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Null and alternative hypotheses

Hypothesis testing is a data-based decision procedure that can produce a
conclusion about some system.

A statistical hypothesis is an assertion or conjecture concerning one or more
populations.

The null hypothesis, denoted by H0, is a tentative assumption about some
population parameter.

The alternative hypothesis, denoted by H1, is the opposite of what is stated in the
null hypothesis. (usually set to what the test is attempting to establish):

2-sided

{
H0 : θ = θ0

H1 : θ ̸= θ0
, left-sided

{
H0 : θ = θ0

H1 : θ < θ0
, right-sided

{
H0 : θ = θ0

H1 : θ > θ0
,

The conclusion that the research hypothesis is true is based on sample data that
contradict the null hypothesis and is not reached with absolute certainty.
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Type I and Type II errors

Because hypothesis tests are based on sample data, we must allow for the
possibility of errors.

A Type I error is rejecting H0 when it is true. The probability of making a Type I
error when the null hypothesis is true as an equality is called level of significance:

α = P(reject H0|H0 true)

Applications of hypothesis testing that only control the Type I error are often
called significance tests.

A Type II error is accepting β0 when it is false:

β = P(accept H0|H0 false)

It is difficult to control for the probability of making a Type II error. Statisticians
avoid the risk of making a Type II error by using “do not reject H0” and not
“accept H0”.

Power of a test is defined by

γ = 1 − β = P(reject H0|H0 false)

Computation of β and γ depends on the actual value of a population parameter.
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Possible decisions of an analyst
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Representation of Type I and Type II errors

E. Papageorgiou, G. Katsouleas (UniWA) Hypothesis testing June 17, 2024 6 / 81



Steps in Hypothesis Testing

Develop the null and alternative hypotheses.

Specify the level of significance α (typically, α = 0.01, 0.05 or 0.10).

Collect the sample data and compute the test statistic. This is function of the
data and should have a known distribution under H0.

Critical value approach:

Use the level of significance α to specify the rejection region.
H0 is rejected whenever the test statistic falls within the rejection
region.

p-value approach:

Use the value of the test statistic to compute the corresponding
p-value. This is the probability of observing such an extreme test
statistic value as the one obtained by the sample data.
Hence, for a Z-test and computed statistic z∗, the corresponding p–value is given by:

p − value =

{
P(Z > |z∗||H0 true), for 1-sided tests
2 · P(Z > |z∗||H0 true), for 2-sided tests

H0 is rejected whenever p − value ≤ α.
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Sampling distribution of mean (birthweights)
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Sampling distribution of mean (birthweights) - 2

X ∼ N(µ
X
, σ

2
X
), where µ

X
= µ, σ

X
=

σ
√
n

with µ , σ the relevant population parameters and n sample size.
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Sampling distributions of median and average of extreme
observations have larger variance
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Sampling distributions of mean for increasing sample size
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Five random samples of size 10 from the population of
infants
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Collection of 95%-C.I.’s for the mean µ computed from
repeated samples
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Single sample tests
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Single sample mean test: Variance known case
Variance known

Hypotheses Test statistic Reject H0, whenever{
H0 : µ = µ0

H1 : µ ̸= µ0
Z = x−µ0

σ√
n

|Z | > zα/2{
H0 : µ = µ0

H1 : µ > µ0
Z = x−µ0

σ√
n

Z > zα{
H0 : µ = µ0

H1 : µ < µ0
Z = x−µ0

σ√
n

Z < −zα

Critical values for the most usual significance levels:

z0.005 2.58
z0.01 2.33
z0.025 1.96
z0.05 1.645
z0.1 1.285
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Single sample with known σ: Power computation application

Application: For a sample of 16 early and late stage head and neck cancer patients,
Ki-67 values (a measure of cell proliferation) are obtained from tissue biopsies. The goal
is to compare this sample to a reference population, one with a mean Ki-67, µKi−67, of
42% and a known standard deviation, σKi−67, of 3%.

1 Compute the power of the left-tailed test with α = 0.05 when the true value of the
population mean is 40%.

2 What is the conclusion of the left-tailed test for the following sample?

Ki-67 values 38% 40% 42% 45% 43% 47% 45% 38%
37% 39% 41% 39% 38% 38% 41% 40%

3 If the power of test in (1) is deemed too low, how should the sample size be
modified, so as to obtain a power level of 0.90?
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Single sample with known σ: Power computation application
Solution:

1 We calculate the power of the test{
H0 : µ = 42%;

H1 : µ < 42%

with with significance α = 0.05 when the population mean is in fact µ = 0.40%:

β(0.40) = P(Accept H0|µ = 0.40) = P (Z > −zα|µ = 0.40)

= P

(
x − 0.42
σ/

√
n

> −zα|µ = 0.40
)

= P

(
x > 0.42 − zα

σ√
n
|µ = 0.40

)

= P

x − 0.40
σ/

√
n︸ ︷︷ ︸

∼N(0,1)

>
0.42 − zα

σ√
n
− 0.40

σ/
√
n

=
0.02
σ/

√
n
− zα


= 1 − Φ

(
0.02
σ/

√
n
− zα

)
= 1 − Φ

(
0.02

0.03/
√

16
− z0.05

)
= 1 − Φ(1.021)

⇒ Power(0.40) = 1 − β(0.40) = Φ (1.021) = 0.8465
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Single sample with known σ: Power computation
application (2)

Solution:

2 For the test {
H0 : µ = 42%;

H1 : µ < 42%,

we compute

Z =
x − µ0

σ√
n

=
0.4069 − 0.42

0.03√
16

= −1.75

The corresponding rejection region is (−∞,−zα) = (−∞,−1.645) such that
−1.75 ∈ (−∞,−1.645).
Hence, the null hypothesis is rejected at the significance level of α = 0.05.
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Single sample with known σ: Power computation
application (3)
Solution:

3 We need

Power(0.40) = 0.90 ⇒ 1 − β(0.40) = 0.90 ⇒ β(0.40) = 0.10.

On the other hand, we have seen

β(0.40) = 1 − Φ

(
0.02
σ/

√
n
− zα

)
= 1 − Φ

(
0.02
0.03

√
n − z0.05

)
.

Combining the previous expressions, we have

1 − Φ

(
0.02
0.03

√
n − 1.645

)
= 0.10 ⇒ Φ

2
3
√
n − 1.645︸ ︷︷ ︸
=z0.10

 = 0.90

Hence,
√
n = (1.645 + z0.10)

3
2 = 4.38 ⇒

√
n = 4.3862 ⇒ n = 19.27.

Note: For power computations (including power curve generation) for the analogue
left-/right-/two-sided Z-tests of this example, refer to the uploaded excel file.
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Two sided hypotheses tests and confidence intervals

Hypotheses Test statistic Reject H0, whenever{
H0 : µ = µ0

H1 : µ ̸= µ0
Z = x−µ0

σ√
n

|Z | > zα/2

Hence, H0 is accepted whenever

−zα/2 < Z < zα/2

−zα/2 <
x − µ0

σ√
n

< zα/2

x − zα/2
σ√
n
< µ0 < x + zα/2

σ√
n

Hence,
H0 : µ = µ0 is accepted at a significance level of α

precisely when the hypothesised value

µ0 ∈ (1 − α)%− C.I.
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Single sample mean test: Variance unknown case

Variance unknown

Hypotheses Test statistic Reject H0, whenever{
H0 : µ = µ0

H1 : µ ̸= µ0
t = x−µ0

s√
n

|t| > tα/2;n−1{
H0 : µ = µ0

H1 : µ > µ0
t = x−µ0

s√
n

t > tα;n−1{
H0 : µ = µ0

H1 : µ < µ0
t = x−µ0

s√
n

t < −tα;n−1
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Single sample test in SPSS

Using the data in Slide #10:
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Single sample test in SPSS: Output

Note that in this instance, for the left–sided test, we have the critical value

t0.05;15 = −1, 75.

(Corresponding p–value for one-sided test is 0.099/2 ∼
= 0.05.)
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Independent samples tests
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Introduction

The previous analysis may be extended to two groups.

Denote µ1 and µ2 the respective means of the two populations.

Note a difference between the two populations exists whenever µ1 − µ2 ̸= 0. This
difference is the parameter to be estimated.

We select two independent samples from the two populations: say n1 cases from
Group 1 and n2 cases from Group 2.
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Independent samples

We select two independent samples from the two populations: say n1 cases from
Group 1 and n2 cases from Group 2.

1st Sample: x
(1)
1 , x

(1)
2 , . . . , x

(1)
n1 (from a population of mean µ1 and

standard deviation σ1)
2nd Sample: x

(2)
1 , x

(2)
2 , . . . , x

(2)
n2 (from a population of mean µ2 and

standard deviation σ2)
After data collection, compute:

Sample 1 Sample 2
Sample size n1 n2

Sample mean x1 x2
Sample standard deviation s1 s2

The quantity x1 − x2 is an unbiased estimator of µ1 − µ2

The variance of this estimator is σ2
1

n1
+

σ2
2

n2
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Independent samples with known σ1, σ2

Hypotheses Test statistic Reject H0, whenever{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0

Z = x1−x2√
σ2
1

n1
+

σ2
2

n2

|Z | > zα/2{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0

Z = x1−x2√
σ2
1

n1
+

σ2
2

n2

Z > zα{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

Z = x1−x2√
σ2
1

n1
+

σ2
2

n2

Z < −zα

Critical values for the most usual α levels:

z0.005 2.58
z0.01 2.33
z0.025 1.96
z0.05 1.645
z0.1 1.285
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Large samples with unknown σ1, σ2

As the standard deviations of the two populations are unknown, they are estimated
by the sample standard deviations s1 και s2.

Hypotheses Test statistic Reject H0, whenever{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0

Z = x1−x2√
s21
n1

+
s22
n2

|Z | > zα/2{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0

Z = x1−x2√
s21
n1

+
s22
n2

Z > zα{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

Z = x1−x2√
s21
n1

+
s22
n2

Z < −zα
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Small samples with unknown σ1, σ2

Consider small samples from two populations; i.e., n1 < 30 and/or n2 < 30.
We assume that both populations are normally distributed.
Whenever σ1, σ2 are unknown, these are estimated by sample standard deviations
s1 και s2.
We assume that the variances of the two populations are equal: σ2

1 = σ2
2 = σ2.

Under the previous assumptions, the quantity x1 − x2 is normally distributed,
independently of sample sizes.
Combining data from both samples, we obtain the “pooled” estimator of σ2:
s2
p =

(n1−1)s21+(n2−1)s22
n1+n2−2

Note that for n1 = n2, we have s2
p =

s21+s22
2

Hypotheses Test statistic Reject H0, whenever{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0

t = x1−x2
sp
√

1
n1

+ 1
n2

|t| > tα/2;n1+n2−2{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0

t = x1−x2
sp
√

1
n1

+ 1
n2

t > tα;n1+n2−2{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

t = x1−x2
sp
√

1
n1

+ 1
n2

t < −tα;n1+n2−2
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C.I. for mean difference in small samples with unknown but
equal σ1 = σ2

Hypotheses Test statistic Reject H0, whenever{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0

t = x1−x2
sp
√

1
n1

+ 1
n2

|t| > tα/2;n1+n2−2{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0

t = x1−x2
sp
√

1
n1

+ 1
n2

t > tα;n1+n2−2{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

t = x1−x2
sp
√

1
n1

+ 1
n2

t < −tα;n1+n2−2

(1 − α)%-C.I. for the mean difference µ1 − µ2:

(x1 − x2)± sp

√
1
n1

+
1
n2

tα/2;n1+n2−2

Note that whenever 0 does not lie within the (1−α)%-C.I. for the mean difference,
then the null hypothesis in the 2–tailed test is rejected at a significance level of α.
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C.I. for mean difference in small samples with unknown and
different σ1, σ2

Hypotheses Test statistic Reject H0, whenever{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0

t = x1−x2√
s21
n1

+
s22
n2

|t| > tα/2;df{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0

t = x1−x2√
s21
n1

+
s22
n2

t > tα;df{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

t = x1−x2√
s21
n1

+
s22
n2

t < −tα/2;df

Critical values that define the above rejection regions are found under
t-distributions with degrees of freedom given by:

df =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2
+ 1

n2−1

(
s22
n2

)2
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Mean comparison in independent (small) samples with
unknown but equal σ1 = σ2: Application

Application:
A new antipyretic is being tested on two groups; Group 1 (20 cases) is
given the new drug, Group 2 (18 cases) is given an older medication.
Temperature data on the 38 patients are given in the next slide.
Test whether the mean temperature in the two groups coincide or not
(α = 0.05).
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Temperature data
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Mean comparison in independent (small) samples with
unknown but equal σ1 = σ2: Application solution

2-tailed hyptheses:

{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0,

where µ1, µ2 mean temperatures in the

two populations.
Test statistic:

t =
x1 − x2

sp
√

1
n1

+ 1
n2

,

where

sp
2 =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

Hence, we have to compute the quantities

x1 =

∑n1
j=1 x

(1)
j

n1
, s2

1 =
1

n1 − 1

 n1∑
j=1

(
x
(1)
j

)2
−

(∑n1
j=1

(
x
(1)
j

))2

n1


and

x2 =

∑n2
j=1 x

(2)
j

n2
, s2

2 =
1

n2 − 1

 n2∑
j=1

(
x
(2)
j

)2
−

(∑n2
j=1

(
x
(2)
j

))2

n2

 .
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Computations for application
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Mean comparison in independent (small) samples with
unknown but equal σ1 = σ2: Application solution

For Group 1, we have

x1 =

∑n1
j=1 x

(1)
j

n1
=

773.80
20

= 38.69

and

s2
1 =

1
n1 − 1

 n1∑
j=1

(
x
(1)
j

)2
−

(∑n1
j=1

(
x
(1)
j

))2

n1

 =
1
19

(
29962.2 − 773.82

20

)
= 1.257

For Group 2, we have

x2 =

∑n2
j=1 x

(2)
j

n2
=

710.0
18

= 39.44

and

s2
2 =

1
n2 − 1

 n2∑
j=1

(
x
(2)
j

)2
−

(∑n2
j=1

(
x
(2)
j

))2

n2

 =
1
17

(
28031 − 7102

18

)
= 1.497
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Mean comparison in independent (small) samples with
unknown but equal σ1 = σ2: Application solution

2-tailed hypotheses:

{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0,

where µ1, µ2 the mean temperatures in

the two populations.

Test statistic:

t =
x1 − x2

sp
√

1
n1

+ 1
n2

=
38.69 − 39.44

√
1.37

√
1
20 + 1

18

= −2.00,

where

sp
2 =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

(20 − 1)1.257 + (18 − 1)1.497
20 + 18 − 2

= 1.37.

Rejection region: |t| > tα/2;n1+n2−2 = t0.025;36 = 2.028

Evidently,
|t| = 2.00 < t0.025;36 = 2.028.

Thus, the test statistic does not lie in the rejection region and we cannot reject H0

at a level of significance of 0.05.
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Independent samples test in SPSS: Variables & Data
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Independent samples test in SPSS
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Independent samples test in SPSS: Output
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C.I. Visualization in SPSS
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C.I. Visualization in SPSS
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Nonparametric alternative in SPSS: Mann-Whitney U

An essential assumption for the independent
samples t-test is that the values of the scale
variable should be distributed according to the
normal distribution in each of the two independent
samples. (Partition of the data in the respective
sets is easily accomplished, using the Explore
procedure of SPSS.)

To assess normality, consider the various visual

and statistical procedures, namely:
Superposition of the normal curve on
histograms in the two samples.
PP/QQ plots.
The distribution should be mesokyrtic and
not skewed (i.e., corresponding
skewness/kyrtosis statistics, normalized by
their respective standard errors, should not
exceed 2 in absolute value).
Kolmogorov–Smirnov test, Shapiro–Wilk
test.

Should these fail, a non–parametric alternative
provided in SPSS is Mann–Whitney’s U.
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Mann–Whitney test
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Paired means comparison
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Paired means comparison

With paired samples, the observations in the two groups are matched in a
meaningful way. These are also known as dependent samples.
Most often this occurs when data are collected twice from the same participants,
called repeated measures ("prior" and "post").
Paired data does not always need to involve two measurements on the same
subject; it can also involve taking one measurement on each of two related
subjects. For example, we may study husband-wife pairs, mother-son pairs, or pairs
of twins.
Using data from a sample with n cases for the two scale variables X ,Y , we let
Z = X − Y and compute z = x − y and sz .

Hypotheses Test statistic Reject H0, whenever{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 ̸= 0

t = z
sz√
n

|t| > tα/2;n−1{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0

t = z
sz√
n

t > tα;n−1{
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 < 0

t = z
sz√
n

t < −tα;n−1

Here µ1, µ2 denote population means of X ,Y , respectively.
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Paired means comparison: Application

Application.

Blood pressure in 10 patients before (X ) and after (Y ) medicine administration is
given in the following Table:

X 13 15 18 14 12 13 15 16 18 19
Y 12 13 15 15 14 13 13 14 14 13

Check at a level of significance of 5% whether this medication is effective in
decreasing pressure in patients.
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Computations for Example

Consider the one–tailed test: {
H0 : µ1 − µ2 = 0
H1 : µ1 − µ2 > 0,

where µ1, µ2 denote population means of blood pressure before and following
medication administration, respectively.

Define the differences zi = xi − yi (i = 1, 2, . . . , 10).

Need to compute

z =

∑10
j=1 zj

10
=

17
10

= 1.7

and

s2
z =

1
n − 1

 n∑
j=1

(zj)
2 −

(∑n
j=1 (zj)

)2

n

 =
1
9

(
79 − 172

10

)
= 5.57 ⇒

sz =
√

5.57 = 2.36
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Computations for Example (2)

z = 1.7 and sz =
√

5.57 = 2.36

Test statistic
t = z

sz/
√
n
= 1.7

2.36/
√

10
= 2.278

Rejection region: (tα;n−1,∞) =
(t0.05;9,∞) = (1.833,∞)

Clearly, test statistic lies in
rejection region, so H0 is
rejected.
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Dependent samples test in SPSS: Variables & Data
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Dependent samples test in SPSS
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Dependent samples test in SPSS: Ouput

The p-value reported here is for the 2–tailed test. For our purposes, we
need to compare α = 0.05 with the correct p-value for the one-tailed test,
which is 0.049/2.
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Nonparametric alternative in SPSS: Wilkoxon’s signed rank
test

An essential assumption for the dependent
samples t-test is that the values of both scale
variables are distributed according to the normal
distribution in (i.e., in both dependent samples).

Should normality tests fail in either of these
variables, a non–parametric alternative provided in
SPSS is Wilkoxon’s signed rank test.
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Wilkoxon signed rank test

E. Papageorgiou, G. Katsouleas (UniWA) Hypothesis testing June 17, 2024 54 / 81



Wilkoxon signed rank test: Output

E. Papageorgiou, G. Katsouleas (UniWA) Hypothesis testing June 17, 2024 55 / 81



Proportion tests
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One sample proportion test

Hypotheses Test statistic Reject H0, whenever{
H0 : p = p0

H1 : p ̸= p0
z = p̂−p0√

p0(1−p0)
n

|z | > zα/2{
H0 : p = p0

H1 : p > p0
z = p̂−p0√

p0(1−p0)
n

z > zα{
H0 : p = p0

H1 : p < p0
z = p̂−p0√

p0(1−p0)
n

z < −zα
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Independent samples proportions comparison test

Hypotheses Test statistic Reject H0, whenever{
H0 : p1 − p2 = 0
H1 : p1 − p2 ̸= 0

z = p̂1−p̂2√
p̂1(1−p̂1)

n1
+

p̂2(1−p̂2)
n2

|z | > zα/2{
H0 : p1 − p2 = 0
H1 : p1 − p2 > 0

z = p̂1−p̂2√
p̂1(1−p̂1)

n1
+

p̂2(1−p̂2)
n2

z > zα{
H0 : p1 − p2 = 0
H1 : p1 − p2 < 0

z = p̂1−p̂2√
p̂1(1−p̂1)

n1
+

p̂2(1−p̂2)
n2

z < −zα
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Variance tests
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One sample variance test

Hypotheses Test statistic Reject H0, whenever{
H0 : σ2 = σ2

0

H1 : σ2 ̸= σ2
0

X 2 = (n−1)s2

σ2
0

X 2 > χ2
α/2;n−1 or X 2 < χ2

1−α/2;n−1{
H0 : σ2 = σ2

0

H1 : σ2 > σ2
0

X 2 = (n−1)s2

σ2
0

X 2 > χ2
α/2;n−1{

H0 : σ2 = σ2
0

H1 : σ2 < σ2
0

X 2 = (n−1)s2

σ2
0

X 2 < χ2
1−α/2;n−1
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Independent samples variance test

Hypotheses Test statistic Reject H0, wheneverH0 :
σ2

2
σ2

1
= 1

H1 :
σ2

2
σ2

1
̸= 1

F =
s21
s22

F > Fα/2;(n1−1,n2−1) or F < F1−α/2;(n1−1,n2−1)H0 :
σ2

2
σ2

1
= 1

H1 :
σ2

2
σ2

1
> 1

F =
s21
s22

F < F1−α;(n1−1,n2−1)H0 :
σ2

2
σ2

1
= 1

H1 :
σ2

2
σ2

1
< 1

F =
s21
s22

F > Fα;(n1−1,n2−1)
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Analysis of Variance
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Analysis of Variance

If several competing treatments are being used in the sampling process, the
problem involves one factor with more than two levels.

In the k > 2 sample problem, it will be assumed that there are k samples
populations.

One very common procedure used to deal with testing population means is called
the analysis of variance, or ANOVA.

Test the hypotheses:{
H0 : µ1 = µ2 = · · · = µk ,

H1 : at least two of the means are not equal
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Assumptions

The ANOVA test makes the following assumptions about the data:
Independence of the observations. Each subject should belong to only
one group. There is no relationship between the observations in each
group. Having repeated measures for the same participants is not
allowed.
No significant outliers in any cell of the design
Normality. The data for each design cell should be approximately
normally distributed.
Homogeneity of variances. The variance of the outcome variable
should be equal in every cell of the design.
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Notation

Samples j = 1, . . . , k
Observations in sample-j (j = 1, . . . , k):

x1j , x2j , . . . , xnj ,j ,

where nj denotes the j–sample size.

x =
∑k

j=1
∑nj

i=1 xij∑k
j=1 nj

is the grand mean.

x j =
∑nj

i=1 xij
nj

is the j–sample mean.
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Sources of variability within data

Analysis-of-Variance approach: A procedure whereby the total variation is
subdivided into components. Part of the goal of the analysis of variance is to
determine if differences among the k sample means are what we would expect due
to random variation alone or, rather, due to variation beyond merely random
effects.

It can be shown that

SST = SSB + SSW

k∑
j=1

nj∑
i=1

(xij − x)2

︸ ︷︷ ︸
Total Sum of Squares

=
k∑

j=1

nj∑
i=1

(xij − x j)
2

︸ ︷︷ ︸
Sum of Squares Within Groups

+
k∑

j=1

nj(x j − x)2

︸ ︷︷ ︸
Sum of Squares Between Groups

The quantities (xij − x j) forming SSW encode variability within each group.

The quantities nj(x j − x) forming SSW encode variability between groups.
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Between and within group variation

Basic idea: if the average variation between groups is large enough compared to
the average variation within groups, then you could conclude that at least one
group mean is not equal to the others. Hence, H0 : µ1 = µ2 = · · · = µk would be
rejected.

Thus, it’s possible to evaluate whether the differences between the group means
are significant by comparing the two variance estimates.
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One-way AnoVa Table

Test: {
H0 : µ1 = µ2 = · · · = µk ,

H1 : at least two of the µi ’s are not equal

Test statistic:
F =

SSB/(k − 1)
SSW /(n − k)

=
MSB

MSW
∼ F(k−1,n−k)

Rejection region R = (Fα;(k−1,n−k),∞) for a level of significance α.

A high ratio implies that the variation among group means are greatly different
from each other compared to the variation of the individual observations in each
group.

One-way ANOVA Table
Source of Sum of Degrees of Mean Computed
Variation Squares Freedom Square f

Between Groups SSB k − 1 MSB = SSB
k−1 f = MSB

MSW

Within Groups SSW n − k MSW = SSW
n−k

Total SST n − 1
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Data for AnoVa application

Application: Differences in steady-state haemoglobin levels (g/declitre)
between patients with different types of sickle cell disease.

Do patients in these groups have
identical mean levels of
haemoglobin?

Type nj Mean (x j) s.d. (sj)
1: Hb SS 16 8.7125 0.8445
2: Hb S/β 10 10.6300 1.2841
3: Hb SC 15 12.3000 0.9419
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AnoVa computations
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AnoVa computations (SST)

n =
3∑

j=1

nj = 16 + 10 + 15 = 41,

3∑
j=1

nj∑
i=1

xij = 139.4 + 106.3 + 184.5 = 430.2 ⇒ x =

∑3
j=1

∑nj
i=1 xij

n
=

430.2
41

= 10.49

3∑
j=1

nj∑
i=1

x2
ij = 1225.22 + 1144.81 + 22181.77 = 4651.8

Total: SST =
3∑

j=1

nj∑
i=1

(xij − x)2 =
3∑

j=1

nj∑
i=1

x2
ij −

(∑3
j=1

∑nj
i=1 xij

)2

n
=

= 4651.8 − 430.22

41
= 137.85

d.f. = n − 1 = 40
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AnoVa computations (SSB)

Type nj Mean (x j) s.d. (sj)
1: Hb SS 16 8.7125 0.8445
2: Hb S/β 10 10.6300 1.2841
3: Hb SC 15 12.3000 0.9419

n =
3∑

j=1

nj = 16 + 10 + 15 = 41,

3∑
j=1

nj∑
i=1

xij = 430.2 ⇒ x =
430.2
41

= 10.49

3∑
j=1

nj∑
i=1

x2
ij = 4651.8

Between: SSB =
3∑

j=1

nj (x j − x)2 = 16(8.71 − 10.49)2 + 10(10.63 − 10.49)2+

+ 15(12.3 − 10.49)2 = 99.89

d.f. = k − 1 = 2

Easier calculation: SSB =
3∑

j=1
nj x

2
j −

(∑3
j=1

∑nj
i=1 xij

)2

n
= 16 · 8.71252 + 10 · 10.632 + 15 · 12.32 −

430.22

41

= 99.89
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AnoVa computations (SSW)

Within: SSW =
3∑

j=1

nj∑
i=1

(xij − x j)
2 =

3∑
j=1

(nj − 1)s2
j

= 15 · 0.84452 + 9 · 1.28412 + 14 · 0.94192 = 37.96

d.f. = n − k = 41 − 3 = 38

Type nj Mean (x j) s.d. (sj)
1: Hb SS 16 8.7125 0.8445
2: Hb S/β 10 10.6300 1.2841
3: Hb SC 15 12.3000 0.9419
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One-way AnoVa in SPSS
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AnoVa Group Descriptives in SPSS
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Post-Hoc in SPSS
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Homogeneous subsets
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ANOVA Visualization

E. Papageorgiou, G. Katsouleas (UniWA) Hypothesis testing June 17, 2024 78 / 81



Relaxing the ANOVA assumptions

In case the homogeneity of variance or
normality assumptions are violated:

The Independent Samples
Kruskal-Wallis or the Welch one-way
test is an alternative to the standard
one-way ANOVA in the situation
where the homogeneity of variance
can’t be assumed (i.e., Levene test is
significant).

In this case, the Games-Howell post
hoc test or pairwise t-tests (with no
assumption of equal variances) can be
used to compare all possible
combinations of group differences.
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Non–parametric alternatives in SPSS
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Non–parametric alternatives in SPSS
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