothesis	(False positive)	(True positive)
Fail to reject	Correct outcome!	Type II Error
null hypothesis	(True negative)	(False negative)

≣ ▶ = ≣

Representation of Type I and Type II errors

- Develop the null and alternative hypotheses.
- Specify the level of significance α (typically, $\alpha = 0.01, 0.05$ or 0.10).
- Collect the sample data and compute the test statistic. This is function of the data and should have a known distribution under *H*₀.
- Critical value approach:
 - $\bullet\,$ Use the level of significance α to specify the rejection region.
 - H_0 is rejected whenever the test statistic falls within the rejection region.
- *p*-value approach:
 - Use the value of the test statistic to compute the corresponding *p*-value. This is the probability of observing such an extreme test statistic value as the one obtained by the sample data. Hence, for a Z-test and computed statistic *z**, the corresponding *p*-value is given by:

$$p - \text{value} = \begin{cases} P(Z > |z^*|| H_0 \text{ true}), \text{ for 1-sided tests} \\ 2 \cdot P(Z > |z^*|| H_0 \text{ true}), \text{ for 2-sided tests} \end{cases}$$

• H_0 is rejected whenever p - value $\leq \alpha$.

Sampling distribution of mean (birthweights)

E. Papageorgiou, G. Katsouleas (UniWA

Hypothesis testing

June 17, 2024

э

8 / 81

Sampling distribution of mean (birthweights) - 2

Sampling distribution of \overline{X} over 200 samples of size 10 selected from the population of 1000 birthweights given in Table 6.2 (100 = 100.0–100.9, etc.)

$$\overline{X} \sim \mathcal{N}(\mu_{\overline{X}}, \sigma_{\overline{X}}^2), \text{ where } \mu_{\overline{X}} = \mu, \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

with μ , σ the relevant population parameters and *n* sample size.

Sampling distributions of median and average of extreme observations have larger variance

Sampling distributions of mean for increasing sample size

E. Papageorgiou, G. Katsouleas (UniWA

Hypothesis testing

· ব্≣াব্য আ June 17, 2024 11 / 81

Five random samples of size 10 from the population of infants

	Sample					
Individual	1	2	3	4	5	
1	97	177	97	101	137	
2	117	198	125	114	118	
3	140	107	62	79	78	
4	78	99	120	120	129	
5	99	104	132	115	87	
6	148	121	135	117	110	
7	108	148	118	106	106	
8	135	133	137	86	116	
9	126	126	126	110	140	
10	121	115	118	119	98	
\overline{x}	116.90	132.80	117.00	106.70	111.90	
S	21.70	32.62	22.44	14.13	20.46	

Collection of 95%-C.I.'s for the mean μ computed from repeated samples

Single sample tests

Image: Image:

B → B

Single sample mean test: Variance known case

Variance known

Hypotheses	Test statistic	Reject H_0 , whenever	
$\int H_0: \mu = \mu_0$	$Z = \frac{\overline{x} - \mu_{0}}{\frac{\sigma}{\sqrt{n}}}$	$ Z > z_{\alpha/2}$	
$H_1: \mu \neq \mu_0$	$\Sigma = -\frac{\sigma}{\sqrt{n}}$	$ \mathbf{Z} > \mathbf{Z}_{\alpha/2}$	
$\int H_0: \mu = \mu_0$	$7 = \overline{\mathbf{x}} - \mu_{0}$	$Z > z_{\alpha}$	
$H_1: \mu > \mu_0$	$Z = \frac{\overline{x} - \mu_{0}}{\frac{\sigma}{\sqrt{n}}}$	$L > L_{\alpha}$	
$\int H_0: \mu = \mu_0$	$\overline{\mathbf{z}} = \overline{\mathbf{x}} - \mu 0$	$Z < -z_{\alpha}$	
$\begin{cases} H_{0}: \mu = \mu_{0} \\ H_{1}: \mu \neq \mu_{0} \\ H_{0}: \mu = \mu_{0} \\ H_{1}: \mu > \mu_{0} \\ H_{0}: \mu = \mu_{0} \\ H_{1}: \mu < \mu_{0} \end{cases}$	$Z = \frac{\overline{x} - \mu_{0}}{\frac{\sigma}{\sqrt{n}}}$	$Z < -Z_{\alpha}$	

Critical values for the most usual significance levels:

Z0.005	2.58
Z0.01	2.33
<i>Z</i> 0.025	1.96
Z _{0.05}	1.645
<i>z</i> _{0.1}	1.285

Application: For a sample of 16 early and late stage head and neck cancer patients, Ki-67 values (a measure of cell proliferation) are obtained from tissue biopsies. The goal is to compare this sample to a reference population, one with a mean Ki-67, μ_{Ki-67} , of 42% and a known standard deviation, σ_{Ki-67} , of 3%.

- Compute the power of the left-tailed test with $\alpha = 0.05$ when the true value of the population mean is 40%.
- What is the conclusion of the left-tailed test for the following sample?

Ki-67 values								
	37%	39%	41%	39%	38%	38%	41%	40%

If the power of test in (1) is deemed too low, how should the sample size be modified, so as to obtain a power level of 0.90?

Single sample with known σ : Power computation application

Solution:

We calculate the power of the test

$$\left\{ egin{array}{l} {\it H_0}:\mu=42\%;\ {\it H_1}:\mu<42\% \end{array}
ight.$$

with with significance $\alpha = 0.05$ when the population mean is in fact $\mu = 0.40\%$:

$$B(0.40) = P(\operatorname{Accept} H_0 | \mu = 0.40) = P(Z > -z_\alpha | \mu = 0.40)$$

$$= P\left(\frac{\overline{x} - 0.42}{\sigma/\sqrt{n}} > -z_\alpha | \mu = 0.40\right) = P\left(\overline{x} > 0.42 - z_\alpha \frac{\sigma}{\sqrt{n}} | \mu = 0.40\right)$$

$$= P\left(\underbrace{\frac{\overline{x} - 0.40}{\sigma/\sqrt{n}}}_{\sim \mathcal{N}(0,1)} > \frac{0.42 - z_\alpha \frac{\sigma}{\sqrt{n}} - 0.40}{\sigma/\sqrt{n}} = \frac{0.02}{\sigma/\sqrt{n}} - z_\alpha\right)$$

$$= 1 - \Phi\left(\frac{0.02}{\sigma/\sqrt{n}} - z_\alpha\right) = 1 - \Phi\left(\frac{0.02}{0.03/\sqrt{16}} - z_{0.05}\right) = 1 - \Phi\left(1.021\right)$$

$$\Rightarrow \operatorname{Power}(0.40) = 1 - \beta(0.40) = \Phi\left(1.021\right) = 0.8465$$

Single sample with known σ : Power computation application (2)

Solution:

2 For the test

$$\begin{cases} H_0: \mu = 42\%; \\ H_1: \mu < 42\%, \end{cases}$$

we compute

$$Z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{0.4069 - 0.42}{\frac{0.03}{\sqrt{16}}} = -1.75$$

The corresponding rejection region is $(-\infty, -z_{\alpha}) = (-\infty, -1.645)$ such that $-1.75 \in (-\infty, -1.645)$.

Hence, the null hypothesis is rejected at the significance level of $\alpha = 0.05$.

Single sample with known σ : Power computation application (3)

Solution:

3 We need

Power(0.40) =
$$0.90 \Rightarrow 1 - \beta(0.40) = 0.90 \Rightarrow \beta(0.40) = 0.10.$$

On the other hand, we have seen

$$\beta(0.40) = 1 - \Phi\left(\frac{0.02}{\sigma/\sqrt{n}} - z_{\alpha}\right) = 1 - \Phi\left(\frac{0.02}{0.03}\sqrt{n} - z_{0.05}\right).$$

Combining the previous expressions, we have

$$1 - \Phi\left(\frac{0.02}{0.03}\sqrt{n} - 1.645\right) = 0.10 \Rightarrow \Phi\left(\underbrace{\frac{2}{3}\sqrt{n} - 1.645}_{=z_{0.10}}\right) = 0.90$$

Hence, $\sqrt{n} = (1.645 + z_{0.10}) \frac{3}{2} = 4.38 \Rightarrow \sqrt{n} = 4.3862 \Rightarrow n = 19.27.$

Note: For power computations (including power curve generation) for the analogue left-/right-/two-sided Z-tests of this example, refer to the uploaded excel file

E. Papageorgiou, G. Katsouleas (UniWA

Hypothesis testing

Two sided hypotheses tests and confidence intervals

Hypotheses	Test statistic	Reject H_0 , whenever
$\begin{cases} H_0: \mu = \mu_0 \\ \mu = \mu_0 \end{cases}$	$Z = \frac{\overline{x} - \mu_0}{\sigma}$	$ Z > z_{\alpha/2}$
$H_1: \mu eq \mu_0$	\sqrt{n}	

Hence, H_0 is accepted whenever

$$\begin{aligned} -z_{\alpha/2} < Z < z_{\alpha/2} \\ -z_{\alpha/2} < \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} < z_{\alpha/2} \\ \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu_0 < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{aligned}$$

Hence,

 $H_{0}: \mu = \mu_{0}$ is accepted at a significance level of α

precisely when the hypothesised value

$$\mu_0 \in (1-\alpha)\% - \mathsf{C.I.}$$

Variance unknown

Hypotheses	Test statistic	Reject H_0 , whenever	
$\begin{cases} H_{0}: \mu = \mu_{0} \\ H_{1}: \mu \neq \mu_{0} \\ H_{0}: \mu = \mu_{0} \\ H_{1}: \mu > \mu_{0} \\ H_{0}: \mu = \mu_{0} \\ H_{1}: \mu < \mu_{0} \end{cases}$	$t = \overline{x - \mu_0}$	$ t >t_{lpha/2;n-1}$	
$H_1: \mu \neq \mu_0$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$	$ \mathbf{c} > \mathbf{c}_{\alpha/2;n-1}$	
$\int H_0: \mu = \mu_0$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$	$t > t_{\alpha:n-1}$	
$H_1: \mu > \mu_0$	$\frac{3}{\sqrt{n}}$		
$\int H_0: \mu = \mu_0$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$	$t < -t_{\alpha:n-1}$	
$(H_1: \mu < \mu_0)$	$\frac{1}{\sqrt{n}}$		

э

Single sample test in SPSS

Using the data in Slide #10:

istics Data Editor

1	Analyze Direct Marketing	Graph	s <u>U</u> tilities Add- <u>o</u> ns <u>W</u> indow <u>H</u> elp
	Reports		\ IIII 🐺 📼 🗠 🎹
_	Descriptive Statistics		
_	Tables		Values Missing Columns
_	Co <u>m</u> pare Means	- F	Means
-	General Linear Model	۰.	I One-Sample T Test
-	Generalized Linear Mo	dels ▶	Independent-Samples T Test
	Mixed Models		Paired-Samples T Test
	Correlate	- F	One-Way ANOVA
	Regression	- F	One-way ANOVA
	L <u>o</u> glinear		
	Neural Networks		
_	Classify		
_	Dimension Reduction		
_	Scale		
-	Nonparametric Tests		
	Forecasting		
	Survival		
	Multiple Response		
	💯 Missing Value Analysis	i	
	Multiple Imputation		
	Complex Samples		
	Quality Control		
_	ROC Curve		

3

Single sample test in SPSS: Output

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
Ki67	16	,4069	,02983	,00746

One-Sample Test

	Test Value = 0.42						
				Mean	95% Confidence Differ		
	t	df	Sig. (2-tailed)	Difference	Lower	Upper	
Ki67	-1,760	15	,099	-,01312	-,0290	,0028	

Note that in this instance, for the left-sided test, we have the critical value

$$t_{0.05;15} = -1,75.$$

(Corresponding *p*-value for one-sided test is $0.099/2 \approx 0.05$.)

Independent samples tests

э

- The previous analysis may be extended to two groups.
- Denote μ_1 and μ_2 the respective means of the two populations.
- Note a difference between the two populations exists whenever μ₁ − μ₂ ≠ 0. This difference is the parameter to be estimated.
- We select two independent samples from the two populations: say n_1 cases from Group 1 and n_2 cases from Group 2.

25 / 81

Independent samples

- We select two independent samples from the two populations: say n_1 cases from Group 1 and n_2 cases from Group 2.
 - 1st Sample: $x_1^{(1)}, x_2^{(1)}, \ldots, x_{n_1}^{(1)}$ (from a population of mean μ_1 and standard deviation σ_1)
 - 2nd Sample: $x_1^{(2)}, x_2^{(2)}, \dots, x_{n_2}^{(2)}$ (from a population of mean μ_2 and standard deviation σ_2)
 - After data collection, compute:

	Sample 1	Sample 2
Sample size	<i>n</i> ₁	<i>n</i> ₂
Sample mean	\overline{x}_1	\overline{x}_2
Sample standard deviation	<i>s</i> ₁	<i>s</i> ₂

- The quantity $\overline{x}_1 \overline{x}_2$ is an unbiased estimator of $\mu_1 \mu_2$
- The variance of this estimator is $\frac{\sigma_1^2}{\rho_1} + \frac{\sigma_2^2}{\rho_2}$

Independent samples with known σ_1, σ_2

Hypotheses	Test statistic	Reject H_0 , whenever
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$	$Z = \frac{\overline{x_1 - \overline{x_2}}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$ Z > z_{\alpha/2}$
$\begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 > 0 \end{cases}$	$Z = \frac{\overline{x_1 - \overline{x_2}}}{\sqrt{\sigma_1^2 - \sigma_2^2}}$	$Z > z_{\alpha}$
$\begin{cases} \mu_1 : \mu_1 - \mu_2 > 0 \\ H_0 : \mu_1 - \mu_2 = 0 \\ H_1 : \mu_1 - \mu_2 < 0 \end{cases}$	$7 = \frac{\overline{x_1} - \overline{x_2}}{\overline{x_1} - \overline{x_2}}$	$Z < -z_{\alpha}$
$\Big(H_1:\mu_1-\mu_2<0$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	_ ζ -α

Critical values for the most usual α levels:

Z0.005	2.58
Z0.01	2.33
Z0.025	1.96
Z _{0.05}	1.645
<i>Z</i> _{0.1}	1.285

э

 As the standard deviations of the two populations are unknown, they are estimated by the sample standard deviations s₁ και s₂.

Hypotheses	Test statistic	Reject H_0 , whenever
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$	$Z = \frac{\bar{x}_{1} - \bar{x}_{2}}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{s_{1}^{2} + s_{2}^{2}}}}$	$ Z > z_{\alpha/2}$
$\begin{cases} H_1 : \mu_1 - \mu_2 = 0 \\ H_1 : \mu_1 - \mu_2 > 0 \end{cases}$	$7 - \overline{x_1} - \overline{x_2}$	$Z > z_{\alpha}$
$\begin{cases} H_1 : \mu_1 - \mu_2 > 0 \\ H_0 : \mu_1 - \mu_2 = 0 \\ H_1 : \mu_1 - \mu_2 < 0 \end{cases}$	$Z = \frac{1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $Z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{x_1}{n_1} + \frac{x_2}{n_2}}}$	$Z < -z_{\alpha}$
$\Big(H_1: \mu_1 - \mu_2 < 0$	$\frac{z}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$\mathbf{z} \leq \mathbf{z}\alpha$

Small samples with unknown σ_1, σ_2

- Consider small samples from two populations; i.e., $n_1 < 30$ and/or $n_2 < 30$.
- We assume that both populations are normally distributed.
- Whenever σ_1 , σ_2 are unknown, these are estimated by sample standard deviations $s_1 \kappa \alpha \iota s_2$.
- We assume that the variances of the two populations are equal: $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
- Under the previous assumptions, the quantity x
 ₁ x
 ₂ is normally distributed, independently of sample sizes.
- Combining data from both samples, we obtain the "pooled" estimator of σ^2 : $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$

• Note that for $n_1 = n_2$, we have $s_p^2 = \frac{s_1^2 + s_2^2}{2}$

Hypotheses	Test statistic	Reject H_0 , whenever		
$\int H_0: \mu_1 - \mu_2 = 0$	$t = \underline{\overline{x_1}} - \overline{\overline{x_2}}$	$ t >t_{lpha/2;n_{1}+n_{2}-2}$		
$iggl(H_1: \mu_1 - \mu_2 eq 0$	$t = \frac{\overline{x_1} - \overline{x_2}}{\frac{s_p}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$	$ l > l_{\alpha/2;n_1+n_2-2}$		
$\int H_0: \mu_1 - \mu_2 = 0$	$t = \overline{x_1} - \overline{x_2}$	$t > t_{\alpha;n_1+n_2-2}$		
$\Big)H_1:\mu_1-\mu_2>0$	$\iota = \frac{1}{\frac{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$	$\iota > \iota_{\alpha;n_1+n_2-2}$		
$\int H_0: \mu_1 - \mu_2 = 0$	$+ - \overline{x_1} - \overline{x_2}$	+ < +		
$\begin{cases} H_0 : \mu_1 - \mu_2 = 0\\ H_1 : \mu_1 - \mu_2 \neq 0\\ H_0 : \mu_1 - \mu_2 = 0\\ H_1 : \mu_1 - \mu_2 > 0\\ H_0 : \mu_1 - \mu_2 = 0\\ H_1 : \mu_1 - \mu_2 < 0 \end{cases}$	$L = \frac{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}{\frac{1}{n_1} + \frac{1}{n_2}}$	$t < -t_{\alpha;n_1+n_2-2}$	æ	<u>୬</u> ବ୍ଚ
G Katsouleas (UniWA	Hypothesis testing	lune 17 2024		29 / 81

E. Papageorgiou, G. Katsouleas (UniWA

C.I. for mean difference in small samples with unknown but equal $\sigma_1=\sigma_2$

Hypotheses	Test statistic	Reject H_0 , whenever
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$	$t = \frac{\overline{x_1} - \overline{x_2}}{\frac{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$	$ t >t_{lpha/2;n_1+n_2-2}$
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 > 0 \end{cases}$	$t = \frac{\overline{x}_1 - \overline{x}_2}{\frac{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$	$t > t_{lpha;n_1+n_2-2}$
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 < 0 \end{cases}$	$t = \frac{\overline{x_1} - \overline{x_2}}{\frac{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}}$	$t < -t_{lpha;n_1+n_2-2}$

• $(1 - \alpha)$ %-C.I. for the mean difference $\mu_1 - \mu_2$:

$$(\overline{x}_1 - \overline{x}_2) \pm s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{\alpha/2;n_1+n_2-2}$$

 Note that whenever 0 does not lie within the (1 – α)%-C.I. for the mean difference, then the null hypothesis in the 2-tailed test is rejected at a significance level of α.

C.I. for mean difference in small samples with unknown and different σ_1,σ_2

Hypotheses	Test statistic	Reject H_0 , whenever
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 \neq 0 \end{cases}$	$t = \underline{\overline{x_1}} - \overline{\overline{x_2}}$	$ t > t_{lpha/2;df}$
$igl(H_1: \mu_1 - \mu_2 eq 0$	$l = \frac{1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$ \mathbf{c} > \mathbf{c}_{\alpha/2}; dt$
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 > 0 \end{cases}$	$+ - \overline{x_1} - \overline{x_2}$	+ \ +
$iggl(H_1:\mu_1-\mu_2>0$	$L = \frac{1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$t>t_{lpha;df}$
$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 < 0 \end{cases}$	$+ - \overline{x_1} - \overline{x_2}$	+ / +
$\int H_1: \mu_1 - \mu_2 < 0$	$L = \frac{1}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$t < -t_{lpha/2;df}$

• Critical values that define the above rejection regions are found under *t*-distributions with degrees of freedom given by:

$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

Mean comparison in independent (small) samples with unknown but equal $\sigma_1 = \sigma_2$: Application

Application:

- A new antipyretic is being tested on two groups; Group 1 (20 cases) is given the new drug, Group 2 (18 cases) is given an older medication.
- Temperature data on the 38 patients are given in the next slide.
- Test whether the mean temperature in the two groups coincide or not ($\alpha = 0.05$).

Temperature data

	_
Ομάδα Α	Ομάδα Β
38,40	40,90
36,80	39,50
40,00	39,40
39,80	38,20
38,60	39,70
39,10	38,90
38,90	38,60
36,80	39,90
40,40	41,30
39,40	38,10
38,00	39,60
38,60	37,10
40,10	39,50
38,10	40,30
37,20	41,50
39,50	39,30
37,30	37,60
39,10	40,60
39,90	
37,80	

E. Papageorgiou, G. Katsouleas (UniWA

June 17, 2024

Image: Image:

æ

Mean comparison in independent (small) samples with unknown but equal $\sigma_1 = \sigma_2$: Application solution

• 2-tailed hyptheses: $\begin{cases} H_0 : \mu_1 - \mu_2 = 0 \\ H_1 : \mu_1 - \mu_2 \neq 0, \end{cases}$ two populations.

where μ_1, μ_2 mean temperatures in the

Test statistic:

$$t=\frac{\overline{x}_1-\overline{x}_2}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}},$$

where

$$s_{\rho}^{2} = \frac{(n_{1}-1)s_{1}^{2}+(n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2}.$$

Hence, we have to compute the quantities

$$\overline{x}_{1} = \frac{\sum_{j=1}^{n_{1}} x_{j}^{(1)}}{n_{1}}, \quad s_{1}^{2} = \frac{1}{n_{1} - 1} \left(\sum_{j=1}^{n_{1}} \left(x_{j}^{(1)} \right)^{2} - \frac{\left(\sum_{j=1}^{n_{1}} \left(x_{j}^{(1)} \right) \right)^{2}}{n_{1}} \right)$$

and

$$\overline{\mathbf{x}}_{2} = \frac{\sum_{j=1}^{n_{2}} \mathbf{x}_{j}^{(2)}}{n_{2}}, \quad s_{2}^{2} = \frac{1}{n_{2} - 1} \left(\sum_{j=1}^{n_{2}} \left(\mathbf{x}_{j}^{(2)} \right)^{2} - \frac{\left(\sum_{j=1}^{n_{2}} \left(\mathbf{x}_{j}^{(2)} \right) \right)^{2}}{n_{2} + \frac{n_{2}}{2} + \frac{n_{2}}{2} + \frac{n_{2}}{2}} \right).$$

E. Papageorgiou, G. Katsouleas (UniWA

Hypothesis testing

June 17, 2024

a >

34

Computations for application

	x_j(1)	x_j^(1)*x_j′	⁽¹⁾	x_j(2)	x_j^(2)*x_j^(2)
	38,40	1.474,56		40,90	1.672,81
	36,80	1.354,24		39,50	1.560,25
	40,00	1.600,00		39,40	1.552,36
	39,80	1.584,04		38,20	1.459,24
	38,60	1.489,96		39,70	1.576,09
	39,10	1.528,81		38,90	1.513,21
	38,90	1.513,21		38,60	1.489,96
	36,80	1.354,24		39,90	1.592,01
	40,40	1.632,16		41,30	1.705,69
	39,40	1.552,36		38,10	1.451,61
	38,00	1.444,00		39,60	1.568,16
	38,60	1.489,96		37,10	1.376,41
	40,10	1.608,01		39,50	1.560,25
	38,10	1.451,61		40,30	1.624,09
	37,20	1.383,84		41,50	1.722,25
	39,50	1.560,25		39,30	1.544,49
	37,30	1.391,29		37,60	1.413,76
	39,10	1.528,81		40,60	1.648,36
	39,90	1.592,01	ΑΘΡΟΙΣΜ	710,00	28.031,00
	37,80	1.428,84			
ΑΘΡΟΙΣΜΑ	773,80	29.962,20			

June 17, 2024

∃ ► < ∃ ►</p>

æ

Mean comparison in independent (small) samples with unknown but equal $\sigma_1 = \sigma_2$: Application solution

• For Group 1, we have

$$\overline{x}_1 = \frac{\sum_{j=1}^{n_1} x_j^{(1)}}{n_1} = \frac{773.80}{20} = 38.69$$

and

$$s_{1}^{2} = \frac{1}{n_{1} - 1} \left(\sum_{j=1}^{n_{1}} \left(x_{j}^{(1)} \right)^{2} - \frac{\left(\sum_{j=1}^{n_{1}} \left(x_{j}^{(1)} \right) \right)^{2}}{n_{1}} \right) = \frac{1}{19} \left(29962.2 - \frac{773.8^{2}}{20} \right) = 1.257$$

For Group 2, we have

$$\overline{x}_2 = \frac{\sum_{j=1}^{n_2} x_j^{(2)}}{n_2} = \frac{710.0}{18} = 39.44$$

and

$$s_{2}^{2} = \frac{1}{n_{2} - 1} \left(\sum_{j=1}^{n_{2}} \left(x_{j}^{(2)} \right)^{2} - \frac{\left(\sum_{j=1}^{n_{2}} \left(x_{j}^{(2)} \right) \right)^{2}}{n_{2}} \right) = \frac{1}{17} \left(28031 - \frac{710^{2}}{18} \right) = 1.497$$

Mean comparison in independent (small) samples with unknown but equal $\sigma_1 = \sigma_2$: Application solution

• 2-tailed hypotheses: $\begin{cases} H_0 : \mu_1 - \mu_2 = 0\\ H_1 : \mu_1 - \mu_2 \neq 0, \end{cases}$ the two populations.

where μ_{1},μ_{2} the mean temperatures in

• Test statistic:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{38.69 - 39.44}{\sqrt{1.37} \sqrt{\frac{1}{20} + \frac{1}{18}}} = -2.00,$$

where

$$s_{\rho}^{2} = \frac{(n_{1}-1)s_{1}^{2} + (n_{2}-1)s_{2}^{2}}{n_{1}+n_{2}-2} = \frac{(20-1)1.257 + (18-1)1.497}{20+18-2} = 1.37.$$

• Rejection region: $|t| > t_{\alpha/2;n_1+n_2-2} = t_{0.025;36} = 2.028$

Evidently,

$$|t| = 2.00 < t_{0.025;36} = 2.028.$$

Thus, the test statistic does not lie in the rejection region and we cannot reject H_0 at a level of significance of 0.05.

Independent samples test in SPSS: Variables & Data

	Name	Type	Width	Decimals	Label	Values	Missing	Columns		Measure	Role
1	temp	Numeric	8	2	Temperature	None	None	8	Right	🛷 Scale	🖒 Input
2	group	Numeric	8	0	Treatment	{1, New dru	None	8	📲 Right	🚴 Nominal	🖒 🖌 Input
3											
4						talue Label	5				×
5										-	
6										Spel	ling
7						Value Labels					_
8						-					
9						Value -		Label			+
10						1		New drug			
11						2		Older med	lication		\times
12						1					
13						1					
14						1					
15						1					
16											
17											
18											
19						1	OK	Reset	Cancel	elp	
20						1			نا تنسب		

	🛷 temp	_{nou} grou	ıp	١			
1	38,40		1				
2	36,80		1				
3	40,00		1				
4	39,80		1				
5	38,60		1				
6	39,10		1				
7	38,90		1				
8	36,80		1				
9	40,40		1				
10	39,40		1				
11	38,00		1				
12	38,60		1				
13	40,10		1				
14	38,10		1				
15	37,20		1				
16	39,50		1				
17	37,30		1				
18	39,10		1				
19	39,90		1				
20	37,80		1				
21	40,90		2				
22	39,50		2				
	<						
Over	view Data	View	Variab	le			

Independent samples test in SPSS

.005	003 D'010 C	CHOOL					
m	Analyze	Direct Marketing	Graph	s <u>U</u> tilities	Add-ons	Window	Help
~	Reg	orts		× -			
	D <u>e</u> s	criptive Statistics					
	Tab	les					
oup	Con	npare Means	- F	M Means			r
Gro	Gen	ieral Linear Model		One-Sa	ample T Te	st	
Gro	Gen	ieralized Linear Mo	dels ▶	Indene	ndent-Sam	ples T Test	
Gro Gro	Mixe	ed Models		Paired	-		-
Gre	Con	relate		One-W			
Gre	Reg	ression		Cue-w	ay ANOTA.	-	
Gre	Log	linear					
Gro	Neu	ıral Net <u>w</u> orks					
Gro	Clas	ssify	•				
Gro	Dim	ension Reduction					
Gro	Sca	le					
Gro	Non	parametric Tests					
Gre	Fore	ecasting					
Gre	Sun						
Gro Gro	-	tiple Response	•				
Gre	💋 Miss	sing Value Analysis					
Gro	Mult	tiple Imputation					
Gro	Con	nplex Samples					
Gro	Qua	ility Control					
Gro	ROC ROC	C Curve					

E. Papageorgiou, G. Katsouleas (UniWA

э

Group Statistics

	Group	Ν	Mean	Std. Deviation	Std. Error Mean
Temperature	Group 1	20	38,6900	1,12104	,25067
	Group 2	18	39,4444	1,22341	,28836

Independent Samples Test

Levene's Test for Equality of Variances				t-test for Equality of Means						
							Mean	Std. Error	95% Confidenc Differ	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Temperature	Equal variances assumed	,000	,994	-1,984	36	,055	-,75444	,38029	-1,52570	,01681
	Equal variances not assumed			-1,975	34,681	,056	-,75444	,38208	-1,53037	,02148

C.I. Visualization in SPSS

(a)

C.I. Visualization in SPSS

Power Analysis	>
Meta Analysis	> Window Help
Reports	Search ag
Δ	
Descriptive Statistics	>
Bayesian Statistics	> var var var
Ta <u>b</u> les	>
Compare Means and Propo	rtions >
General Linear Model	>
Generalized Linear Models	>
Mixed Models	>
<u>C</u> orrelate	>
Regression	>
L <u>o</u> glinear	>
Neural Networks	>
Classify	>
Dimension Reduction	> · · · · · · · · · · · · · · · · · · ·
Mapping	>
Sc <u>a</u> le	>
Nonparametric Tests	> <u>O</u> ne Sample
Forecasting	Independent Samples
Survival	Related Samples

- An essential assumption for the independent samples t-test is that the values of the scale variable should be distributed according to the normal distribution in each of the two independent samples. (Partition of the data in the respective sets is easily accomplished, using the Explore procedure of SPSS.)
- To assess normality, consider the various visual

and statistical procedures, namely:

- Superposition of the normal curve on histograms in the two samples.
- PP/QQ plots.
- The distribution should be mesokyrtic and not skewed (i.e., corresponding skewness/kyrtosis statistics, normalized by their respective standard errors, should not exceed 2 in absolute value).
- Kolmogorov–Smirnov test, Shapiro–Wilk test.
- Should these fail, a non-parametric alternative provided in SPSS is Mann-Whitney's U.

Mann-Whitney test

Nonparametric Tests

[DataSet1]

Hypothesis Test Summary

	Null Hypothesis	Test	Sig. ^{a,b}	Decision
1	The distribution of Temperature is the same across categories of Treatment.	Independent-Samples Mann- Whitney U Test	,082°	Retain the null hypothesis.

a. The significance level is ,050.

b. Asymptotic significance is displayed.

c. Exact significance is displayed for this test.

Independent-Samples Mann-Whitney U Test

Temperature across Treatment

Independent-Samples Mann-Whitney U Test Summary

Total N	38
Mann-Whitney U	240,000
Wilcoxon W	411,000
Test Statistic	240,000
Standard Error	34,179
Standardized Test Statistic	1,755
Asymptotic Sig.(2-sided test)	,079
Exact Sig.(2-sided test)	,082

Independent-Samples Mann-Whitney U Test

Treatment

44 / 81

Paired means comparison

э

Paired means comparison

- With paired samples, the observations in the two groups are matched in a meaningful way. These are also known as dependent samples.
- Most often this occurs when data are collected twice from the same participants, called repeated measures ("prior" and "post").
- Paired data does not always need to involve two measurements on the same subject; it can also involve taking one measurement on each of two related subjects. For example, we may study husband-wife pairs, mother-son pairs, or pairs of twins.
- Using data from a sample with *n* cases for the two scale variables *X*, *Y*, we let Z = X Y and compute $\overline{z} = \overline{x} \overline{y}$ and s_z .

Hypotheses	Test statistic	Reject H_0 , whenever
$\int H_0: \mu_1 - \mu_2 = 0$	$t - \overline{z}$	$ t >t_{lpha/2;n-1}$
$iggl(H_1: \mu_1 - \mu_2 eq 0$	$t = \frac{z}{\frac{s_z}{\sqrt{n}}}$	$ \mathbf{c} > \mathbf{c}_{\alpha/2;n-1}$
$\int H_0: \mu_1 - \mu_2 = 0$	t —	$t > t_{\alpha:n-1}$
$iggl(H_1: \mu_1-\mu_2>0$	$t = \frac{z}{\frac{s_z}{\sqrt{n}}}$	$\iota > \iota_{\alpha;n-1}$
$\int H_0: \mu_1 - \mu_2 = 0$	+	$t < -t_{lpha:n-1}$
$\begin{cases} H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 \neq 0 \\ H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 > 0 \\ H_0: \mu_1 - \mu_2 = 0 \\ H_1: \mu_1 - \mu_2 < 0 \end{cases}$	$t = \frac{z}{\frac{s_z}{\sqrt{n}}}$	$\iota < \iota \alpha; n-1$

Here μ_1 , μ_2 denote population means of X, Y, respectively.

Application.

• Blood pressure in 10 patients before (X) and after (Y) medicine administration is given in the following Table:

	13									
Y	12	13	15	15	14	13	13	14	14	13

• Check at a level of significance of 5% whether this medication is effective in decreasing pressure in patients.

Computations for Example

• Consider the one-tailed test:

$$\begin{cases} H_0: \mu_1 - \mu_2 = 0\\ H_1: \mu_1 - \mu_2 > 0, \end{cases}$$

where $\mu_1,\,\mu_2$ denote population means of blood pressure before and following medication administration, respectively.

- Define the differences $z_i = x_i y_i$ (i = 1, 2, ..., 10).
- Need to compute

$$\overline{z} = \frac{\sum_{j=1}^{10} z_j}{10} = \frac{17}{10} = 1.7$$

and

$$s_z^2 = \frac{1}{n-1} \left(\sum_{j=1}^n (z_j)^2 - \frac{\left(\sum_{j=1}^n (z_j)\right)^2}{n} \right) = \frac{1}{9} \left(79 - \frac{17^2}{10} \right) = 5.57 \Rightarrow$$
$$s_z = \sqrt{5.57} = 2.36$$

Х	Y	Z	Z^2
1	13 :	12 1	1
1	15 :	13 2	4
1	.8	15 3	9
1	.4	15 -1	1
1	.2 :	14 -2	4
1	13 :	13 0	0
1	15 :	13 2	4
1	16	14 2	4
1	18 :	14 4	16
1	19 :	13 6	36
	ΑΘΡΟΙΣΜ	IA 17	79

$$\overline{z} = 1.7$$
 and $s_z = \sqrt{5.57} = 2.36$

• Test statistic

$$t = \frac{\overline{z}}{s_z/\sqrt{n}} = \frac{1.7}{2.36/\sqrt{10}} = 2.278$$

• Rejection region:
$$(t_{\alpha;n-1},\infty) = (t_{0.05;9},\infty) = (1.833,\infty)$$

• Clearly, test statistic lies in rejection region, so *H*₀ is rejected.

Dependent samples test in SPSS: Variables & Data

	📕 拱 💭 🛄 🖛 🦘 🔚 🏣 📰 👫 🔚 📰 👫 📰 🗰 🖓 🕑 Rearch application									on	
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	pressure1	Numeric	8	2	Pressure (before)	None	None	8	疆 Right	Scale 🔗	🔪 Input
2	pressure2	Numeric	8	2	Pressure (After)	None	None	8	疆 Right	🛷 Scale	🔪 Input
3											
4											

	pressu re1	pressu re2	var
1	13	12	
2	15	13	
3	18	15	
4	14	15	
5	12	14	
6	13	13	
7	15	13	
8	16	14	
9	18	14	
10	19	13	
11			

June 17, 2024

Dependent samples test in SPSS

1	Analyze	Direct <u>M</u> arketing	Graphs	<u>U</u> tilitie	s Add- <u>o</u>	ons	Window	<u>H</u> elp
_	Re <u>p</u> D <u>e</u> s	orts criptive Statistics	- }- - }-		4		4	
_	Tab	les	- F					
er	Con	npare Means	•	Mea	ns			r
_	<u>G</u> en	ieral Linear Model	- F	🕑 One	-Sample	T Test	t	
-	Gen	ieralized Linear Moo	leis ▶	🔡 Inde	pendent-	Samp	les T Test	
-	Mi <u>x</u> e	ed Models	- F	Pair	ed-Samp	les T	Test	-
-	-	relate	•		-Way ANG			
-		ression	•		,			
		linear	•					
		iral Net <u>w</u> orks	•					
	Clas	-	•					
_	Dim	ension Reduction	•					
_	Sca	le	•					
_	<u>N</u> on	parametric Tests	•			_		
_	Fore	ecasting	•					
-	Surv	vival	- F			_		
-	Mult	iple Response	•					
-	💋 Miss	sing Value Anal <u>y</u> sis						
-	Mult	iple Imputation	- F			-		
	Con	nplex Samples	•					
	Qua	lity Control	•					
	🖉 ROC	C Curve						

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

Dependent samples test in SPSS: Ouput

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Before medicine administration	15,30	10	2,406	,761
	After medicine administration	13,60	10	,966	,306

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Before medicine administration & After medicine administration	10	,249	,489

Paired Samples Test

Paired Differences									
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	Before medicine administration - After medicine administration	1,700	2,359	,746	,012	3,388	2,279	9	,049

The *p*-value reported here is for the 2-tailed test. For our purposes, we need to compare $\alpha = 0.05$ with the correct *p*-value for the one-tailed test, which is 0.049/2.

E. Papageorgiou, G. Katsouleas (UniWA

Nonparametric alternative in SPSS: Wilkoxon's signed rank test

Power Analysis	>	
Meta Analysis	>	Window Help
Regorts	>	📲 🚑 🙆 😱 Search
Δ		
Descriptive Statistics	>	
Bayesian Statistics	>	var var var
Ta <u>b</u> les	>	
Compare Means and Proportions	>	
General Linear Model	>	
Generalized Linear Models	>	
Mixed Models	>	
Correlate	>	
<u>R</u> egression	>	
L <u>og</u> linear	>	
Neural Networks	>	
Classify	>	
Dimension Reduction	>	
Mapping	>	
Scale	>	
Nonparametric Tests	>	▲ Qne Sample
Forecasting	>	A Independent Samples
Survival	>	Related Samples
Multiple Response	>	Quade Nonparametric ANCOVA
💯 Missing <u>V</u> alue Analysis		Legacy Dialogs
Multiple Imputation	>	Legacy Dialogs

- An essential assumption for the dependent samples t-test is that the values of both scale variables are distributed according to the normal distribution in (i.e., in both dependent samples).
- Should normality tests fail in either of these variables, a non-parametric alternative provided in SPSS is Wilkoxon's signed rank test.

Wilkoxon signed rank test

Nonparametric Tests

Hypothesis Test Summary

	Null Hypothesis	Test	Sig. ^{a,b}	Decision
1	The median of differences between Pressure (before) and Pressure (After) equals 0.	Related-Samples Wilcoxon Signed Rank Test	,048	Reject the null hypothesis.

a. The significance level is .050.

b. Asymptotic significance is displayed.

Related-Samples Wilcoxon Signed Rank Test Summary

Total N	10
Test Statistic	6,000
Standard Error	8,359
Standardized Test Statistic	-1,974
Asymptotic Sig.(2-sided test)	,048

Image: Image:

э

Proportion tests

< A[™]

포 문 문

Hypotheses	Test statistic	Reject H_0 , whenever	
$\int H_0: p = p_0$	7 — β−ρο		
$\int H_1 : p \neq p_0$	$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$ z > z_{\alpha/2}$	
$\int H_0: p = p_0$	$z = \hat{p} - p_0$	$z > z_{\alpha}$	
$\Big(H_1: p > p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z > z_{\alpha}$	
$\int H_0: p = p_0$	z —	$z < -z_{lpha}$	
$\begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \\ H_0: p = p_0 \\ H_1: p > p_0 \\ H_0: p = p_0 \\ H_1: p < p_0 \end{cases}$	$Z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$2 \sim 2\alpha$	

표 문 표

Hypotheses
 Test statistic
 Reject
$$H_0$$
, whenever

 $\begin{cases} H_0: p_1 - p_2 = 0\\ H_1: p_1 - p_2 \neq 0 \end{cases}$
 $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$
 $|z| > z_{\alpha/2}$
 $\begin{cases} H_0: p_1 - p_2 = 0\\ H_1: p_1 - p_2 > 0 \end{cases}$
 $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$
 $z > z_{\alpha}$
 $\begin{cases} H_0: p_1 - p_2 = 0\\ H_1: p_1 - p_2 < 0 \end{cases}$
 $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$
 $z < -z_{\alpha}$

Variance tests

▲ 西部

표 문 표

Analysis of Variance

표 문 문

- If several competing treatments are being used in the sampling process, the problem involves one factor with more than two levels.
- In the k > 2 sample problem, it will be assumed that there are k samples populations.
- One very common procedure used to deal with testing population means is called the analysis of variance, or ANOVA.
- Test the hypotheses:

 $\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k, \\ H_1: \text{ at least two of the means are not equal} \end{cases}$

63/81

The ANOVA test makes the following assumptions about the data:

- Independence of the observations. Each subject should belong to only one group. There is no relationship between the observations in each group. Having repeated measures for the same participants is not allowed.
- No significant outliers in any cell of the design
- Normality. The data for each design cell should be approximately normally distributed.
- Homogeneity of variances. The variance of the outcome variable should be equal in every cell of the design.

- Samples $j = 1, \ldots, k$
- Observations in sample-j (j = 1, ..., k):

$$x_{1j}, x_{2j}, \ldots, x_{n_j,j},$$

where n_j denotes the *j*-sample size.

•
$$\overline{x} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}}{\sum_{j=1}^{k} n_j}$$
 is the grand mean.
• $\overline{x}_j = \frac{\sum_{i=1}^{n_j} x_{ij}}{n_j}$ is the *j*-sample mean.

3

65 / 81

- Analysis-of-Variance approach: A procedure whereby the total variation is subdivided into components. Part of the goal of the analysis of variance is to determine if differences among the *k* sample means are what we would expect due to random variation alone or, rather, due to variation beyond merely random effects.
- It can be shown that

$$SST = SSB + SSW$$

$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2 + \sum_{j=1}^{k} n_j (\overline{x}_j - \overline{x})^2$$

$$Total Sum of Squares Sum of Squares Within Groups Sum of Squares Between Groups$$

• The quantities $(x_{ij} - \overline{x}_j)$ forming SSW encode variability within each group.

• The quantities $n_j(\overline{x}_j - \overline{x})$ forming SSW encode variability between groups.

Between and within group variation

- Basic idea: if the average variation between groups is large enough compared to the average variation within groups, then you could conclude that at least one group mean is not equal to the others. Hence, $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ would be rejected.
- Thus, it's possible to evaluate whether the differences between the group means are significant by comparing the two variance estimates.

E. Papageorgiou, G. Katsouleas (UniWA

Hypothesis testing

One-way AnoVa Table

Test:

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k, \\ H_1: \text{ at least two of the } \mu_i\text{'s are not equal} \end{cases}$$

• Test statistic:

$$F = \frac{SSB/(k-1)}{SSW/(n-k)} = \frac{MSB}{MSW} \sim F_{(k-1,n-k)}$$

- Rejection region R = (F_{α;(k-1,n-k)}, ∞) for a level of significance α.
- A high ratio implies that the variation among group means are greatly different from each other compared to the variation of the individual observations in each group.

One-way ANOVA Table								
Source of	Computed							
Variation	Squares	Freedom	Square	f				
Between Groups	SSB	k-1	$MSB = \frac{SSB}{k-1}$	$f = \frac{MSB}{MSW}$				
Within Groups	SSW	n-k	$MSW = \frac{SSW}{n-k}$					
Total	SST	n-1						

Application: Differences in steady-state haemoglobin levels (g/declitre) between patients with different types of sickle cell disease.

				Group 1	Group 2	Group 3
				7,2	8,1	10,7
				7,7	9,2	11,3
Do patie	nts in	these groups	have	8	10	11,5
identical		0 1		8,1	10,4	11,6
				8,3	10,6	11,7
haemoglo	obin?			8,4	10,9	11,8
				8,4	11,1	12
Туре	n.	Mean (\overline{x}_i)	s.d. (<i>s</i> _i)	8,5	11,9	12,1
	n _j			8,6	12	12,3
1: Hb SS	16	8.7125	0.8445	8,7	12,1	12,6
2: Hb S/β	10	10.6300	1.2841	9,1		12,6
3: Hb SC	15	12.3000	0.9419	9,1		13,3
0.110.000	10	12.0000	0.5115	9,1		13,3
				9,8		13,8
				10,1		13,9
				10,3		
				3 LL 7	'n ⊔r r n e	$r \rightarrow \pm r$

	Group 1	Gr. 1 SQUARES		Group 2	Gr. 2 SQUARES	G	Group 3	Gr. 3 SQUARES
	7,2	51,84		8,1	65,61		10,7	114,49
	7,7	59,29		9,2	84,64		11,3	127,69
	8	64		10	100		11,5	132,25
	8,1	65,61		10,4	108,16		11,6	134,56
	8,3	68,89		10,6	112,36		11,7	136,89
	8,4	70,56		10,9	118,81		11,8	139,24
	8,4	70,56		11,1	123,21		12	144
	8,5	72,25		11,9	141,61		12,1	146,41
	8,6	73,96		12	144		12,3	151,29
	8,7	75,69		12,1	146,41		12,6	158,76
	9,1	82,81	SUM	106,3	1144,81		12,6	158,76
	9,1	82,81	bar{x}_2	10,63			13,3	176,89
	9,1	82,81					13,3	176,89
	9,8	96,04					13,8	190,44
	10,1	102,01					13,9	193,21
	10,3	106,09				SUM	184,5	2281,77
SUM	139,4	1225,22				bar{x}_3	12,3	
bar{x}_1	8,7125							

Image: A matrix and a matrix

AnoVa computations (SST)

$$n = \sum_{j=1}^{3} n_j = 16 + 10 + 15 = 41,$$

$$\sum_{j=1}^{3} \sum_{i=1}^{n_j} x_{ij} = 139.4 + 106.3 + 184.5 = 430.2 \Rightarrow \overline{x} = \frac{\sum_{j=1}^{3} \sum_{i=1}^{n_j} x_{ij}}{n} = \frac{430.2}{41} = 10.49$$

$$\sum_{j=1}^{3} \sum_{i=1}^{n_j} x_{ij}^2 = 1225.22 + 1144.81 + 22181.77 = 4651.8$$

Total: $SST = \sum_{j=1}^{3} \sum_{i=1}^{n_j} (x_{ij} - \overline{x})^2 = \sum_{j=1}^{3} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{\left(\sum_{j=1}^{3} \sum_{i=1}^{n_j} x_{ij}\right)^2}{n} = 4651.8 - \frac{430.2^2}{41} = 137.85$
d.f. $= n - 1 = 40$

Image: A matrix

2

71/81

AnoVa computations (SSB)

Between:
$$SSB = \sum_{j=1}^{3} n_j (\overline{x}_j - \overline{x})^2 = 16(8.71 - 10.49)^2 + 10(10.63 - 10.49)^2 + 15(12.3 - 10.49)^2 = 99.89$$

d f = k - 1 = 2

Easier calculation:
$$SSB = \sum_{j=1}^{3} n_j \bar{x}_j^2 - \frac{\left(\sum_{j=1}^{3} \sum_{i=1}^{n_j} x_{ij}\right)^2}{n} = 16 \cdot 8.7125^2 + 10 \cdot 10.63^2 + 15 \cdot 12.3^2 - \frac{430.2^2}{41} = 99.89$$

AnoVa computations (SSW)

Within:
$$SSW = \sum_{j=1}^{3} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2 = \sum_{j=1}^{3} (n_j - 1)s_j^2$$

= $15 \cdot 0.8445^2 + 9 \cdot 1.2841^2 + 14 \cdot 0.9419^2 = 37.96$
d.f. = $n - k = 41 - 3 = 38$

Туре	n _j	Mean (\overline{x}_j)	s.d. (<i>s</i> _j)
1: Hb SS	16	8.7125	0.8445
2: Hb S/β 3: Hb SC	10	10.6300	1.2841
3: Hb SC	15	12.3000	0.9419

3 × 4 3 ×

One-way AnoVa in SPSS

Haemoglobin (g/declitre)

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	99,889	2	49,945	49,999	,000
Within Groups	37,959	38	,999		
Total	137,848	40			

(a)

AnoVa Group Descriptives in SPSS

😫 One-Way ANOVA: Options 🛛 🗙 🗙
Statistics
Descriptive
Eixed and random effects
Homogeneity of variance test
Brown-Forsythe
🛅 Welch
Means plot
Missing Values
Exclude cases analysis by analysis
C Exclude cases listwise
Continue Cancel Help

Descriptives

Haemoglobin (g/declitre)

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Hb S	16	8,712	,8445	,2111	8,263	9,162	7,2	10,3
Hb S/β - thalassaemia	10	10,630	1,2841	,4061	9,711	11,549	8,1	12,1
Hb SC	15	12,300	,9419	,2432	11,778	12,822	10,7	13,9
Total	41	10,493	1,8564	,2899	9,907	11,079	7,2	13,9

Test of Homogeneity of Variances

Haemoglobin (g/declitre)

Levene Statistic	df1	df2	Sig.
,902	2	38	,414

Post-Hoc in SPSS

🔚 One-Way ANOV	A: Post Hoc Multiple Co	omp	arisons	×
Equal Variances A	ssumed			_
ESD	<u>В-N-К</u>		Waller-Duncan	
Bonferroni	Tukey		Type I/Type II Error Ratio: 100	
🔲 Sidak	Tukey's-b		Dunn <u>e</u> tt	
Scheffe	Duncan		Control Category : Last	
🔄 <u>R</u> -E-G-W F	🔲 <u>H</u> ochberg's GT	2	Test	
🔲 R-E-G-W <u>Q</u>	Cabriel		O 2-sided O < Control O > Control	
Equal Variances 1	lot Assumed			
🛅 Ta <u>m</u> hane's T2	🛅 Dunnett's T <u>3</u>		G <u>a</u> mes-Howell 📗 D <u>u</u> nnett's C	
Significance level:	0,05]		
	Continue	Са	ncel Help	

Multiple Comparisons

Dependent Variable: Haemoglobin (g/declitre) Scheffe

		Mean Difference (l-			95% Confide	ence Interval
 (I) Type of sickle cell disease 	(J) Type of sickle cell disease	J) J	Std. Error	Sig.	Lower Bound	Upper Bound
Hb S	Hb S/β - thalassaemia	-1,9175	,4029	,000	-2,944	-,891
	Hb SC	-3,5875	,3592	,000	-4,503	-2,672
Hb S/β - thalassaemia	Hb S	1,9175	,4029	,000	,891	2,944
	Hb SC	-1,6700	,4080	,001	-2,709	-,631
Hb SC	Hb S	3,5875	,3592	,000	2,672	4,503
	Hb S/β - thalassaemia	1,6700	,4080	,001	,631	2,709

*. The mean difference is significant at the 0.05 level.

• • • • • • • • •

Homogeneous subsets

Haemoglobin (g/declitre)

Scheffe^{.a,b}

Type of sickle cell		Subset for alpha = 0.05			
disease	N	1	2	3	
Hb S	16	8,712			
Hb S/β - thalassaemia	10		10,630		
Hb SC	15			12,300	
Sig.		1,000	1,000	1,000	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 13,091.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

ANOVA Visualization

June 17, 2024

∃ >

Image: A matrix

э

In case the homogeneity of variance or normality assumptions are violated:

- The Independent Samples Kruskal-Wallis or the Welch one-way test is an alternative to the standard one-way ANOVA in the situation where the homogeneity of variance can't be assumed (i.e., Levene test is significant).
- In this case, the Games-Howell post hoc test or pairwise t-tests (with no assumption of equal variances) can be used to compare all possible combinations of group differences.

Non-parametric alternatives in SPSS

Non-parametric alternatives in SPSS

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distribution of Haemoglobin (g/declitre) is the same across categories of Type of sickle cell disease.	Independent- Samples Kruskal- Wallis Test	,000,	Reject the null hypothesis.

(日) (四) (日) (日) (日)

Asymptotic significances are displayed. The significance level is ,05.