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AnOVa as completely randomized
design
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AnOVa as completely randomized design

An outcome variable is represented by the set of measured values that result from
an experiment or some other statistical process.

An explanatory variable, on the other hand, is a variable that is useful for
predicting the value of the outcome variable.

A linear model is any model that is linear in the parameters that define the model.
We can represent such models generically in the form:

Yj = β0 + β1X1j + β2X2j + · · ·+ βkXkj + ϵj ,

In this equation, βj represent the coefficients in the model and ϵj represents
random error (due to extraneous variables). Therefore, any model that can be
represented in this form, where the coefficients are constants and the algebraic
order of the model is one, is considered a linear model.

In the context of analysis of variance, the predictor variables are classification
variables used to define factors of interest (e.g., differentiating between a control
group and a treatment group–treatment variables), and in the context of
correlation and linear regression the predictor variables are most often continuous
variables, or at least variables at a higher level than nominal classes.

Question: Do the different “values” of the treatment variable result in differences,
on the average, in the response variable?
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AnoVa as completely randomized design (2)

The one-way analysis of variance model may be written as follows:

xij = µ + τj + ϵij i = 1, 2, . . . , nj , j = 1, 2, . . . , k.

Here:
xij represents the i–th observation resulting from the j–th treatment of a total of k treatments.
µ represents the mean of all k population means and is called the grand mean.
τj represents the difference between the mean of the j–th population and the grand mean and is
called the treatment effect.
ϵij represents the amount by which an individual measurement differs from the mean of the
population to which it belongs and is called the error term.

Using the means comparison notation in the previous set of slides, we clearly have µj ≡ µ + τj , i.e., the
mean of the j–th population.

In most situations we are interested only in the k treatments represented in our experiment. Any inferences
that we make apply only to these treatments. We do not wish to extend our inference to any larger
collection of treatments. When we place such a restriction on our inference goals, we refer to our model as
the fixed-effects model.

The experiment is designed in such a way that the treatments of interest are assigned completely at random
to the subjects or objects on which the measurements to determine treatment effectiveness are to be made.
For this reason the design is called the completely randomized experimental design.
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AnoVa: Assumptions in the context of fixed-effects model

Assumptions.
1 The k sets of observed data constitute k independent random samples from

the respective populations.
2 Each of the populations from which the samples come is normally distributed

with mean µj and variance σ2
j .

3 Each of the populations has the same variance. That is,
σ2

1 = σ2
2 = · · · = σ2

k = σ2 the common variance.
4 The τj are unknown constants and

∑k
j=1 τj = 0 since the sum of all

deviations of the µj from their mean, µ, is zero.
5 The ϵij have a mean of 0, since the mean of xij is µj .
6 The ϵij have a variance equal to the variance of the xij , since the ϵij and xij

differ only by a constant; that is, the error variance is equal to σ2, the
common variance specified above.

7 The ϵij are normally (and independently) distributed.

Hypotheses:{
H0 : µ1 = µ2 = · · · = µk ,

Ha : not all µj are equal.
⇔

{
H0 : τ1 = τ2 = · · · = τk = 0,
Ha : not all τj = 0.
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Implications of the assumptions

Picture of the populations represented
in a completely randomized design
when H0 is true and the assumptions
are met.

If the populations are all normally
distributed with equal variances the
distributions will be identical, so that
in drawing their pictures each is
superimposed on each of the others,
and a single picture sufficiently
represents them all.

Picture of the populations represented
in a completely randomized design
when the assumptions of equal
variances and normally distributed
populations are met, but H0 is false
because none of the population means
are equal.
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AnoVa: Why not use a number of independent stamples
t–tests instead?

When interested in testing the null hypothesis of no difference among several population means one might
be inclined to suggest that all possible pairs of sample means be tested separately by means of the Student
t–test.

Suppose there are five populations involved. The number of possible pairs of sample means is(
5
2

)
= 5!

2!·(5−2)! = 10.

As the amount of work involved in carrying out this many t–tests is substantial, it would be worthwhile if a
more efficient alternative for analysis were available. A more important consequence of performing all
possible t–tests, however, is that it is very likely to lead to a false conclusion.

Suppose we draw five samples from populations having equal means.

As we have seen, there would be 10 tests if we were to do each of the possible tests separately. If we
select a significance level of α = 0.05 for each test, the probability of failing to reject a hypothesis of
no difference in each case would be 0.95.
By the multiplication rule of probability, if the tests were independent of one another, the probability
of failing to reject a hypothesis of no difference in all 10 cases would be α = 0.9510 = 0.5987.
The probability of rejecting at least one hypothesis of no difference, then, would be
1 − 0.5987 = 0.4013. Since we know that the null hypothesis is true in every case in this illustrative
example, rejecting the null hypothesis constitutes the committing of a type I error.

In the long run, then, in testing all possible pairs of means from five samples, we would commit a type I error
40 percent of the time. The problem becomes even more complicated in practice, since three or more t–tests
based on the same data would not be independent of one another.

It becomes clear, then, that some other method for testing for a significant difference among several means
is needed. Analysis of variance provides such a method.
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Sample Values for the Completely Randomized Design

Here:
xij represents the i–th observation resulting from the j–th treatment of a total of k treatments
(i = 1, 3, . . . , nj , j = 1, 2, . . . , k).

T·j =
∑nj

i=1 xij represents the total of the j–th treatment (j = 1, 2, . . . , k).

x·j =
T·j
nj

represents the mean of the j–th treatment (j = 1, 2, . . . , k).

T·· =
∑k

j=1 T·j =
∑k

j=1
∑nj

i=1 xij represents the total of all observations.

x·· = T··
N

, where N =
∑k

j=1 nj .
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The randomized complete block
design
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The randomized complete block design

The randomized complete block design is a design in which the units (called
experimental units) to which the treatments are applied are subdivided into
homogeneous groups called blocks, so that the number of experimental units in a
block is equal to the number (or some multiple of the number) of treatments
being studied.
The treatments are then assigned at random to the experimental units within each
block.
It should be emphasized that each treatment appears in every block, and each
block receives every treatment.
Objective: The objective in using the randomized complete block design is to
isolate and remove from the error term the variation attributable to the blocks,
while assuring that treatment means will be free of block effects.
The effectiveness of the design depends on the ability to achieve homogeneous
blocks of experimental units.
The ability to form homogeneous blocks depends on the researcher’s knowledge of
the experimental material.
When blocking is used effectively, the error mean square in the ANOVA table will
be reduced, the Variance Ratio will be increased, and the chance of rejecting the
null hypothesis will be improved.
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The randomized complete block design (2)

In animal experiments, the breed of animal may be used as a blocking factor. Litters may also be used as
blocks, (an animal from each litter receives a treatment).

In experiments involving human beings, if it is desired that differences resulting from age be eliminated, then
subjects may be grouped according to age so that one person of each age receives each treatment.

The randomized complete block design also may be employed effectively when an experiment must be
carried out in more than one laboratory (block) or when several days (blocks) are required for completion.

The random allocation of treatments to subjects is restricted in the randomized complete block design. That
is, each treatment must be represented an equal number of times (one or more times) within each blocking
unit.

In practice, this is generally accomplished by assigning a random permutation of the order of treatments to
subjects within each block.

For example, if there are four treatments representing three drugs and a placebo (drug A, drug B, drug C,
and placebo P), then there are 4! = 24 possible permutations of the four treatments: (A, B, C, P) or (A, C,
B, P) or (C, A, P, B), and so on. One permutation is then randomly assigned to each block.

Note that the paired comparisons analysis is a special case of the randomized complete block design. Indeed,
the two points in time (before & after, for instance, Pre-op & Post-op) are the treatments and the
individuals on whom the measurements were taken are the blocks.
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Table of Sample Values for the Randomized Complete Block
Design

Here:
Ti· =

∑k
j=1 xij represents the total of the i–th block (i = 1, 2, . . . , n).

x i· =
Ti·
k

represents the mean of the i–th block (i = 1, 2, . . . , n).

T·· =
∑k

j=1 T·j =
∑n

i=1 Ti· represents the total of all observations.
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Two-way AnoVa

Two-way AnoVa. The technique for analyzing the data from a randomized
complete block design is called two-way analysis of variance since an observation is
categorized on the basis of two criteria—the block to which it belongs as well as
the treatment group to which it belongs.
The two-way analysis of variance model may be written as follows:

xij = µ+ βi + τj + ϵij i = 1, 2, . . . , n, j = 1, 2, . . . , k.

Here:
µ represents the mean of all k population means and is called the grand
mean.
βi represents a block effect reflecting the fact that the experimental unit fell
in the i–th block.
τj represents a treatment effect, reflecting the fact that the experimental unit
received the j–th treatment.
ϵij is a residual component representing all sources of variation other than
treatments and blocks.

Hypotheses: {
H0 : τj = 0, j = 1, 2, . . . , k vs.
Ha : not all τj = 0.
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Two-way AnoVa (2)

Hypotheses: {
H0 : τj = 0, j = 1, 2, . . . , k vs.
Ha : not all τj = 0.

A hypothesis test regarding block effects is not usually carried out under the
assumptions of the fixed-effects model for two reasons:

1 First, the primary interest is in treatment effects, the usual purpose of the
blocks being to provide a means of eliminating an extraneous source of
variation.

2 Second, although the experimental units are randomly assigned to the
treatments, the blocks are obtained in a nonrandom manner.
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Two-way AnoVa: test statistic

Hypotheses: {
H0 : τj = 0, j = 1, 2, . . . , k vs.
Ha : not all τj = 0.

Analysis of Variance: It can be shown that the total sum of squares for the
randomized complete block design can be partitioned into three components, one
each attributable to blocks (SSBl), treatments (SSTr), and error (SSE). That is,

SST = SSBl + SSTr + SSE ,

where
SST =

∑k
j=1

∑n
i=1 (xij − x ··)

2,
SSBl =

∑k
j=1

∑n
i=1 (x i· − x ··)

2,
SSTr =

∑k
j=1

∑n
i=1 (x ·j − x ··)

2,
SSE = SST − SSBl − SSTr .

Degrees of freedom:
Total︷ ︸︸ ︷

kn − 1 =

Blocks︷ ︸︸ ︷
n − 1+

Treatments︷ ︸︸ ︷
k − 1 +

Residual︷ ︸︸ ︷
(n − 1)(k − 1)

Test statistic: MSTr/MSE ∼ Fk−1,(n−1)(k−1)
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ANOVA Table for the Randomized Complete Block Design

Hypotheses: {
H0 : τj = 0, j = 1, 2, . . . , k vs.
Ha : not all τj = 0.

Test statistic: MSTr/MSE ∼ Fk−1,(n−1)(k−1)
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Randomized Complete Block Design: Assumptions

Assumptions.
1 Each xij that is observed constitutes a random independent sample of size 1

from one of the kn populations represented.
2 Each of these kn populations is normally distributed with mean µij and the

same variance s2. This implies that the ϵij are independently and normally
distributed with mean 0 and variance s2.

3 The block and treatment effects are additive. This assumption may be
interpreted to mean that there is no interaction between treatments and
blocks. In other words, a particular block-treatment combination does not
produce an effect that is greater or less than the sum of their individual
effects. It can be shown that when this assumption is met,

k∑
j=1

τj =
n∑

i=1
βi = 0.

The consequences of a violation of this assumption are misleading results.
One need not become concerned with the violation of the additivity
assumption, unless the largest mean is more than 50 percent greater than the
smallest.

When these assumptions hold true, the τj and βi are a set of fixed constants, and
we have a situation that fits the fixed-effects model.
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Example: Days Time Required to Learn the Use of a Certain
Prosthetic Device

A physical therapist wished to compare three methods for teaching patients to use a certain prosthetic device.
He felt that the rate of learning would be different for patients of different ages and wished to design an
experiment in which the influence of age could be taken into account.
Data. Three patients in each of five age groups were selected to participate in the experiment, and one
patient in each age group was randomly assigned to each of the teaching methods.
The methods of instruction constitute our three treatments, and the five age groups are the blocks.
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Example: Days Time Required to Learn the Use of a Certain
Prosthetic Device (2)

Assumptions. We assume that each of the 15 observations constitutes a simple random sample of size 1
from one of the 15 populations defined by a block-treatment combination.
For example, we assume that the number 7 in the table constitute s a randomly selected response from a
population of responses that would result if a population of subjects under the age of 20 received teaching
method A.
We assume that the responses in the 15 represented populations are normally distributed with equal
variances.
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Calculation of test statistic

We compute the following sums of squares:

SST = (7 − 10.07)2 + (8 − 10.07)2 + · · · + (14 − 10.07)2 = 46.933,

SSBl = 3
[
(8.67 − 10.07)2 + (9 − 10.07)2 + · · · + (12.33 − 10.07)2

]
= 24.933,

SSTr = 5
[
(9 − 10.07)2 + (9.6 − 10.07)2 + (11.6 − 10.07)2

]
= 18.533,

SSE = 46.933 − 24.933 − 18.533 = 3.467.

Degrees of freedom.
(a.) Total: 3 × 5 − 1 = 14,
(b.) Blocks: 5 − 1 = 4,
(c.) Treatments: 3 − 1 = 2,
(d.) Residual (Error): (3 − 1) × (5 − 1) = 8.

Variance Ratio = MSTr/MSE = 21.385
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Marginal means in SPSS
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Two-way AnoVa in SPSS

Note that Interaction effects are included in this
output.

Resultingly, the Variance Ratio cannot be
computed.

We could compute relevant ratio by hand
(compare with previous "Calculation of test
statistic" slide), or..
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Two-way AnoVa in SPSS: Model selection

E. Papageorgiou, G. Katsouleas (UniWA)Linear Models for experimental designs June 19, 2024 24 / 99



Two-way AnoVa in SPSS: Output without interaction effects

Statistical decision. Since our computed variance ratio, 21.385, is greater than the
critical value 4.46 (F(2,8)), we reject the null hypothesis of no treatment effects
on the assumption that such a large V.R. reflects the fact that the two sample
mean squares are not estimating the same quantity.
The only other explanation for this large V.R. would be that the null hypothesis is
really true, and we have just observed an unusual set of results. We rule out the
second explanation in favor of the first.
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Experiment with two or more
factors
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The factorial experiment

In the experimental designs that we have considered up to this point, we have
been interested in the effects of only one variable—the treatments. Frequently,
however, we may be interested in studying, simultaneously, the effects of two or
more variables.

We refer to the variables in which we are interested as factors. The experiment in
which two or more factors are investigated simultaneously is called a factorial
experiment.

The different designated categories of the factors are called levels.
Suppose, for example, that we are studying the effect on reaction time of three dosages of some
drug. The drug factor, then, is said to occur at three levels.
Suppose the second factor of interest in the study is age, and it is thought that two age groups,
under 65 years and 65 years and older, should be included. We then have two levels of the age factor.

In general, we say that factor A occurs at a levels and factor B occurs at b levels.

In a factorial experiment we may study not only the effects of individual factors
but also, if the experiment is properly conducted, the interaction between factors.
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Example: No interaction

Suppose, in terms of effect on reaction time, that the true relationship between
three dosage levels of some drug and the age of human subjects taking the drug is
known.
Suppose further that age occurs at two levels—“young” (under 65) and “old” (65
and older). If the true relationship between the two factors is known, we will know,
for the three dosage levels, the mean effect on reaction time of subjects in the two
age groups. Let us assume that effect is measured in terms of reduction in reaction
time to some stimulus.

1 For both levels of factor A the difference between the means for any two
levels of factor B is the same. That is, for both levels of factor A, the
difference between means for levels j = 1 and j = 2 is 5, for levels j = 2 and
j = 3 the difference is 10, and for levels j = 1 and j = 3 the difference is 15.

2 For all levels of factor B the difference between means for the two levels of
factor A is the same. In the present case, the difference is 5 at all three levels
of factor B.
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Example: No interaction (2)

1 For both levels of factor A the difference between the means for any two levels of
factor B is the same. That is, for both levels of factor A, the difference between
means for levels j = 1 and j = 2 is 5, for levels j = 2 and j = 3 the difference is
10, and for levels j = 1 and j = 3 the difference is 15.

2 For all levels of factor B the difference between means for the two levels of factor
A is the same. In the present case, the difference is 5 at all three levels of factor B.

3 A third characteristic is revealed when the data are plotted. We note that the
curves corresponding to the different levels of a factor are all parallel.
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Example: Interaction present

The presence of interaction between two factors can affect the characteristics of
the data in a variety of ways depending on the nature of the interaction. To
illustrate:

1 The difference between means for any two levels of factor B is not the same
for both levels of factor A. Note, for example, that the difference between
levels j = 1 and 2 of factor B is −5 for the young age group and +5 for the
old age group.

2 The difference between means for both levels of factor A is not the same at
all levels of factor B. The differences between factor A means are −10, 0,
and 15 for levels j = 1, 2 and 3, respectively, of factor B.

3 The factor level curves are not parallel.
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Example: Interaction present (2)

In summary, then, we can say that there is interaction between two factors if a
change in one of the factors produces a change in response at one level of the
other factor different from that produced at other levels of this factor.
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Two-Factor Completely Randomized Experiment:
Advantages

The interaction of the factors may be studied.

There is a saving of time and effort.
In the factorial experiment all the observations may be used to study the effects of
each of the factors under investigation. The alternative, when two factors are
being investigated, would be to conduct two different experiments, one to study
each of the two factors. If this were done, some of the observations would yield
information only on one of the factors, and the remainder would yield information
only on the other factor. To achieve the level of accuracy of the factorial
experiment, more experimental units would be needed if the factors were studied
through two experiments. It is seen, then, that 1 two-factor experiment is more
economical than 2 one-factor experiments.

Because the various factors are combined in one experiment, the results have a
wider range of application.
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Sample Data from a Two-Factor Completely Randomized
Experiment
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Sample Data from a Two-Factor Completely Randomized
Experiment (2)

Here we have a levels of factor A, b levels of factor B, and n observations for each
combination of levels. Each of the ab combinations of levels of factor A with levels
of factor B is a treatment.

In addition to the totals and means shown in the Table, we note that the total and
mean of the ij-th cell are

Tij· =
n∑

k=1

xijk and x ij· = Tij·/n (i = 1, . . . , a, j = 1, . . . , b).

We consider that each combination of factor levels is a treatment and that we
have n observations for each treatment.

Total number of observations: nab.

The factorial experiment, in order that the experimenter may test for interaction,
requires at least two observations per cell, whereas the randomized complete block
design (note the similarity of the Tables) requires only one observation per cell.
We use two-way analysis of variance to analyze the data from a factorial
experiment of the type presented here.
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The factorial experiment

The model for the two-factor repeated measures design must represent the fact
that there are two factors, A and B, and they have a potential interaction:

xijk = µ+αi +βj +(αβ)ij +ϵijk i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , n.

αj represents the main effect of factor A,
βk represents the main effect of factor B,
(αβ)jk represents the interaction effect of factor A and factor B,
ϵijk is a residual component representing all sources of variation other than treatments and blocks
(experimental error).

Assumptions:

The observations in each of the ab cells constitute a random independent
sample of size n drawn from the population defined by the particular
combination of the levels of the two factors.
Each of the ab populations is normally distributed.
The populations all have the same variance.
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Hypotheses

1

{
H0 : αi = 0, i = 1, 2, . . . , a,
Ha : not all αi = 0.

2

{
H0 : βj = 0, j = 1, 2, . . . , b,
Ha : not all βj = 0.

3

{
H0 : (αβ)ij = 0, i = 1, 2, . . . , a, j = 1, 2, . . . , b,
Ha : not all (αβ)ij = 0.

Before collecting data, the researchers may decide to test only one of the possible hypotheses.

In this case they select the hypothesis they wish to test, choose a significance level α, and proceed in the
familiar, straightforward fashion. This procedure is free of the complications that arise if the researchers wish
to test all three hypotheses.

When all three hypotheses are tested, the situation is complicated by the fact that the three tests are not
independent in the probabilistic sense.

If we let α be the significance level associated with the test as a whole, and α′; α′′; and α′′′ the
significance levels associated with hypotheses 1, 2, and 3, respectively, we find

α < 1 −
(
1 − α

′
) (

1 − α
′′
) (

1 − α
′′′

)
.

Hence, If α′ = α′′ = α′′′ = 0.05, then α < 1 − 0.953 = 0.143. This means that the probability of rejecting
one or more of the three hypotheses is less than 0.143 when a significance level of 0.05 has been chosen for
the hypotheses and all are true.
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Calculation of the test statistic

By an adaptation of the procedure used in partitioning the total sum of squares for
the completely randomized design, it can be shown that the total sum of squares
under the present model can be partitioned into two parts as follows:

a∑
i=1

b∑
j=1

n∑
k=1

(xijk − x ···)
2 =

a∑
i=1

b∑
j=1

n∑
k=1

(x ij· − x ···)
2 +

a∑
i=1

b∑
j=1

n∑
k=1

(xijk − x ij·)
2 ,

i.e.,
SST = SSTr + SSE ,

where the sum of squares for treatments can be partitioned into three parts as
follows:

a∑
i=1

b∑
j=1

n∑
k=1

(x ij· − x ···)
2 =

a∑
i=1

b∑
j=1

n∑
k=1

(x i·· − x ···)
2 +

a∑
i=1

b∑
j=1

n∑
k=1

(x ·j· − x ···)
2 +

+
a∑

i=1

b∑
j=1

n∑
k=1

(x ij· − x i·· − x ·j· + x ···)
2 ,

i.e.,
SSTr = SSA+ SSB + SSAB.
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Analysis of Variance Table for a Two-Factor Completely
Randomized Experiment (Fixed-Effects Model)

It can be shown that
SST = SSTr + SSE ,

where the sum of squares for treatments can be partitioned into three parts as
follows:

SSTr = SSA+ SSB + SSAB.

Test statistic: Variance ratios, according to the following AnOVa Table (following
F distributions with the indicated degrees of freedom, respectively):
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Two-Factor Completely Randomized Experiment
(Fixed-Effects Model): Application

In a study of length of time spent on individual home visits by public health
nurses, data were reported on length of home visit, in minutes, by a sample of 80
nurses. A record was made also of each nurse’s age and the type of illness of each
patient visited.

The researchers wished to obtain from their investigation answers to the following
questions:

1 Does the mean length of home visit differ among different age groups of
nurses?

2 Does the type of patient affect the mean length of home visit?
3 Is there interaction between nurse’s age and type of patient?
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Length of Home Visit in Minutes by Public Health Nurses by
Nurse’s Age Group and Type of Patient
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Data in SPSS
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The procedure in SPSS
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SPSS Output: Tests of Between-Subjects Effects

We consider here the case where the number of
observations in each cell is the same. When the
number of observations per cell is not the same for
every cell, the analysis becomes more complex. In
such cases, the design is said to be unbalanced.
Software packages such as SPSS accommodates
unequal cell sizes.

H0 : α1 = α2 = α3 = α4 = 0: Variance ratio is
997.5/14.7 = 67.94 → H0 is rejected (differences
in the average amount of time spent in home visits
with different types of patients).

H0 : β1 = β2 = β3 = β4 = 0: Variance ratio is
400.4/14.7 = 27.27 → differences in the average
amount of time spent on home visits among the
different nurses when grouped by age.

H0 : all (αβ)ij = 0: Variance ratio is
67.6/14.7 = 4.61 → different combinations of
levels of the two factors produce different effects.

If the interaction term turns out to be not
significant in the model – or if the effect is not
large enough (effect size η2 < 0.14) – it might be
preferable to adjust your model, removing the
interaction term and leaving only main effects.
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SPSS Output: Main effects (to remove interaction effect, if
so desired)

This option is available from the Model Tab in the
main interface, in case the interaction term turns
out to be not significant and respecification of the
model is desired, leaving only main effects of the
Factors & Covariates:
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Levene’s test of equality of error variances

The previous output should only be interpreted
under the assumption of homogeneity of error
variances across cells.

To verify whether this assumption is met or not,
Levene’s test should be considered.

Levene’s test can be accessed, using the Options
Tab in the main interface and flagging
"Homogeneity Tests".

The null hypothesis of this test involves equality of
error variances, hence a Sig. value greater than
α = 0.05 is desired, so that the H0 cannot be
rejected.

Its classical version is the one ’based on mean’,
the validity of which can be affected by the
presence of outliers/non-normality.

Three modifications of Levene’s test are also
provided which are more robust, hence preferable,
in such instances.

Here, the classical test is significant (p=0.005),
while the more robust modifications are not
(p > 0.05), hence indicative that the assumption
of homogeneity of variances is met.
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SPSS Output: Descriptive Statistics

When the Anova table in significant, it is desirable
to report differing means.

Using the Options Tab in the main interface and
flagging "Descripitve Statistics", we have
immediate access to cell means and standard
deviations, along with respective cell sizes.

More detailed means information (including
marginal means and the respective Confidence
Intervals) are obtainable via the EM Means Tab in
the main interface.
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Estimated marginal means

Marginal Means for various factors are obtainable
via the EM Means (Estimated Marginal Means)
Tab in the main interface.

Here, we consider Marginal Means with respect to
the groups defined by Variable C3 (Nurse Age
Group).
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Estimated marginal means (compare main effects)

To obtain pairwise comparisons among the mean
times across the different groups defined by by
Variable C3 (Nurse Age Group), flag "compare
mean effects".

Here, we consider Marginal Means with respect to
the groups defined by Variable C3 (Nurse Age
Group).

Since multiple tests will be conducted, it is
advisable to opt for a more conservative testing
approach using the Bonferroni modification, which
adjusts the significance level α to α/r , where r is
the number of pairwise tests being carried out.

Significant differences are flagged.

Note that for significant differences (i.e., with
p-values (Sig.)<0.05), the difference 0 lies within
the corresponding 95%-C.I. (confidence interval).

The last portion of the output contains an ANOVA
table, replicating the relevant portion from the
initial "Tests of Between-Subjects Effects".
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Estimated marginal means (compare main effects) - cont’d

The last part of the output includes an ANOVA
table, replicating the relevant portion from the
initial "Tests of Between-Subjects Effects".
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Marginal means for Type of Patient

The analogue procedure to obtain Marginal Means
and compare main effects with respect to the
groups defined by Variable C2 (Type of Patient).

Again, since multiple tests will be conducted, it is
advisable to opt for a more conservative testing
approach using the Bonferroni modification.
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Graphing options (marginal means for nurse age group)

From the "Profile Plots" Tab in the main
interface, we may visualize the corresponding
marginal means.

To graph marginal mean times for the different
nurse age groups, select the corresponding variable
(variable C3) and place it the Horizontal Axis tab.

Line Chart and Bar Chart options are provided
(prefer Line chart myself..).

Also, option to include Error Bars in the resulting
chart are provided (although that may clutter the
resulting graph).
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Charts for marginal means for nurse age group

Line Chart Bar Chart
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Graphing options (marginal means for type of patient)

To graph marginal mean times for type of patient
groups, select the corresponding variable (variable
C2) and place it the Horizontal Axis tab.
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Charts for marginal means for type of patient groups

Line Chart Bar Chart
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Means for each of the 16 cells of the experiment

Flagging "Simple effects tests" in the EM Means Tab, we investigate pairwise
differences in mean length of home visit among different nurse age groups for
different types of patients, i.e., among the 16 cells.

Since multiple tests will be conducted, it is advisable to opt for a more conservative
testing approach using the Bonferroni modification, which adjusts the significance
level α to α/r , where r is the number of pairwise tests being carried out.
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Means for each of the 16 cells of the experiment
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Means for each of the 16 cells of the experiment - Simple
main effects comparisons (1st Version - partial output)

Like previously, significant differences are flagged.
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Means for each of the 16 cells of the experiment - Simple
main effects comparisons (2nd Version - partial output)

Like previously, significant differences are flagged.
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Means plots (1st Version)

To construct means plot with respect to Nurse’s
age group:

When no interaction is present, we would expect
the line connecting the means for different nurse
age groups to be roughly parallel across levels of
the type of patient factor.
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Means plots (2nd Version)

To construct means plot with respect to Type of
Patient group:

When no interaction is present, we would expect
the line connecting the means for different types
of patient groups to be roughly parallel across
levels of nurse age.
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Repeated measures design
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The repeated measures design

A repeated measures design is one in which measurements of the same variable are
made on each subject on two or more different occasions.

The different occasions during which measurements are taken may be either points
in time or different conditions such as different treatments

Motivation. Desire to control for variability among subjects. In such a design, each
subject serves as its own control.

When measurements are taken on only two occasions, we have the paired means
comparison design.

Most frequent use. Situation in which the investigator is concerned with responses
over time.

Advantages.
Ability to control for extraneous variation among subjects. Since the variability in the error term due
to individual differences is removed (as we are “blocking on each subject”), this generally makes these
designs more powerful than randomized designs, where subjects are randomly assigned to the
different treatments.
Also, fewer subjects are needed than for a design in which different subjects are used for each
occasion on which measurements are made. Suppose, for example, that we have four treatments (in
the usual sense) or four points in time on each of which we would like to have 10 measurements →
40 subjects vs. 10 subjects required in repeated measures.

This can be a very attractive advantage if subjects are scarce or expensive to
recruit.
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The repeated measures design: Disadvantages

A major potential problem to be on the alert for is what is known as the carry-over
effect. When two or more treatments are being evaluated, the investigator should
make sure that a subject’s response to one treatment does not reflect a residual
effect from previous treatments.

This problem can frequently be solved by allowing a sufficient length of time
between treatments.

Another possible problem is the position effect. A subject’s response to a
treatment experienced last in a sequence may be different from the response that
would have occurred if the treatment had been first in the sequence.

In certain studies, such as those involving physical participation on the part of the
subjects, enthusiasm that is high at the beginning of the study may give way to
boredom toward the end.

A way around this problem is to randomize the sequence of treatments
independently for each subject. Otherwise, time and the order of administration of
stimuli will be confounded.
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Single-Factor Repeated Measures Design

The repeated measures design in which one factor (additionally to the already
present treatment variable) is introduced into the experiment is called a
single-factor repeated measures design. The reason for introducing this additional
variable is to measure and isolate its contribution to the total variability among the
observations.

We refer to the additional factor as subjects (“blocking on each subject”). In the
single-factor repeated measures design, each subject receives each of the
treatments. The order in which the subjects are exposed to the treatments, when
possible, is random, and the randomization is carried out independently for each
subject.
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Single-Factor Repeated Measures Design: Assumptions

Assumptions.
1 The subjects under study constitute a simple random sample from a

population of similar subjects.
2 Each observation is an independent simple random sample of size 1 from

each of kn populations, where n is the number of subjects and k is the
number of treatments to which each subject is exposed.

3 The kn populations have potentially different means, but they all have the
same variance.

4 The k treatments are fixed; that is, they are the only treatments about which
we have an interest in the current situation. We do not wish to make
inferences to some larger collection of treatments.

5 There is no interaction between treatments and subjects; that is, the
treatment and subject effects are additive.
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Single-Factor Repeated Measures Design: Assumptions (2)

Additionally, in a repeated measures experiment there is a presumption that
correlations should exist among the repeated measures. That is, measurements at
time 1 and 2 are likely correlated, as are measurements at time 1 and 3, 2 and 3,
and so on. This is expected because the measurements are taken on the same
individuals through time.

An underlying assumption of the repeated-measures ANOVA design is that all of
these correlations are the same, a condition referred to as compound symmetry.
This assumption, coupled with assumption 3 concerning equal variances, is referred
to as sphericity. Violations of the sphericity assumption can result in an inflated
type I error.

Most computer programs provide a formal test for the sphericity assumption along
with alternative estimation methods if the sphericity assumption is violated.
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Single-Factor Repeated Measures Design

The model for the fixed-effects additive single-factor repeated measures design
may be written as follows:

xij = µ+ βi + τj + ϵij i = 1, 2, . . . , n, j = 1, 2, . . . , k.

This model is completely analogous to the model for the randomized complete
block design. The subjects are the blocks.

Consequently, the notation, data display, and hypothesis testing procedure are the
same as for the randomized complete block design as presented earlier.
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Health Condition Scores at Four Different Points in Time

Subjects with chronic, nonspecific low back pain.

18 of the subjects completed a survey questionnaire assessing physical functioning at baseline, and after 1, 3,
and 6 months.

Data for those subjects who received a sham treatment that appeared to be genuine osteopathic
manipulation. Higher values indicate better physical functioning.

The goal of the experiment was to determine if subjects would report improvement over time even though
the treatment they received would provide minimal improvement.

We wish to know if there is a difference in the mean survey values among the four points in time.
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Health Condition Scores at Four Different Points in Time (2)

The goal of the experiment was to determine if subjects would report improvement over time even though
the treatment they received would provide minimal improvement.

We wish to know if there is a difference in the mean survey values among the four points in time.

Hypotheses. {
H0 : µB = µM1 = µM3 = µM6 ,

Ha : not all µ’s are equal.
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Health Condition Scores at Four Different Points in Time (3)

Hypotheses. {
H0 : µB = µM1 = µM3 = µM6 ,

Ha : not all µ’s are equal.

Test statistic. Variance ratio = Treatment MS/Error MS ∼ F(4−1),(71−3−17) = F3,51.
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Single-Factor Repeated Measures in SPSS
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Single-Factor Repeated Measures in SPSS (2)
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Single-Factor Repeated Measures in SPSS: Output

If no further options are activated, SPSS Output provides the following Tables:

(a.) Multivariate Tests

(b.) Mauchly’s Test of Sphericity

(c.) Test of Within-Subjects Effects

(d.) Test of Within-Subjects Contrasts

(e.) Test of Between-Subjects Effects
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Multivariate Tests vs. Test of Within-Subjects Effects

The test of overall mean differences in the repeated measures design can be carried out in two ways:
1 using either the multivariate test approach (see above), or
2 the univariate approach (see below).
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Multivariate Tests

Assumptions. The multivariate test assumes independence of observations and
multivariate normality.
A benefit of this approach is that it does not require one of the assumptions
necessary for the univariate approach (via Test of Within-Subjects Effects Table);
namely, sphericity.
There are times when the multivariate test may be more powerful than the
univariate test. However, when sphericity is assumed, the univariate approach
tends to be more powerful than the multivariate test.
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Multivariate Tests (2)

According to this Table, we have:

Wilks’ lambda = 0.556, F (3, 15) = 3.995, p = 0.028.

Hence, we conclude significant differences in means on the Health Score across
time periods.
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Univariate approach and Sphericity assumption

The standard univariate repeated measures ANOVA (Test of Within-Subjects Effects Table below) assumes a
condition called sphericity.
When sphericity is violated, there is increased risk of committing Type 1 error. To evaluate whether that
condition is met, we consider the information contained in the table above.
Problems with violating sphericity (or with compound symmetry for that matter) tend to arise when the time
elapsed between measurement occasions are not equal.
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Ascertaining the Sphericity Assumption: Epsilon (ϵ)
parameters

The sphericity assumption may be evaluated using the Greenhouse-Geisser epsilon (ϵ) parameter and/or

Mauchly’s test.
When ϵ = 1, this is considered an indicator that sphericity is met. Values < 1 indicate departure
from sphericity.
In the table above, the Greenhouse-Geisser ϵ = 0.743. This parameter is used to adjust the degrees
of freedom of the Greenhouse-Geisser repeated measures ANOVA results in the table containing the
‘Tests of within-subjects effects’.

Huynh-Feldt also defined an ϵ parameter that can used to adjust degrees of freedom in the repeated
measures analysis (see Table containing ‘Tests of Within-subjects effects’).

The G-G epsilon tends to underestimate the degree to which sphericity is met (making it a more conservative
estimate of sphericity), while the H-F epsilon tends to overestimate the degree of sphericity (i.e., it is a more
liberal estimate of sphericity).
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Ascertaining the Sphericity Assumption: Mauchley’s test

Mauchley’s test provides a test of sphericity. If significant, then we assume
sphericity is not met as the matrix of difference scores differs significantly from a
diagonal matrix.
In our case, p=0.068, which suggests sphericity is met.
Note. There will be no test of sphericity (and corresponding Sig.=.) and the Greenhouse-Geisser epsilon
parameter will be 1 if there are only two levels of the repeated factor. The issue of sphericity is a non-issue
in this case.

Disadvantages:
Mauchley’s test is sensitive to multivariate nonnormality.
The power of the test will be impacted by sample size (i.e., less powerful for detecting a violation in
smaller samples versus overpowered in larger samples).
Many analysts suggest Mauchly’s test is unnecessary since the Greenhouse-Gessier test incorporates
the degree to which the data depart from sphericity into the test results. Hence, when there is some
minor deviation from sphericity, a minor adjustment to the degrees of freedom is performed and when
there is greater deviation from sphericity, a more substantial adjustment to the degrees of freedom is
made.
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Test of Within-Subjects Effects: Choosing between the
different alternatives

Since the ϵ parameter computed using G-G computation can be overly
conservative (thereby making the repeated measures ANOVA too conservative in
terms of rejecting the null), the Huynh-Feldt test provides a less conservative
alternative to testing for differences in means.
As a general “rule of thumb”: If the Greenhouse-Geisser ϵ < 0.75, then use the
Greenhouse-Geisser test. Otherwise, if you determine sphericity is violated (or at
least are seeking a more conservative alternative to the standard ‘sphericity
assumed test’), then use the Huynh-Feldt test (when the G-G ϵ ∈ [0.75, 1.0]).
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Test of Within-Subjects Effects: Conclusion

For our data, the G-G ϵ = 0.743(< 0.75) suggests the use of the
Greenhouse-Geisser test.
The univariate repeated measures ANOVA using the Greenhouse-Geisser correction
indicated there were significant differences in scores over time:

F (2.229, 37.886) = 4.975, p = 0.010.

Note that the assumption of sphericity was not violated for these data
(marginally), but the decision rule did not change, since all of the p–values were
less than α = 0.05.
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Test of Within-Subjects Contrasts

One may wonder whether there is evidence of trending over time with respect to
the means of the repeated measurements.
The ‘Tests of Within-subjects contrasts’ Table above can be useful in this regard.

A linear trend implies that the change on the repeated measure will be the same between each pair of
adjacent measurement occasions.
A quadratic trend implies change in the change over time, and will give the appearance of a “bowl”
shape as there is one “bend” in the line.
A cubic trend assumes two bends in the line.
The highest possible trend is equal to k − 1 (i.e., # of repeated measurements minus 1). When k = 2,
the highest order polynomial trend is linear. When k = 3, the highest order polynomial trend that is
possible is quadratic. When k = 4 (as we have here), the highest order trend that is possible is cubic.

When pondering such questions, it is instructive to provide profile plots for
illustration/comparison.
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Option to obtain Profile Plots

When performing a trend analysis, we need to look at the highest-order polynomial terms that are
significant, consider the added explanatory power that results from the addition of terms, and also consider
the shape of change itself (e.g., inspection of the profile plot).

Although one rule of thumb might be to simply go with the highest order polynomial terms that are
significant, it is also important to consider the value-added of adding in those terms and whether the loss of
parsimony is worth the cost of added complexity in terms of your ability to interpret the results.
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Test of Within-Subjects Contrasts

When performing a trend analysis, we need to look at the highest-order polynomial
terms that are significant, consider the added explanatory power that results from
the addition of terms, and also consider the shape of change itself (e.g., inspection
of the profile plot).
Although one rule of thumb might be to simply go with the highest order
polynomial terms that are significant, it is also important to consider the
value-added of adding in those terms and whether the loss of parsimony is worth
the cost of added complexity in terms of your ability to interpret the results.
Here, we could say the trend is cubic (p = 0.004).
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Additional Options: Descriptives
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Additional Options: Estimated Marginal Means

These are paired t-tests with p-values adjusted for
multiple comparisons.

Significant pairwise differences in scores among
the time periods are flagged.

No significant differences are observed here.
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Two-Factor repeated measures
design

E. Papageorgiou, G. Katsouleas (UniWA)Linear Models for experimental designs June 19, 2024 87 / 99



Two-Factor Repeated Measures Design

Repeated measures ANOVA is not useful just for testing means among different
observation times. The analyses are easily expanded to include testing for
differences among times for different treatment groups.

This approach can be used when testing whether individuals react the same or
differently across levels of a repeated factor (for example, different stimuli for
which a person is exposed) and a grouping variable.

As an example, a clinic may wish to test a placebo treatment against a new
medication treatment. Researchers will randomly assign patients to one of the two
treatment groups and will obtain measurements through time for each subject. In
the end they are interested in knowing if there were differences between the two
treatments on subjects that were measured multiple times.

The model for the two-factor repeated measures design must represent the fact
that there are two factors, A and B, and they have a potential interaction:

xijk = µ+αi +βj +(αβ)ij +ϵijk i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , n.

αj represents the main effect of factor A,
βk represents the main effect of factor B,
(αβ)jk represents the interaction effect of factor A and factor B,
ϵijk is a residual component representing all sources of variation other than treatments and blocks.
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Oral Health Condition Scores at Four Different Points in
Time Under Two Treatment Conditions
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Oral Health Condition Scores at Four Different Points in
Time Under Two Treatment Conditions (2)

Examination of 25 subjects with neck cancer with outcome variable an oral health condition score.

Random division into two treatment groups → placebo treatment (treatment 1) and an aloe juice group
(treatment 2).

Cancer health was measured at baseline and at the end of 2, 4, and 6 weeks of treatment.

The goal was to discern if there was any change in oral health condition over the course of the experiment
and to see if there were any differences between the two treatment conditions.
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Hypotheses

1

{
H0 : αi = 0, i = 1, 2, . . . , a,
Ha : not all αi = 0.

2

{
H0 : βj = 0, j = 1, 2, . . . , b,
Ha : not all βj = 0.

3

{
H0 : (αβ)ij = 0, i = 1, 2, . . . , a, j = 1, 2, . . . , b,
Ha : not all (αβ)ij = 0.

Test statistic. Distributed as F with:

Within-subject effects: 4 − 1 = 3 numerator degrees of freedom and
(4 − 1)(25 − 2) = 69 denominator degrees of freedom for the time factor.
Within-subject effects: (4 − 1)(2 − 1) = 3 numerator degrees of freedom for
the interaction factor and (4 − 1)(25 − 2) = 69 denominator degrees of
freedom for the interaction factor.
Between-subject factor: 2 − 1 = 1 numerator degrees of freedom and
25 − 2 = 23 denominator degrees of freedom .

If the assumptions, specifically of sphericity, are not met, then the computer
program will alter the degrees of freedom and hence the critical value for
comparisons.
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Two-Factor Repeated Measures in SPSS
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Two-Factor Repeated Measures in SPSS (2)
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Tests of Sphericity

The sphericity assumption is required for all univariate main effects tests and interaction tests. Given
Mauchly’s test is impacted by non-normality and by sample size, it is not highly recommended when
evaluating whether the sphericity condition has been met. We would reject the null for this test, according to
the output p–value (p=0.008).

A Greenhouse-Geisser epsilon (ϵ) value < .75, suggests using the Greenhouse-Geisser adjustment with the
univariate test of mean differences (see table of “Tests of within-subjects effects”), whereas a value falling
between .75 and 1 suggests the use of the Huynh-Feldt adjustment with the univariate tests. [ϵ = 1 is
consistent with sphericity]. The sphericity assumed test can be used if you determine sphericity is not
violated.

The Lower-Bound test is generally overly conservative and is not typically used.

Following the considerations above, we will proceed, referring to the G-G modification of the degrees of
freeedom in the "Tests of within-subjects effects" Anova Table.
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Tests of within subjects effects in SPSS: Output

All three test results yield the same conclusions
with respect to the main and interaction effects.

The main effect of time on oral condition scores is
statistically significant, according to the G-G
modification. Variance ratio:

F (2.025, 46.572) = 13.926, p < 0.001.

Hence, we reject the null hypothesis concerning
changes through time.

Not significant time X group interaction effect:

F (2.025, 46.572) = 0.073, p > 0.05.

Hence, we fail to reject the null hypothesis
concerning the interaction of time and treatment.

Although the test of the linear component of the
trend is significant (p<0.001), the higher-order
quadratic component was also significant
[F(1,23)=12.834, p=0.002]. This suggests that
across groups, the mean oral health score
exhibited a quadratic trend over the four
measurement occasions. This is further suggested
by examining the profile plot of the means.

Also, the test of the interaction between the linear
(also quadratic etc.) component of the trend and
treatment group is not significant [F(1,23)=0.320,
p=.860].
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Plotting the mean scores by time and by time and treatment
group

Though the previous output can be valuable for statistical interpretation, it is often useful to examine plots
to obtain a visual interpretation of the results:
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Assessment of trending over time

Assessment of trending over time (irrespective of group
membership)

We observe that across groups, the mean level of
oral condition scores exhibited a quadratic trend
over the four measurement occasions.

It is evident that changes in oral condition did
occur through time, but that the two treatments
were very similar, as can be seen by the close
proximity of the two curves in the differential
trending plot on the right:

Testing for differential trending across groups

Plot of marginal means against time, with lines
representing each of the treatments.

Looking at the profile plot of means, we see that
the curvatures of the lines for the two Treatments
are not that different. Since these trends are
roughly parallel, it is no surprise the test of the
time X group interaction is not significant.
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Tests of between subjects effects in SPSS: Output

The Tests of Between-subjects Effects is a test of
the main effect of the grouping variable on scores
on the repeated measure averaged over time. The
result presented here is simply a test of group
differences on the average of oral health condition
scores (i.e., those scores averaged over time for
each person).

The main effect of treatment group on the
average oral health condition score across time is
not statistically significant, F(1, 23)=.056,
p=0.815>0.05. Hence, we fail to reject the null
hypothesis concerning differences between
treatments.

The Levene’s test results involve tests of
differences in variances at each time point, an
assumption of the univariate ANOVA (for the
Tests of Between-subjects effects). It turns out
that the standard Levene’s tests (and robust tests,
based on median, etc.) are non-significant for all
Times periods.

Nevertheless, in general, a potential violation of
this assumption is less of an issue with roughly
equivalent sample sizes (where largest n/smallest
n < 1.5).
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Levene’s Test of Equality of Error Variances in SPSS

To get the output for Levene’s Test of Equality of Error Variances:
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