Simple Linear
Regression and
Correlation

o ften the marketing analyst needs to determine how variables are related,
and much of the rest of this book is devoted to determining the nature of
relationships between variables of interest. Some commonly important marketing
questions that require analyzing the relationships between two variables of inter-
est include:

= How does price affect demand?
= How does advertising affect sales?
= How does shelf space devoted to a product affect product sales?

This chapter introduces the simplest tools you can use to model relationships
between variables. It first covers finding the line that best fits the hypothesized
causal relationship between two variables. You then learn to use correlations to
analyze the nature of non-causal relationships between two or more variables.

Simple Linear Regression

Every business analyst should have the ability to estimate the relationship between
important business variables. In Microsoft Office Excel, the Trendline feature can
help you determine the relationship between two variables. The variable you want
to predict is the dependent variable. The variable used for prediction is the indepen-
dent variable. Table 9-1 shows some examples of business relationships you might

want to estimate.
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Table 9-1: Examples of Relationships

Independent Variable

Units produced by a plant in T month
Dollars spent on advertising in 1 month
Number of employees

Daily sales of cereal

Shelf space devoted to chocolate

Price of bananas sold

The first step to determine how two variables are related is to graph the data
points so that the independent variable is on the x-axis and the dependent variable
is on the y-axis. You can do this by using the Scatter Chart option in Microsoft Excel

and performing the following steps:

With the Scatter Chart option selected, click a data point (displayed in blue)
and click Trendline in the Analysis group on the Chart Tools Layout tab.
Next click More Trendline Options..., or right-click and select Add Trendline...
You'll see the Format Trendline dialog box, which is shown in Figure 9-1.
If your graph indicates that a straight line can be drawn that provides a rea-
sonable fit (a reasonable fit will be discussed in the “Defining R*” section of
this chapter) to the points, choose the Linear option. Nonlinear relationships
are discussed in the “Modeling Nonlinearities and Interactions” section of

Dependent Variable
Monthly cost of operating a plant

Monthly sales

Annual travel expenses
Daily sales of bananas
Sales of chocolate

Pounds of bananas sold

Chapter 10, “Using Multiple Regression to Forecast Sales.”

Analyzing Sales at Mao’s Palace Restaurant

To illustrate how to model a linear relationship between two variables, take a
look at the daily sales of products at Mao’s Palace, a local Chinese restaurant (see
Figure 9-2). Mao’s main product is bowls filled with rice, vegetables, and meat
made to the customer’s order. The file Maospalace.x1sx gives daily unit sales of

bowl price, bowls, soda, and beer.
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Figure 9-1: Trendline dialog box

Now suppose you want to determine how the price of the bowls affects daily
sales. To do this you create an XY chart (or a scatter plot) that displays the inde-
pendent variable (price) on the x-axis and the dependent variable (bowl sales)
on the y-axis. The column of data that you want to display on the x-axis must
be located to the left of the column of data you want to display on the y-axis.
To create the graph, you perform two steps:

Select the data in the range E4:F190 (including the labels in cells E4 and F4).
Click Scatter in the Charts group on the Insert tab of the Ribbon, and select
the first option (Scatter with only Markers) as the chart type. Figure 9-3 shows
the graph.
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1
2
3
4 Bowl Price
3 $9.30
6 $9.10
7 $8.50
8 $9.50
9 $8.70
10 $9.70
11 $0.80
[12] $8.80
13 $8.60
14 $0.60
15 $8.20
16 $8.00
17 $8.10
18 $9.80
19 $8.90
20 $9.40
21 $8.30
22 $9.60
23 $9.90
24 $9.30
25 $8.10
26 £8.70
27 $8.10

Bowls

413

G H
Soda Beer
313 a0
326 100
358 115
331 81
380 89
201 92
307 96
361 [
344 74
351 62
338 64
374 101
388 69
325 77
341 114
314 88
375 107
376 102
312 a5
301 68
370 70
321 64
374 115

Figure 9-2: Sales at Mao’s Palace

500

— 8 o=

300

200

100

o s w I n oo

Bowl demand

g,

#Bowls

$0.00

$2.00

$4.00

T T T |
$6.00 $8.00 $10.00 $12.00
Price

Figure 9-3: Scatterplot of Bowl demand versus Price
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If you want to modify this chart, you can click anywhere inside the chart to
display the Chart Tools contextual tab. Using the commands on the Chart Tools
Design tab, you can do the following:

Change the chart type.
Change the source data.
Change the style of the chart.
Move the chart.

Using the commands on the Chart Tools Layout tab, you can do the following:

Add a chart title.

Add axis labels.

Add labels to each point that gives the x and y coordinate of each point.
Add gridlines to the chart.

Looking at the scatter plot, it seems reasonable that there is a straight line (or
linear relationship) between the price and bowl sales. You can see the straight line
that “best fits” the points by adding a trend line to the chart. To do so, perform the
following steps:

Click within the chart to select it, and then click a data point. All the data
points display in blue with an X covering each point.

Right-click and then click Add Trendline...

In the Format Trendline dialog box, select the Linear option, and then check
the Display Equation on chart and the Display R-squared value on chart boxes,
as shown in Figure 9-4. The R-Squared Value on the chart is defined in the
“Defining R*” section of this chapter.

Click Close to see the results shown in Figure 9-5. To add a title to the chart
and labels for the x-and y-axes, select Chart Tools, click Chart Title, and then
click Axis Titles in the Labels group on the Layout tab.

To add more decimal points to the equation, select the trend-line equation;
after selecting Layout from Chart Tools, choose Format Selection.

Select Number and choose the number of decimal places to display.
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Figure 9-5: Trendline for Bowl demand
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How Excel Determines the Best-Fitting Line

When you create a scatter chart and plot a trend line using the Trendline fea-
ture, it chooses the line that minimizes (over all lines that could be drawn)
the sum of the squared vertical distance from each point to the line. The ver-
tical distance from each point to the line is an error, or residual. The line cre-
ated by Excel is called the least-squares line. You minimize the sum of squared
errors rather than the sum of the errors because in simply summing the errors,
positive and negative errors can cancel each other out. For example, a point
100 units above the line and a point 100 units below the line cancel each other if
you add errors. If you square errors, however, the fact that your predictions for each
point are wrong will be used by Excel to find the best-fitting line. Another way to
see that minimizing the sum of squared errors is reasonable is to look at a situation
in which all points lie on one line. Then minimizing the least squares line would
yield this line and a sum of squared errors equal to 0.

Thus, Excel calculates that the best-fitting straight line for predicting daily bowl
sales from the price by using the equation Daily Bowl Sales=-29.595*Price +
695.87. The -29.595 slope of this line indicates that the best guess is that a $1
increase in the price of a bowl reduces demand by 29.595 bowls.

WARNING You should not use a least-squares line to predict values of an
independent variable that lies outside the range for which you have data. Your
line should be used only to predict daily bowl sales for days in which the bowl
price is between $8 and $10.

Computing Errors or Residuals

Referring back to the Mao’s Palace example, you can compute predicted bowl sales
for each day by copying the formula =-29.595*E5+695.87 from C5 to C6:C190.
Then copy the formula =F5-C5 from D5 to D6:D190. This computes the errors (or
residuals). These errors are shown in Figure 9-6. For each data point, you can define
the error by the amount by which the point varies from the least-squares line. For
each day, the error equals the observed demand minus the predicted demand. A
positive error indicates a point is above the least-squares line, and a negative error
indicates that the point is below the least-squares line. In cell D2, the sum of the
errors is computed, which obtained 1.54. In reality, for any least-squares line, the
sum of the errors should equal 0. 1.54 is obtained because the equation is rounded
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to three decimal points.) The fact that errors sum to 0 implies that the least-squares
line has the intuitively satisfying property of splitting the points in half.

B = D E F G H

sum errors

1.537
Predicted
Bowl Sales Error Bowl Price  Bowls Soda Beer
420.6365' -29.6365! $0.20 301 313 an
426.5555  -8.5555 $9.10 118 326 100
444.3125  14.6875 $8.50 459 358 115
414.7175  9.2825 $9.50 124 331 81
438.3935  8.6065 $8.70 47 380 89
408.7985 -25.7985 $9.70 383 201 92
405.839 -6.839 $0.80 399 307 96
435.434 4.566 $8.80 440 361 66
441.353 -5.353 $8.60 436 344 74
411.758 1.242 $9.60 413 351 62
453.191  -25.191 $8.20 428 338 64
450.11 10.80 $8.00 479 374 101

Figure 9-6: Errors in predicting Bowl demand

Defining R?

As you can see in the Mao’s Palace example, each day both the bowl price and bowl
sales vary. Therefore it is reasonable to ask what percentage of the monthly variation
in sales is explained by the daily variation in price. In general the percentage of the
variation in the dependent variable explained by the least squares line is known as
R?. For this regression the R? value is 0.51, which is shown in Figure 9-5. You can
state that the linear relationship explains 51 percent of the variation in monthly
operating costs.

Once you determine the R? value, your next question might be what causes
the other 49 percent of the variation in daily bowl sales costs. This value is
explained by various other factors. For example, the day of the week and month
of the year might affect bowl sales. Chapter 10, “Using Multiple Regression to
Forecast Sales” explains how to use multiple regression to determine other fac-
tors that influence operating costs. In most cases, finding factors that increase R*
increases prediction accuracy. If a factor only results in a slight increase in R*, how-
ever, using that factor to predict the dependent variable can actually decrease forecast
accuracy. (See Chapter 10 for further discussion of this idea.)

Another question that comes up a lot in reference to R* values is what is a
good R? value? There is no definitive answer to this question. As shown in
Exercise 5 toward the end of the chapter, a high R? can occur even when
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a trend line is not a good predictor of y. With one independent variable, of
course, a larger R? value indicates a better fit of the data than a smaller R? value.
A better measure of the accuracy of your predictions is the standard error of the
regression, described in the next section.

Accuracy of Predictions from a Trend Line

When you fit a line to points, you obtain a standard error of the regression that mea-
sures the spread of the points around the least-squares line. You can compute the
standard error associated with a least-squares line with the STEYX function. The syn-
tax of this function is STEYX (known_y's, known_x's), where yrange contains the
values of the dependent variable, and xrange contains the values of the independent
variable. To use this function, select the range E4:F190 and use FORMULAS CREATE
FROM SELECTION to name your price data Bow1_Price and your sales data Bowls. Then
in cell K1, compute the standard error of your cost estimate line with the formula
=STEYX(Bowls,Bowl_Price). Figure 9-7 shows the result.

1 K L
1
2 STD ERROR 17.41867
3 SLOPE -29.5945

4 INTERCEPT 695.8741
?‘ R5Q 0.506748

Figure 9-7: Computing standard error of the regression

Approximately 68 percent of your points should be within one standard
error of regression (SER) of the least-squares line, and approximately 95 percent
of your points should be within two SER of the least-squares line. These measures
are reminiscent of the descriptive statistics rule of thumb described in Chapter 2,
“Using Excel Charts to Summarize Marketing Data.” In your example, the absolute
value of approximately 68 percent of the errors should be 17.42 or smaller, and the
absolute value of approximately 95 percent of the errors should be 34.84, or 2 *
1742, or smaller. You can find that 57 percent of your points are within one SER of
the least-squares line, and all (100 percent) of the points are within two standard
SER of the least-squares line. Any point that is more than two SER from the least-
squares line is called an outlier.

Looking for causes of outliers can often help you to improve the operation of
your business. For example, a day in which actual demand was 34.84 higher than
anticipated would be a demand outlier on the high side. If you ascertain the cause
of this high sales outlier and make it recur, you would clearly improve profitability.
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Similarly, consider a month in which actual sales are over 34.84 less than expected.
If you can ascertain the cause of this low demand outlier and ensure it occurred
less often, you would improve profitability. Chapters 10 and 11 explain how to use
outliers to improve forecasting.

The Excel Slope, Intercept, and RSQ Functions

You have learned how to use the Trendline feature to find the line that best fits a
linear relationship and to compute the associated R? value. Sometimes it is more
convenient to use Excel functions to compute these quantities. In this section, you
learn how to use the Excel SLOPE and INTERCEPT functions to find the line that
best fits a set of data. You also see how to use the RSQ function to determine the
associated R? value.

The Excel SLOPE(known_y's, known_x's) and INTERCEPT (known_y's, known_x's)
functions return the slope and intercept, respectively, of the least-squares line.
Thus, if you enter the formula SLOPE(Bowls, Bowl_Price) in cell K3 (see
Figure 9-7) it returns the slope (-29.59) of the least-squares line. Entering the formula
INTERCEPT(Bowls, Bowl_Price) in cell K4 returns the intercept (695.87) of the
least-squares line. By the way, the RSQ(known_y 's, known_x's) function returns the
R? value associated with a least-squares line. So, entering the formula RSQ(Bowls,
Bowl_Price) in cell K5 returns the R* value of 0.507 for your least-squares line.
Of course this R? value is identical to the RSQ value obtained from the Trendline.

Using Correlations to Summarize Linear
Relationships

Trendlines are a great way to understand how two variables are related. Often,
however, you need to understand how more than two variables are related. Looking
at the correlation between any pair of variables can provide insights into how mul-
tiple variables move up and down in value together. Correlation measures linear
association, not causation.

The correlation (usually denoted by r) between two variables (call them x and y) is
a unit-free measure of the strength of the linear relationship between x and y. The cor-
relation between any two variables is always between —1 and +1. Although the exact
formula used to compute the correlation between two variables isn’t very important,
interpreting the correlation between the variables is.

A correlation near +1 means that x and y have a strong positive linear relationship.
That is, when x is larger than average, y is almost always larger than average, and when
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x is smaller than average, y is almost always smaller than average. For example, for
the data shown in Figure 9-8, (x = units produced and y = monthly production cost), x
and y have a correlation of +0.95. You can see that in Figure 9-8 the least squares line
fits the points very well and has a positive slope which is consistent with large values
of x usually occurring with large values of y.

r=.95

45
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25

20 p—
15
10

——Lineary)

Figure 9-8: Correlation = +0.95

If x and y have a correlation near -1, this means that there is a strong negative
linear association between x and y. That is, when x is larger than average, y is
usually be smaller than average, and when x is smaller than average, y is usually
larger than average. For example, for the data shown in Figure 9-9, x and y have a
correlation of —0.90. You can see that in Figure 9-9 the least squares line fits the
points very well and has a negative slope which is consistent with large values of x
usually occurring with small values of y.

A correlation near 0 means that x and y have a weak linear association. That is,
knowing whether x is larger or smaller than its mean tells you little about whether y
will be larger or smaller than its mean. Figure 9-10 shows a graph of the dependence
of unit sales (y) on years of sales experience (x). Years of experience and unit sales have
a correlation of 0.003. In the data set, the average experience is 10 years. You can see
that when a person has more than 10 years of sales experience, sales can be either low
or high. You also see that when a person has fewer than 10 years of sales experience,
sales can be low or high. Although experience and sales have little or no linear rela-
tionship, there is a strong nonlinear relationship (see the fitted curve in Figure 9-10)
between years of experience and sales. Correlation does not measure the strength of
nonlinear associations.

171
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Figure 9-10: Correlation near 0

Finding a Correlation with the Data Analysis Add-In

You will now learn how Excel’s Data Analysis Add-in and the Excel Correlation

function can be used to compute correlations. The Data Analysis Add-In makes

it easy to find correlations between many variables. To install the Data Analysis

Add-in, perform the following steps:

1. Click the File tab and select Options.

2. In the Manage box click Excel Add-Ins, and choose Go.
3. In the Add-Ins dialog box, select Analysis ToolPak and then click OK.
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Now you can access the Analysis ToolPak functions by clicking Data Analysis in
the Analysis group on the Data tab.

You can use this functionality to find the correlations between each pair of vari-
ables in the Mao’s Palace data set. To begin select the Data Analysis Add-In, and
choose Correlation. Then fill in the dialog box, as shown in Figure 9-11.

Correlation

Input
Input Range:

o

it

%’I

_ Cancel
Grouped By: @ Columns

) Rows Help
Labels in first row
Qutput options
@ Qutput Range: £Mg3 53
() New Worksheet Ply:

() New Workbook

% 4

Figure 9-11: Correlation dialog box

To compute correlations with the Data Analysis Add-in proceed as follows:

Select the range which contains the relevant data and data labels. The easiest
way to accomplish this is to select the upper-left cell of the data range (E5)
and then press Ctrl+Shift+Right Arrow, followed by Ctrl+Shift+Down Arrow.
Check the Labels In First Row option because the first row of the input range
contains labels. Enter cell M9 as the upper-left cell of the output range.
After clicking OK, you see the results, as shown in Figure 9-12.

M N o] P Q
3
4
5 Price Bowl Correlation
6| -0.71186
7
8
9 Bowl Price  Bowls Soda Beer
10 Bowl Price 1
11 Bowls -0.71186 1
12 Soda -0.58005 0.831008 1
13 |Beer -0.19367 0.338691 0.246803 1

Figure 9-12: Correlation matrix

From Figure 9-12, you find there is a —0.71 correlation between Bowl Price and
Bowl Sales, indicating a strong negative linear association The .0.83 correlation
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between Soda Sales and Bowl Sales indicates a strong positive linear association.
The +0.25 correlation between beer and soda sales indicates a slight positive linear
association between beer and soda sales.

Using the CORREL Function

As an alternative to using the Correlation option of the Analysis Toolpak, you
can use the CORREL function. For example, enter the formula =CORREL (Bow1_
Price,F5:F190) in cell N6 and you can confirm that the correlation between price
and bowl sales is -0.71.

Relationship Between Correlation and R?

The correlation between two sets of data is simply —/R” for the trend line, where
you choose the sign for the square root to be the same as the sign of the slope
of the trend line. Thus the correlation between bowl price and bowl sales is
—507= -0.711.

Correlation and Regression Toward the Mean

You have probably heard the phrase “regression toward the mean.” Essentially, this
means that the predicted value of a dependent variable will be in some sense closer
to its average value than the independent variable. More precisely, suppose you try
to predict a dependent variable y from an independent variable x. If x is k standard
deviations above average, then your prediction for y will be r x k standard devia-
tions above average. (Here, r = correlation between x and y.) Because r is between
-1 and +1, this means that y is fewer standard deviations away from the mean than
x. This is the real definition of “regression toward the mean.” See Exercise 9 for an
interesting application of the concept of regression toward the mean.

Summary

Here is a summary of what you have learned in this chapter:

The Excel Trendline can be used to find the line that best fits data.

The R? value is the fraction of variation in the dependent variable explained
by variation in the independent variable.

Approximately 95 percent of the forecasts from a least-squares line are accu-
rate within two standard errors of the regression.

Given two variables x and y, the correlation r (always between -1 and +1)
between x and y is a measure of the strength of the linear association between
x and y.
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Correlation may be computed with the Analysis ToolPak or the CORREL
function.

If x is k standard deviations above the mean, you can predict y to be rk stan-
dard deviations above the mean.

Exercises

The file Del1data.x1sx (available on the companion website) contains
monthly returns for the Standard & Poor’s stock index and for Dell stock.
The beta of a stock is defined as the slope of the least-squares line used to
predict the monthly return for a stock from the monthly return for the market.
Use this file to perform the following exercises:

Estimate the beta of Dell.

Interpret the meaning of Dell’s beta.

If you believe a recession is coming, would you rather invest in a high-
beta or low-beta stock?

During a month in which the market goes up 5 percent, you are 95
percent sure that Dell’s stock price will increase between which range
of values?

The file Housedata.x1sx (available on the companion website) gives the
square footage and sales prices for several houses in Bellevue, Washington.
Use this file to answer the following questions:

You plan to build a 500-square-foot addition to your house. How much
do you think your home value will increase as a result?

What percentage of the variation in home value is explained by the
variation in the house size?

A 3,000-square-foot house is listed for $500,000. Is this price out of
line with typical real estate values in Bellevue? What might cause this
discrepancy?

You know that 32 degrees Fahrenheit is equivalent to 0 degrees Celsius, and that
212 degrees Fahrenheit is equivalent to 100 degrees Celsius. Use the trend curve
to determine the relationship between Fahrenheit and Celsius temperatures.
When you create your initial chart, before clicking Finish, you must indicate
(using Switch Rows and Columns from the Design Tab on Chart Tools) that data
is in columns and not rows because with only two data points, Excel assumes
different variables are in different rows.
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The file E1ectiondata.x1sx (available on the companion website) contains,
for several elections, the percentage of votes Republicans gained from voting
machines (counted on election day) and the percentage Republicans gained
from absentee ballots (counted after election day). Suppose that during an
election, Republicans obtained 49 percent of the votes on election day and 62
percent of the absentee ballot votes. The Democratic candidate cried “Fraud.”
What do you think?

The file GNP. x1s (available on the companion website) contains quarterly
GNP data for the United States in the years 1970-2012. Try to predict next
quarter’s GNP from last quarter's GNP. What is the R?? Does this mean you
are good at predicting next quarter’'s GNP?

Find the trend line to predict soda sales from daily bowl sales.

The file Parking.x1sx contains the number of cars parked each day both in
the outdoor lot and in the parking garage near the Indiana University Kelley
School of Business. Find and interpret the correlation between the number
of cars parked in the outdoor lot and in the parking garage.

The file Printers.x1sx contains daily sales volume (in dollars) of laser print-
ers, printer cartridges, and school supplies. Find and interpret the correlations
between these quantities.

NFL teams play 16 games during the regular season. Suppose the standard
deviation of the number of games won by all teams is 2, and the correlation
between the number of games a team wins in two consecutive seasons is 0.5.
If a team goes 12 and 4 during a season, what is your best prediction for how
many games they will win next season?



Using Multiple
Regression to
Forecast Sales

Acommon need in marketing analytics is forecasting the sales of a product.
This chapter continues the discussion of causal forecasting as it pertains to
this need. In causal forecasting, you try and predict a dependent variable (usually
called Y) from one or more independent variables (usually referred to as X, X,, ...,
X ). In this chapter the dependent variable Y usually equals the sales of a product
during a given time period.

Due to its simplicity, univariate regression (as discussed in Chapter 9, “Simple
Linear Regression and Correlation”) may not explain all or even most of the variance
in Y. Therefore, to gain better and more accurate insights about the often complex
relationships between a variable of interest and its predictors, as well as to better
forecast, one needs to move towards multiple regression in which more than one
independent variable is used to forecast Y. Utilizing multiple regression may lead
to improved forecasting accuracy along with a better understanding of the variables
that actually cause Y.

For example, a multiple regression model can tell you how a price cut increases
sales or how a reduction in advertising decreases sales. This chapter uses multiple
regression in the following situations:

I Setting sales quotas for computer sales in Europe

B Predicting quarterly U.S. auto sales

# Understanding how predicting sales from price and advertising requires
knowledge of nonlinearities and interaction

m Understanding how to test whether the assumptions needed for multiple
regression are satisfied

B How multicollinearity and/or autocorrelation can disturb a regression model
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Introducing Multiple Linear Regression

In a multiple linear regression model, you can try to predict a dependent variable Y
from independent variables X, X, ...X . The assumed model is as follows:

(1) Y=B,+BX, +B,X, +...B X_+ error term
In Equation 1:

B, is called the intercept or constant term.
B, is called the regression coefficient for the independent variable X..

The error term is a random variable that captures the fact that regression models
typically do not fit the data perfectly; rather they approximate the relationships in
the data. A positive value of the error term occurs if the actual value of the depen-
dent variable exceeds your predicted value (B, + B X, + B,X, + ..B X ). A negative
value of the error term occurs when the actual value of the dependent variable is
less than the predicted value.

The error term is required to satisfy the following assumptions:

The error term is normally distributed.

The variability or spread of the error term is assumed not to depend on the
value of the dependent variable.

For time series data successive values of the error term must be independent.
This means, for example, that if for one observation the error term is a large
positive number, then this tells you nothing about the value of successive
error terms.

In the “Testing Validity of Multiple Regression Assumptions,” section of this
chapter you will learn how to determine if the assumptions of regression analysis
are satisfied, and what to do if the assumptions are not satisfied.

To best illustrate how to use multiple regression, the remainder of the chapter
presents examples of its use based on a fictional computer sales company, HAL
Computer. HAL sets sales quotas for all salespeople based on their territory. To set
fair quotas, HAL needs a way to accurately forecast computer sales in each person’s
territory. From the 2011 Pocket World in Figures by The Economist, you can obtain
the following data from 2007 (as shown in Figure 10-1 and file Europe.x1sx) for
European countries:

Population (in millions)
Computer sales (in millions of U.S. dollars)
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Sales per capita (in U.S. dollars)

GNP per head

Average Unemployment Rate 2002-2007
Percentage of GNP spent on education

F G H | ] K L
3 Source Economist Pocket World in Figures 2011
Computer GNP per Unemployment %age spend on

4 | Country Pop (millions) Sales Sales/Capita  head rate education

5 |Austria 8.4 941.2 $112.05 $49,600 4.2 5.8
5 |Belgium 10.5 1681.9 $160.18 $47,090 8.1 5.9
7 | Bulgaria 7.6 154 $20.26  $6,550 13.5 3.5
8 |Czech Rep. 10.2  1028.7 $100.85 $20,670 6.6 4.4
% Denmark 5.5 935.4 $170.07 $62,120 5.2 8.4
10 |Finland 5.3 1971 $371.89 $51,320 9.9 6.3
11 France 61.9 5928.9 $95.78 $44,510 10 5.7
12 | Germany 82.5 6824.3 $82.72 $44,450 9.1 4.6
13 Greece 11.2 813 $72.59 $31,670 9.9 3.9
14 |Hungary 10 449 $44.90 $15,410 7.3 5.1
15 |Ireland 4.4 576.9 $131.11 $60,460 6.3 4.3
16 | Italy 58.9 3858.2 $65.50 $38,490 9.3 5
17 | Netherlands 16.5 2168.5 $131.42 $52,960 4.4 5
18 |Poland 38 2847 $74.92 $13,850 14.4 5.6
19 | Portugal 10.7 728.6 $68.09 $22,920 6.3 5.9
20 |Romania 213 687.2 $32.26  $9,300 7 3.3
21 Spain 44.8 4745.8 $105.93 $35,220 14.2 4.4
22 |Switzerland 7.5 11304 $150.72 $64,430 3.6 5.6
27 Sweden 9.2 21134 $229.72 $51,950 6.3 7.6
24 Turkey 75.8 2879 $37.98  $9,940 8.6 3.7

Figure 10-1: HAL computer data

This data is cross-sectional data because the same dependent variable is measured
in different locations at the same point in time. In time series data, the same depen-
dent variable is measured at different times.

In order to apply the multiple linear regression model to the example, Y = Per
Capital Computer spending, n = 3, X, = Per Capita GNP, X, = Unemployment Rate,
and X, = Percentage of GNP spent on education.

Running a Regression with the Data Analysis
Add-In

You can use the Excel Data Analysis Add-In to determine the best-fitting multiple
linear regression equation to a given set of data. See Chapter 9 for a refresher on
installation instructions for the Data Analysis Add-In.
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To run a regression, select Data Analysis in the Analysis Group on the Data tab,
and then select Regression. When the Regression dialog box appears, fill it in, as

shown in Figure 10-2.

Regression
Input
Input Y Range: 5154:31825
Input X Range: $I84:81525

|:| Constant is Zero

[ cont

ence Level: a5 %

Output options
@] Qutput Range:
'é-‘ New Worksheet Ply: Regressioni
() New Workbook

Residuals

Residuals

D Standardized Residuals

D Residual Plots
D Line Fit Plots

Mormal Probability
D Normal Probability Plots

Figure 10-2: Regression dialog box

n

n

=il

=i

2 N

Cancel

Help

The Y Range (14:125) includes the data you want to predict (computer per
capita sales), including the column label.

The X Range (J4:L25) includes those values of the independent variables for
each country, including the column label.

Check the Labels box because your X range and Y range include labels. If you

do not include labels in the X and Y range, then Excel will use generic labels
like Y, X, X,,...,X which are hard to interpret.
The worksheet name Regressionl is the location where the output is placed.

By checking the Residuals box, you can ensure Excel will generate the error

(for each observation error = actual value of Y — predicted value for Y).

After selecting OK, Excel generates the output shown in Figures 10-3 and 10-4. For
Figure 10-4, the highlighted text indicates data that is thrown out later in the chapter.
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A B C D E F G H 1
1 SUMMARY QUTPUT
2
3 Regression Statistics
4 Multiple R 0.731106465
5 RS5quare 0.534516664
6 Adjusted R Square 0.452372545
7 Standard Error 58.42625704
2 Observations 21
9
10 ANOVA
11 df 55 MSs F Significance F
12 Regression 3 66638.03186 22212.68 6.507059 0.003940222
13 Residual 17 58031.66769 3413.628
14 Total 20 124669.6296
15
16 Coefficients Standard Error  t5tat  P-value  Lower95% Upper95% Lower 95.0%  Upper 95.0%
17 Intercept -114.8351503 78.28096449 -1.46679 0.160688 -280.012537 50.34224 -280.0125369 50.3422364
18 GNP per head 0.002297712 0.00095193 2.413741 0.027355 0.000289316 0.004306 0.000289316 0.004306108
19 Unemployment rate 4.219524573 4.840005896 0.871802 0.395463 -5.99199526 14.43104 -5.991995264 14.43104441
20 %age spend on education 21.4226983 12.73611957 1.682043 0.110837 -5.44816518 48.29356 -5.448165177 48.29356178

Figure 10-3: First multiple regression output

A B C D
24 RESIDUAL OUTPUT
25
26 Observation Predicted Sales/Capita Residuals
27 1 141.105011 -29.0574
28 2 153.9361600 6.244782
29 3 32.15788817 -11.8947
30 4 54.76728846 46.08565
31 5 229.7909036 -59.7182
32 6 179.8197146 192.0671 Finland
33 7 151.7406304 -55.9587
34 8 124.2402274 -41.5214
35 9 83.25520078 -10.6659
36 10 60.63088012 -15.7309
37 11 142.7851159 -11.6715
38 12 119.958849 -54.4546
39 13 132.5310691 -1.10683
40 14 97.71642325 -22.7954
41 15 90.80533021 -22.7119
42 16 6.765146383 25.49776
43 17 120.2673827 -14.3343
44 18 168.3638234 -17.6438
45 19 193.9264924  35.7909
46 20 23.55600061 14.42553
a7 21 112.9313707 49.15388

Figure 10-4: Residuals from first regression
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Interpreting the Regression Output

After you run a regression, you next must interpret the output. To do this you must
analyze a variety of elements listed in the output. Each element of the output affects
the output in a unique manner. The following sections explain how to interpret the
important elements of the regression output.

Coefficients

The Coefficients column of the output (cells B17:B20) gives the best fitting estimate
of the multiple regression equation. Excel returns the following equation:

(2) Predicted Computer Sales / Capita = —114.84 + .002298 * (Per Capita GNP) +
4.22 * (Unemployment Rate) + 21.42(Percentage Spent on Education)

Excel found this equation by considering all values of B, B, B, and B, and choos-
ing the values that minimize the sum over all observations of (Actual Dependent
Variable — Predicted Value)?. The coefficients are called the least squares estimates
of B, B ,...,B . You square the errors so positive and negative values do not cancel.
Note that if the equation perfectly fits each observation, then the sum of squared

errors is equal to 0.

F Test for Hypothesis of No Linear Regression

Just because you throw an independent variable into a regression does not mean it is
a helpful predictor. If you used the number of games each country’s national soccer
team won during 2007 as an independent variable, it would probably be irrelevant
and have no effect on computer sales. The ANOVA section of the regression output
(shown in Figure 10-3) in cells A10:F14 enables you to test the following hypotheses:

Null Hypothesis: The Hypothesis of No Linear Regression: Together all the
independent variables are not useful (or significant) in predicting Y.
Alternative Hypothesis: Together all the independent variables are useful
(or significant).

To decide between these hypotheses, you must examine the Significance F Value
in cell F12. The Significance F value of .004 tells you that the data indicates that
there are only 4 chances in 1000 that your independent variables are not useful in
predicting Y, so you would reject the null hypothesis. Most statisticians agree that
a Significance F (often called p-value) of .05 or less should cause rejection of the
Null Hypothesis.
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Accuracy and Goodness of Fit of Regression Forecasts

After you conclude that the independent variables together are significant, a natural
question is, how well does your regression equation fit the data? The R* value in B5
and Standard Error in B7 (see Figure 10-3) answer this question.

The R? value of .53 indicates that 53 percent of the variation in Y is explained
by Equation 1. Therefore, 47 percent of the variation in Y is unexplained by
the multiple linear regression model.

The Standard Error of 58.43 indicates that approximately 68 percent of the
predictions for Y made from Equation 2 are accurate within one standard
error ($58.43) and 95 percent of your predictions for Y made from Equation
2 are accurate within two standard errors ($116.86.)

Determining the Significant Independent Variables

Because you concluded that together your independent variables are useful in pre-
dicting Y, you now must determine which independent variables are useful. To
do this look at the p-values in E17:E20. A p-value of .05 or less for an independent
variable indicates that the independent variable is (after including the effects of all
other independent variables in the equation) a significant predictor for Y. It appears
that only GNP per head (p-value .027) is a significant predictor. At this point you
want to see if there are any outliers or unusual data points. Outliers in regression are
data points where the absolute value of the error (actual value of y — predicted value
of y) exceeds two standard errors. Outliers can have a drastic effect on regression
coefficients, and the analyst must decide whether to rerun the regression without
the outliers.

The Residual Output and Outliers

For each data point or observation, the Residual portion of the regression output,
as shown in Figure 10-4, gives you two pieces of information.

The Predicted Value of Y from Equation 2. For example, Austria predicted
per capita expenditures are given by the following:

($116.86) + (0.00229) * (49,600) + (4.22) * (4.2) + 21.52 (5.8)
=$141.10

The Residuals section of the output gives for each observation the error
= Actual value of Y — Predicted Value of Y. For Austria you find the residual is
$112.05-$141.10 = $-29.05. The regression equation found by least squares
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has the intuitively pleasing property that the sum of the residuals equals 0.
This implies that overestimates and underestimates of Y cancel each other out.

Dealing with Insignificant Independent Variables

In the last section you learned that GNP per head was the only significant indepen-
dent variable and the other two independent variables were insignificant. When
an independent variable is insignificant (has a p-value greater than .05) you can
usually drop it and run the regression again. Before doing this though, you must
decide what to do with your outlier(s). Because the standard error or the regression
is 58.4, any error exceeding 116.8 in absolute value is an outlier. Refer to Figure
10-4 and you can see that Finland (which is highlighted) is a huge outlier. Finland’s
spending on computers is more than three standard errors greater than expected.
When you delete Finland as an outlier, and then rerun the analysis, the result is in
the worksheet Regression2 of file Europe.x1sx, as shown in Figure 10-5.

Checking the residuals you find that Switzerland is an outlier. (You under predict
expenditures by slightly more than two standard errors.) Because Switzerland is
not an outrageous outlier, you can choose to leave it in the data set in this instance.
Unemployment Rate is insignificant (p-value of .84 > .05) so you can delete it from
the model and run the regression again. The resulting regression is in worksheet
Regression 3, of file Europe.x1sx as shown in Figure 10-6.

A B C D E F G
1 |SUMMARY OUTPUT
2
3 Regression Statistics
4 |Mukiple R 0.860805637
5 |R Square 0.740986344
6 |Adjusted R Square 0.692421283
7 |Standard Error 29.9835813 1
8 |Observations 20
9
10 ANOVA
11 df S5 MS F Significance F
12 |Regression 3 41150.44477 13716.81 15.2576 5.93265E-05
13 |Residual 16 14384.24236 299.0151
14 |Total 19 55534.68713
15
16 Coefficients Standard Error t Stat P-value Lower 95%  Upper95%
17 |Intercept -32.20876114 41.89082135 -0.76887 0.453169 -121.0133353 56.595813
18 /GNP per head 0.001678416 0.000496537 3.380244 0.003816 0.000625805 0.002731
19 |Unemployment rate -0.527867146 2.575579641 -0.20495 0.840195 -5.987852075 4.9321178
20 |%age spend on education 15.22764461 6.596202921 2.308547 0.034658  1.244319079 29.21097

Figure 10-5: Regression results: Finland outlier removed
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A B C D E F G
7 SUMMARY OUTPUT
2
3 Regression Statistics
4 Multiple R 0.860410573
5 |RSquare 0.740306355
6  Adjusted R Square 0.709754161
7 Standard Error 29.12650434
8 Observations 20
9
10 ANOVA
11 df 55 MS F Significance F
12 Regression 2 41112.68179 20556.34 24.23087 1.0542E-05
13 Residual 17 14422.00534 848.3533
14 Total 19 55534.68713
15
16 Coefficients Standard Error  t Stat P-value lLower 95% Upper 95%
17 /Intercept -38.48026121 27.79129164 -1.38462 0.184076 -97.1147612 20.154239
18 /GNP per head 0.001723168 0.000433202 3.977751 0.000973 0.000809193 0.0026371
19 %age spend on education 15.30973984 6.395825812 2.3937028 0.028487 1.815726905 28.803753

Figure 10-6: Regression output: unemployment rate removed

Both independent variables are significant, so use the following equation to pre-
dict Per Capita Computer Spending:

(3) -38.48 + 0.001723 * (GNP Per Capita) + 15.30974 * (Percentage GNP Spent
on Education)

Because R? = 0.74, the equation explains 74 percent of the variation in Computer
Spending. Because the Standard error is 29.13, you can expect 95 percent of your
forecasts to be accurate within $58.26. From the Residuals portion of the output, you
can see that Switzerland (error of $62.32) is the only outlier.

Interpreting Regression Coefficients

The regression coeflicient of a variable estimates the effect (after adjusting for all
other independent variables used to estimate the regression equation) of a unit
increase in the independent variable. Therefore Equation 3 may be interpreted as
follows:

After adjusting for a fraction of GNP spent on education, a $1,000 increase
in Per Capita GNP yields a $1.72 increase in Per Capital Computer spending.
After adjusting for Per Capita GNP, a 1 percent increase in the fraction of GNP
spent on education yields a $15.31 increase in Per Capita Computer spending.
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Setting Sales Quotas

Often part of a salesperson’s compensation is a commission based on whether a
salesperson’s sales quota is met. For commission payments to be fair, the company
needs to ensure that a salesperson with a “good” territory has a higher quota than a
salesperson with a “bad” territory. You'll now see how to use the multiple regression
model to set fair sales quotas. Using the multiple regression, a reasonable annual
sales quota for a territory equals the population * company market share * regres-
sion prediction for per capita spending.

Assume that a province in France has a per capita GNP of $50,000 and spends
10 percent of its GNP on education. If your company has a 30 percent market share,
then a reasonable per capita annual quota for your sales force would be the following:

0.30(-38.48 + 0.001723 * (50,000) + 15.30974 * (10)) = $60.23

Therefore, a reasonable sales quota would be $60.23 per capita.

Beware of Blind Extrapolation

While you can use regressions to portray a lot of valuable information, you must be
wary of using them to predict values of the independent variables that differ greatly
from the values of the independent variables that fit the regression equation. For
example, the Ivory Coast has a Per Capita GNP of $1,140, which is far less than any
country in your European data set, so you could not expect Equation 3 to give a
reasonable prediction for Per Capita Computer spending in the Ivory Coast.

Using Qualitative Independent Variables in
Regression

In the previous example of multiple regression, you forecasted Per Capita Computer
sales using Per Capita GNP and Fraction of GNP spent on education. Independent
variables can also be quantified with an exact numerical value and are referred
to as quantitative independent variables. In many situations, however, independent
variables can’t be easily quantified. This section looks at ways to incorporate a
qualitative factor, such as seasonality, into a multiple regression analysis.

Suppose you want to predict quarterly U.S. auto sales to determine whether the
quarter of the year impacts auto sales. Use the data in the file Autos.x1sx, as shown
in Figure 10-7. Sales are listed in thousands of cars, and GNP is in billions of dollars.

You might be tempted to define an independent variable that equals 1 during the
first quarter, 2 during the second quarter, and so on. Unfortunately, this approach
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would force the fourth quarter to have four times the effect of the first quarter,
which might not be true. The quarter of the year is a qualitative independent vari-
able. To model a qualitative independent variable, create an independent variable
(called a dummy variable) for all but one of the qualitative variable’s possible val-
ues. (It is arbitrary which value you leave out. This example omits Quarter 4.) The
dummy variables tell you which value of the qualitative variable occurs. Thus, you
have a dummy variable for Quarter 1, Quarter 2, and Quarter 3 with the following
properties:

Quarter 1 dummy variable equals 1 if the quarter is Quarter 1 and 0
if otherwise.
Quarter 2 dummy variable equals 1 if the quarter is Quarter 2 and 0
if otherwise.
Quarter 3 dummy variable equals 1 if the quarter is Quarter 3 and 0
if otherwise.

A B C D E F

9 |Historical data

10 Year Quarter Sales GNP Unemp Int
11 79 1 Sales 2541 59 9.4
12 79 2 2910 2640 57 94
13 79 3 2562 2595 59 9.7
14 79 4 2385 2701 6 12
15 80 1 2520 2785 62 13
16 80 2 2142 2509 7.3 0.6
17 80 3 2130 2570 7.7 9.2
18 80 4 2190 2667 74 14
19 81 1 2370 2878 74 14
20 81 2 2208 2835 74 15
21 81 3 2196 2897 74 15
22 81 4 1758 2744 83 12
23 82 1 1944 2582 88 13
24 82 2 2094 2613 94 12
25 82 3 1911 2529 10 9.3
26 82 4 2031 2544 107 7.9
27 83 1 2046 2633 104 7.8
28 83 2 2502 2878 101 8.4
29 83 3 2238 3051 94 041
30 83 4 2394 3274 85 8.8
3 84 1 2586 3594 7.9 9.2
32 84 2 2898 3774 75 0.8
33 84 3 2448 3861 75 10
34 84 4 2460 3919 7.2 8.8
35 85 1 2646 4040 74 8.2
36 85 2 2988 4133 73 7.5
37 85 3 2967 4303 71 74
38 85 4 2439 4393 7 7.2
39 86 1 2598 4560 71 8.9
40 86 2 3045 4587 71 7.0
41 86 3 3213 4716 69 7.4
42 86 4 2685 4796 68 7.4

Figure 10-7: Auto sales data
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A Quarter 4 observation can be identified because the dummy variables for
Quarter 1 through Quarter 3 equal 0. It turns out you don’t need a dummy variable
for Quarter 4. In fact, if you include a dummy variable for Quarter 4 as an indepen-
dent variable in your regression, Microsoft Office Excel returns an error message.
The reason you get an error is because if an exact linear relationship exists between
any set of independent variables, Excel must perform the mathematical equivalent
of dividing by 0 (an impossibility) when running a multiple regression. In this
situation, if you include a Quarter 4 dummy variable, every data point satisfies the
following exact linear relationship:

(Quarter 1 Dummy)+(Quarter 2 Dummy)+(Quarter 3 Dummy)
+(Quarter 4 Dummy)=1

NOTE An exact linear relationship occurs if there exists constants ¢ c

00 Cpo o O
such that for each data point ¢, + ¢,x, + ¢,x, + ... ¢ x = 0. Here x|, ... x are the

values of the independent variables.

You can interpret the “omitted” dummy variable as a “baseline” scenario; this is
reflected in the “regular” intercept. Therefore, you can think of dummies as changes
in the intercept.

To create your dummy variable for Quarter 1, copy the formula IF(B12=1,1,0)
from G12 to G13:G42. This formula places a 1 in column G whenever a quar-
ter is the first quarter, and places a 0 in column G whenever the quarter is not
the first quarter. In a similar fashion, you can create dummy variables for Quarter 2
(in H12:H42) and Quarter 3 (in 112:142). Figure 10-8 shows the results of the formulas.

In addition to seasonality, you'd like to use macroeconomic variables such as
gross national product (GNP, in billions of 1986 dollars), interest rates, and unem-
ployment rates to predict car sales. Suppose, for example, that you want to estimate
sales for the second quarter of 1979. Because values for GNP, interest rate, and
unemployment rate aren’t known at the beginning of the second quarter 1979, you
can’t use the second quarter 1979 GNP, interest rate, and unemployment rate to
predict Quarter 2 1979 auto sales. Instead, you use the values for the GNP, interest
rate, and unemployment rate lagged one quarter to forecast auto sales. By copying
the formula =D11 from J12 to J12:142, you can create the lagged value for GNP, the
first of your macroeconomic-independent variables. For example, the range J12:1.12
contains GNP, unemployment rate, and interest rate for the first quarter of 1979.

You can now run your multiple regression by clicking Data Analysis on the Data
tab and then selecting Regression in the Data Analysis dialog box. Use C11:C42 as
the Input Y Range and G11:142 as the Input X Range; check the Labels box (row
11 contains labels), and also check the Residuals box. After clicking OK, you can
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obtain the output, which you can see in the Regression worksheet of the file Autos.
x1sx and in Figure 10-9.

G H | J K L

9

10 a1 Q2 Q3 LagGNP LagUnemp Lagint
11 a1 Q2 Q3 LagGNP LagUnemp Lagint
12 0 1 0 2541 59 9.4
13 0 0 1 2640 57 9.4
14 0 0 0 2595 5.9 9.7
15 1 0 0 2701 6 11.9
16 0 1 0 2785 6.2 134
17 0 0 1 2509 7.3 9.6
18 0 0 0 2570 7.7 9.2
19 1 0 0 2667 74 13.6
20 0 1 0 2878 74 14.4
21 0 0 1 2835 74 15.3
22 0 0 0 2897 74 151
23 1 0 0 2744 8.3 11.8
24 0 1 0 2582 8.8 12.8
25 0 0 1 2613 9.4 124
26 0 0 0 2529 10 9.3
27 1 0 0 2544 10.7 7.9
28 0 1 0 2633 10.4 7.8
29 0 0 1 2878 101 84
30 0 0 0 3051 9.4 9.1
H 1 0 0 3274 8.5 8.8
32 0 1 0 3594 7.9 9.2
33 0 0 1 3774 7.5 9.8
M4 0 0 0 3861 75 10.3
35 1 0 0 3919 7.2 8.8
36 0 1 0 4040 74 8.2
37 0 0 1 4133 7.3 7.5
38 0 0 0 4303 71 71
39 1 0 0 4393 7 7.2
40 0 1 0 4560 71 8.9
41 0 0 1 4587 71 7.7
42 0 0 0 4716 6.9 7.4

Figure 10-8: Dummy and lagged variables

A B c i} E F G
1 | SUMMARY QUTPUT
2
5] Regression Statistics
4 Multiple R 0.884139126
5 R Square 0.781701994
6 Adjusted R Square 0.727127492
7 | Standard Error 190.5240756
& Observations
8
10 ANOVA
il df S8 Ms F Significance F
12 Regression 6 3119625.193 519937.5322 14.32357552 6.797T46E-07
13 Residual 24 871186.1616 36299.4234
14 Total 30 3990811.356
15
16 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
17 |Intercept 3154.700285 462.6530922 6818716525 4.7214E07 2199.83143 4109.56914
18 @1 156.833091 98.87110703 1.586237838 0.125774521 -47.22680256 360.8929846
19 Q2 379.7835116 96.08921514 3.95240518 0.000594196 181.4651595 578.1018637
20 |Q3 203.035501 '95.40891864 2.128055783 0.043800625 612121161 399.9497905
21 |LagGNP 0174156906 0.05842 2.9831117865 0.006480201 0.053583977 0.294729835
22 LagUnemp -93.83233214 28.32328716 -3.312904029 0002918487 -162.2887117 -35.375952564
23 |Lagint -73.9167147 17.768851573 -4.1553063566 0.000355622 -110.6303992 -37.20303022

Figure 10-9: Summary regression output for auto example
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In Figure 10-9, you can see that Equation 1 is used to predict quarterly auto
sales as follows:

Predicted quarterly sales=3154.7+156.83301+379.784Q2+203.03
6Q3+.174(LAGGNP in biTTions)-93.83(LAGUNEMP)-73.91(LAGINT)

Also in Figure 10-9, you see that each independent variable except Q1 has a
p-value less than or equal to 0.05. The previous discussion would indicate that
you should drop the Q1 variable and rerun the regression. Because Q2 and Q3 are
significant, you know there is significant seasonality, so leave Q1 as an independent
variable because this treats the seasonality indicator variables as a “package deal.”
You can therefore conclude that all independent variables have a significant effect
on quarterly auto sales. You interpret all coefficients in your regression equation
ceteris paribus (which means that each coefficient gives the effect of the indepen-
dent variable after adjusting for the effects of all other variables in the regression).

Each regression coefficient is interpreted as follows:

A $1 billion increase in last quarter’s GNP increases quarterly car sales by 174.
An increase of 1 percent in last quarter’s unemployment rate decreases quar-
terly car sales by 93,832.

An increase of 1 percent in last quarter’s interest rate decreases quarterly car
sales by 73,917.

To interpret the coefficients of the dummy variables, you must realize that they
tell you the effect of seasonality relative to the value left out of the qualitative vari-
ables. Therefore

In Quarter 1, car sales exceed Quarter 4 car sales by 156,833.
In Quarter 2, car sales exceed Quarter 4 car sales by 379,784.
In Quarter 3, car sales exceed Quarter 4 car sales by 203,036.

Car sales are highest during the second quarter (April through June; tax refunds
and summer are coming) and lowest during the third quarter. (October through
December; why buy a new car when winter salting will ruin it?)

You should note that each regression coefficient is computed after adjusting for
all other independent variables in the equation (this is often referred to as ceteris
paribus, or all other things held equal).

From the Summary output shown in Figure 10-9, you can learn the following:

The variation in your independent variables (macroeconomic factors and
seasonality) explains 78 percent of the variation in your dependent variable
(quarterly car sales).
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The standard error of your regression is 190,524 cars. You can expect approxi-
mately 68 percent of your forecasts to be accurate within 190,524 cars and
about 95 percent of your forecasts to be accurate within 381,048 cars (2 *
190,524).

There are 31 observations used to fit the regression.

The only quantity of interest in the ANOVA portion of Figure 10-9 is the sig-
nificance (0.00000068). This measure implies that there are only 6.8 chances in
10,000,000, that when taken together, all your independent variables are useless in
forecasting car sales. Thus, you can be quite sure that your independent variables
are useful in predicting quarterly auto sales.

Figure 10-10 shows for each observation the predicted sales and residual. For
example, for the second quarter of 1979 (observation 1), predicted sales from
Equation 1 are 2728.6 thousand, and your residual is 181,400 cars (2910 — 2728.6).
Note that no residual exceeds 381,000 in absolute value, so you have no outliers.

A B C
27 RESIDUAL QUTPUT
28
) Observation Predicted Sales Residuals
30 1 2728.588616 181.4113836
H 2 2687.848606 -25.84860587
32 3 2336.034563 48.96543676
33 4 2339.328281 180.6717193
34 5 2447266343 -305.2663429
35 L] 2400.118977 -270.1189769
36 7 2199.7408 -9.740800106
37 8 2076.383266 2936167341
38 9 2276.947422 -68.94742189
39 10 2026.185621 169.5143789
40 11 1848.731191 -90.73119119
41 12 2138.394335 -194.3943352
42 13 2212.298456 -118.2984563
43 14 2014.216596 -103.2165964
L 15 1969.394332 61.60566841
45 16 2166.640544 -120.6405443
45 17 2440.632501 61.3676994
47 18 2290.352403 -h2.35240272
48 19 2131.386979 262.6130214
45 20 2433.681173 152.3188271
50 P 2739.094517 158.9054833
51 22 2586.877653 -138.8776532
52 23 2362.035446 97.96455439
53 24 2667.994409 -21.99440885
54 25 2937601377 50.39862257
55 26 2838.174893 128.8251074
56 27 2713.079218 -274.0792178
57 28 2887.577992 -289.5779921
58 9 3004.570968 40.42903226
59 30 2921.225251 291. 7747455
50 | 2781.597472 -96.59747188

Figure 10-10: Residual output for Auto example
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Modeling Interactions and Nonlinearities

Equation 1 assumes that each independent variable affects Y in a linear fashion. This
means, for example, that a unit increase in X' will increase Y by B, for any values of
X, X,, ..., X_. In many marketing situations this assumption of linearity is unrealistic.
In this section, you learn how to model situations in which an independent variable
can interact with or influence Y in a nonlinear fashion.

Nonlinear Relationship

An independent variable can often influence a dependent variable through a nonlin-
ear relationship. For example, if you try to predict product sales using an equation
such as the following, price influences sales linearly.

Sales = 500 — 10 * Price

This equation indicates that a unit increase in price can (at any price level) reduce
sales by 10 units. If the relationship between sales and price were governed by an
equation such as the following, price and sales would be related nonlinearly.

Sales = 500 + 4 * Price — .40 * Price?

As shown in Figure 10-11, larger increases in price result in larger decreases in
demand. In short, if the change in the dependent variable caused by a unit change in
the independent variable is not constant, there is a nonlinear relationship between
the independent and dependent variables.

A B € D E F G H |
1
2
3
4 Price Demand
5 1 495.6
6 2 4904
7 3 484 .4
3 4 AT7.6
9 5 470
10 6 461.6
11 7 452.4
12 8 442.4
13 9 421.6
14 10 420 A Nonlinear relationship between Sales and Price
15 1 407.6
16 12 3%4.4 600 y=-0.4x%-4x + 500
17 13 380.4 500
18 14 365.6 400 +
20 1 333.6 200 ——Poly. (Demand)
21 17 316.4 100
22 13 2984 0 y y
2 19 2196 0 10 - 30
24 20 260

Figure 10-11: Nonlinear relationship between Sales and Price
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Interaction

If the effect of one independent variable on a dependent variable depends on the
value of another independent variable, you can say that the two independent variables
exhibit interaction. For example, suppose you try to predict sales using the price and
the amount spent on advertising. If the effect to change the level of advertising dollars
is large when the price is low and small when the price is high, price and advertising
exhibit interaction. If the effect to change the level of advertising dollars is the same
for any price level, sales and price do not exhibit any interaction. You will encounter
interactions again in Chapter 41, “Analysis of Variance: Two-way ANOVA.”

Testing for Nonlinearities and Interactions

To see whether an independent variable has a nonlinear effect on a dependent vari-
able, simply add an independent variable to the regression that equals the square
of the independent variable. If the squared term has a low p-value (less than 0.05),
you have evidence of a nonlinear relationship.

To check whether two independent variables exhibit interaction, simply add a
term to the regression that equals the product of the independent variables. If the
term has a low p-value (less than 0.05), you have evidence of interaction. The file
Priceandads.x1sx illustrates this procedure. In worksheet data from this file (see
Figure 10-12), you have the weekly unit sales of a product, weekly price, and weekly
ad expenditures (in thousands of dollars).

With this example, you'll want to predict weekly sales from the price and advertis-
ing. To determine whether the relationship is nonlinear or exhibits any interactions,
perform the following steps:

Add in Column H Advertising*Price, in Column I Price?, and in Column
JAd%.

Next, run a regression with Y Range E4:E169 and X Range F4:J169. You can
obtain the regression output, as shown in the worksheet nonlinear and Figure
10-13.

All independent variables except for Price? have significant p-values (less
than .05). Therefore, drop Price* as an independent variable and rerun the
regression. The result is in Figure 10-14 and the worksheet final.
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[ [ [
DIRIEIB|e(e v a|visiwioe

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Sales Price
22845
20417
23761
22674
22782
23807
18924
21855
21749
22683
20968
22202
23241
15004
23978
20457
22322
22628
21051
24515
22126
22141
21151
22558

G H 1 1
Ad A*P Price”’2  Ad”2
8 1 8 64
9 8 72 81
5 3 15 25
4 12 43 16
7 5 35 45
5 3 15 25
10 9 90 100
9 5 45 81
10 4 40 100
4 12 48 16
6 11 66 36
10 2 20 100
6 5 30 36
10 9 90 100
4 1 4 16
8 9 72 64
9 3 27 81
8 4 32 64
10 6 60 100
3 3 9 9
10 2 20 100
5 11 55 25
9 7 63 81
5 10 50 25

1
64
9
144
25
9
81
25
16
144
121
4
25
81
1
81
9
16
36
9
4
121
49
100

Figure 10-12:

Nonlinearity and interaction data

A B C D E F G H I
1 SUMMARY OUTPUT
2
3 Regression Statistics
4 Multiple R 0.996924531
5 RSquare 0.99385852
6 Adjusted RSquare  0.993665392 Price”2 has high p value so delete it and rerun analysis
7 Standard Error 135.2764087
T‘Gbsewatlons 165 I .I
9
10 ANOVA
11 df 55 Ms F Significance F
12 Regression 5 470861057.7 94172212 5146.105 7.9582E-174
13 Residual 159 2000653.375 18200.71
14 Total 164 4737707111
15
16 Coefficients Standard Error  tStat  P-value Lower 95%  Upper 95%ower 95.09pper 95.09
17 \Intercept 24005.74767 111.4951345 215.2076 5.5E-198 23785.54521 24225.95 23785.55 24225.95
18 Price -135.6678621 32.18050019 -4.21466 4.18E-05 -199.242002 -72.0937 -199.242 -72.0937
19 Ad 660.0035108 16.15110952 40.86428 3.07E-86 628.1051313 691.9019 628.1051 691.9019
20 A*P -74.12725368 1.425595543 -51.9974 1E-101 -76.94279942 -71.3117 -76.9428 -71.3117
21 Pricen2 -0.178202781 2.349205511 -0.07586 0.939629 -4.817874684 4.461469 -4.81787 4.461469
22 Adn2 -37.37381917 1.019418942 -36.6619 1.84E-79 -30.38716769 -35.3605 -39.3872 -35.3605

Figure 10-13: First regression output for Nonlinearity and Interaction example
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A 8 c D | £ F G H 1
1 SUMMARY OUTPUT
2
3 Regression Statistics
4 MultipleR 0.996924419
5 RSquare 0.993853298 Allind variables have low p value so use this equation to predict sales
6 Adjusted RSqu:  0.993704755 Ads have nonlinear effect and Price and ads interact.
7 Standard Error 134.8554475 At higher price ads have less effect on sales
& Observations 165
9
10 ANOVA
11 df 55 mMs F Significance F
12 Regression 4 4708609524  117715233.1  6472.852237 9.3099E-176
13 Residual 160 2909758.675  18185.99172
14 Total 164 4737707111
15
16 Coefficients dard Error t Stat P-value Lower 95% Upper 95%  lower 95.0%  Upper 95.0%
17 Intercept 24012.24758 7111479957 337.6547179 3.3475E-230  23871.80286  24152.69231 23871.80286  24152.69231
18 Price -137.997013  9.633696108 -14.32441001 1.7804E-30  -157.0226141 -118.97141183  -157.0226141 -118.9714113
19 Ad 660.0418881  16.09294845  41.01435424  8.35145E-87  628.2598999  691.8238767  628.2598999  691.8218767
20 A*P -74.12897476 1420979292 -52,16752641  2.3559E-102 -76.93526893 -71 -76. -71.3.
21 AdA2 -37.37288222  1.016172056  -36.77810466 5.94521E-80  -39.37972197  -35.36604248  -39.37972197  -35.36604248

Figure 10-14: Final regression output for Nonlinearity and Interaction example

The Significance F Value is small, so the regression model has significant predic-
tive values. All independent variables have extremely small p-values, so you can
predict the weekly unit sales with the equation

Predicted Unit Sales = 24,012 - 138 * Price + 660.04 * Ad - 74.13 * Ad * P
- 37.33AD?

The —37.33 Ad? term implies that each additional $1,000 in advertising can gener-
ate fewer sales (diminishing returns). The -74.13*Ad*P term implies that at higher
prices additional advertising has a smaller effect on sales.

The R? value of 99.4 percent implies your model explains 99.4 percent of the
variation in weekly sales. The Standard Error of 134.86 implies that roughly 95
percent of your forecasts should be accurate within 269.71. Interactions and non-
linear effects are likely to cause multicollinearity, which is covered in the section
“Multicollinearity” later in this chapter.

Testing Validity of Regression Assumptions

Recall earlier in the chapter you learned the regression assumptions that should be
satisfied by the error term in a multiple linear regression. For ease of presentation,

these assumptions are repeated here:

The error term is normally distributed.
= The variability or spread of the error term is assumed not to depend on the
value of the dependent variable.
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For time series data, successive values of the error term must be independent.
This means, for example, that if for one observation the error term is a large
positive number, then this tells you nothing about the value of successive
error terms.

This section further discusses how to determine if these assumptions are satis-
fied, the consequences of violating the assumptions, and how to resolve violation
of these assumptions.

Normally Distributed Error Term

You can infer the nature of an unknown error term through examination of the
residuals. If the residuals come from a normal random variable, the normal random
variable should have a symmetric density. Then the skewness (as measured by Excel
SKEW function described in Chapter 2) should be near 0.

Kurtosis, which may sound like a disease but isn’t, can also help you identify if
the residuals are likely to have come from a normal random variable. Kurtosis near 0
means a data set exhibits “peakedness” close to the normal. Positive kurtosis means
that a data set is more peaked than a normal random variable, whereas negative
kurtosis means that data is less peaked than a normal random variable. The kurtosis
of a data set may be computed with the Excel KURT function.

For different size data sets, Figure 10-15 gives 95 percent confidence intervals for
the skewness and kurtosis of data drawn from a normal random variable.

Kurtosis Kurtosis Skewness Skewness
Sample Size 2.5 97.5 2.5 97.5
10 -1.74 3.41 -1.37 1.36
20 -1.27 2.46 -1.02 1.03
30 -1.09 2.06 -0.86 0.85
40 -0.99 1.77 -0.73 0.75
50 -0.91 1.62 -0.66 0.67
60 -0.85 1.49 -0.61 0.62
70 -0.80 1.36 -0.57 0.57
80 -0.77 1.27 -0.53 0.54
90 -0.73 1.20 -0.51 0.51
100 -0.71 1.13 -0.48 0.48

Figure 10-15: 95 percent confidence interval for skewness and kurtosis for sample from
a normal distribution

For example, it is 95 percent certain that in a sample of size 50 from a normal
random variable, kurtosis is between —0.91 and 1.62. It is also 95 percent certain that
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in a sample of size 50 from a normal random variable, skewness is between —0.66
and 0.67. If your residuals yield a skewness or kurtosis outside the range shown in
Figure 10-15, then you have reason to doubt the normality assumption.

In the computer spending example for European countries, you obtained a skew-
ness of 0.83 and a kurtosis of 0.18. Both these numbers are inside the ranges speci-
fied in Figure 10-15, so you have no reason to doubt the normality of the residuals.

Non-normality of the residuals invalidates the p-values that you used to deter-
mine significance of independent variables or the entire regression. The most
common solution to the problem of non-normal random variables is to transform
the dependent variable. Often replacing y by Ln y, \f; , OT L can resolve the non-
normality of the errors. Y

Heteroscedasticity: A Nonconstant Variance
Error Term

If larger values of an independent variable lead to a larger variance in the errors,
you have violated the constant variance of the error term assumption, and heterosce-
dasticity is present. Heteroscedasticity, like non-normal residuals, invalidates the
p-values used earlier in the chapter to test for significance. In most cases you can
identify heteroscedasticity by graphing the predicted value on the x-axis and the
absolute value of the residual on the y-axis. To see an illustration of this, look at
the file Heteroscedasticity.x1sx. A sample of the data is shown in Figure 10-16.

In this file, you are using the data in Heteroscedasticity.x1sx and trying to
predict the amount a family spends annually on food from their annual income.
After running a regression, you can graph the absolute value of the residuals against
predicted food spending. Figure 10-17 shows the resulting graph.

The upward slope of the line that best fits the graph indicates that
your forecast accuracy decreases for families with more income, and het-
eroscedasticity is clearly present. Usually heteroscedasticity is resolved by
replacing the dependent variable Y by Ln Y or {y. The reason why these trans-
formations often resolve heteroscedasticity is that these transformations reduce
the spread in the dependent variable. For example, if three data points have
Y=1,Y=10,000and Y = 1,000,000 then after using the Y transformation the three
points now have a dependent variable with values 1, 100, and 1000 respectively.
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I i
4 Income Food spending
5 | $74,201.00 $9,646.13
6 | $41,659.00 $8,331.80
7 | $44,085.00 $9,698.70
8 | $63,529.00 $10,799.93
9 | $48,436.00 $9,202.84
10 | 582,481.00 $13,196.96
11 | $35,243.00 $4,934.02
12 | $57,563.00 $9,210.08
13 | $39,589.00 45,938.35
14 | $53,826.00 $10,226.94
15 | $78,861.00 $14,194.98
16 | $87,406.00 $11,362.78
17 | $74,020.00 $15,544.20
18 | $82,290.00 $9,874.80
19  $38,921.00 $4,670.52
20 | $80,960.00 $17,001.60
21 $37,107.00 $8,163.54
22 | $80,531.00 $14,495.58
23 | $79,760.00 $13,559.20
24 | $57,427.00 $12,633.94
25  $67,657.00 $9,471.98
26 | $75,449.00 $14,335.31
27 | $71,390.00 $10,708.50

Figure 10-16: Heteroscedasticity data

. . ¥ = 0.2304x- 603.54
Example of Heteroscedasticity R2=0.3288
5000
A 4500 hd
b 1000 .
S5 3500 +» rS ’e (X4
r 3000 +
e 3500 + had §0,’/‘
*
s hd N # absres
2000 TS = 2d v
i 1500 % Linear (absres)
d 1000 ’(A : 0'
-
u 500 {’ A 2PN %
a o T %‘ * hd T 1
I s} 5000 10000 15000 20000
Predicted Spending

Figure 10-17: Example of Heteroscedasticity

Autocorrelation: The Nonindependence of Errors

Suppose your data is times series data. This implies the data is listed in chronologi-
cal order. The auto data is a good example. The p-values used to test the hypothesis
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of no linear regression and the significance of an independent variable are not valid
if your error terms appear to be dependent (nonindependent). Also, if your error
terms are nonindependent, you can say that autocorrelation is present. If autocor-
relation is present, you can no longer be sure that 95 percent of your forecasts will
be accurate within two standard errors. Probably fewer than 95 percent of your
forecasts will be accurate within two standard errors. This means that in the pres-
ence of autocorrelation, your forecasts can give a false sense of security. Because the
residuals mirror the theoretical value of the error terms in Equation 1, the easiest
way to see if autocorrelation is present is to look at a plot of residuals in chrono-
logical order. Recall the residuals sum to 0, so approximately half are positive and
half are negative. If your residuals are independent, you would expect sequences
of the form ++, + —, — +, and — — to be equally likely. Here + is a positive residual
and — is a negative residual.

Graphical Interpretation of Autocorrelation

You can use a simple time series plot of residuals to determine if the error terms
exhibit autocorrelation, and if so, the type of autocorrelation that is present.

Figure 10-18 shows an illustration of independent residuals exhibiting no
autocorrelation.

No Autocorrelation

i +
T 27 4 * * R
= i} + t N
5 24 L 10 1
g =l N
y .
-8

Month

Figure 10-18: Residuals indicate no autocorrelation

Here you can see 6 changes in sign out of 11 possible changes.

Figure 10-19, however, is indicative of positive autocorrelation. Figure 10-19 shows
only one sign change out of 11 possible changes. Positive residuals are followed
by positive residuals, and negative residuals are followed by negative residuals.
Thus, successive residuals are positively correlated. When residuals exhibit few sign
changes (relative to half the possible number of sign changes), positive autocorrela-
tion is suspected. Unfortunately, positive autocorrelation is common in business
and economic data.
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Postive Autocorrelation

21 +
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[
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Month

Figure 10-19: Residuals indicate positive autocorrelation

Figure 10-20 is indicative of negative autocorrelation. Figure 10-20 shows 11 sign
changes out of a possible 11. This indicates that a small residual tends to be followed
by a large residual, and a large residual tends to be followed a small residual. Thus,
successive residuals are negatively correlated. This shows that many sign changes
(relative to half the number of possible sign changes) are indicative of negative

autocorrelation.

Negative Autocorrelation
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Figure 10-20: Residuals indicate negative autocorrelation

To help clarify these three different types of graphical interpretation, suppose
you have n observations. If your residuals exhibit no correlation, then the chance
of seeing either less than ”2_'1 — {n—1 or more than ? +{n—1 sign changes is approxi-
mately 5 percent. Thus you can conclude the following:

If you observe less than or equal to 'lz;l—m sign changes, conclude that
positive autocorrelation is present.

If you observe at least '12;1 +n—1 sign changes, conclude that negative autocor-
relation is present.

Otherwise you can conclude that no autocorrelation is present.
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Detecting and Correcting for Autocorrelation

The simplest method to correct for autocorrelation is presented in the following
steps. To simplify the presentation, assume there is only one independent variable
(Call it X):

Determine the correlation between the following two time series: your residu-
als and your residuals lagged one period. Call this correlation p.

Run a regression with the dependent variable for time t being Y, — pY, , and
independent variable X - pX .

Check the number of sign changes in the new regression’s residuals. Usually,
autocorrelation is no longer a problem, and you can rearrange your equation
to predict Y, from Y ;, X, and X ,.

To illustrate this procedure, you can try and predict consumer spending (in bil-
lions of $) during a year as a function of the money supply (in billions of $). Twenty
years of data are given in Figure 10-21 and are available for download from the file
autocorr.xls.

Now complete the following steps:

Run a regression with X Range B1:B21 and Y Range A1:A21, and check the
Labels and Residuals box. Figure 10-22 shows the residuals.

Observe that a sign change in the residuals occurs if, and only if, the product of two
successive residuals is <0. Therefore, copying the formula=I1F(127*126<0,1,0)
from J27 t0J28:J45 counts the number of sign changes. Compute the total num-
ber of sign changes (4) in cell J24 with the formula =SUM(J27:J45).

A B
1 Exp Money stock
2 214.6 159.3
3 2177 161.2]
4 219.6 162.8
5 227.2 164.6
6 230.9 165.9
7 233.3 167.9
8 2341 168.3
2] 232.3 169.7
10 233.7 170.5
11 236.5 171.6
12 238.7 173.9
13 243.2 176.1
14 249.4 178
15 254.3 179.1
16 260.9 180.2
17 263.3 181.2
18 265.6 181.6
19 268.2 182.5
20 270.4 183.3
21 275.6 184.3

Figure 10-21: Data for Autocorrelation example
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E F G H | J K
23 RESIDUAL QUTPUT sign changes
24 4
25 Observation Predicted Exp Residuals Residual(t-1)
26 correlation 1  211.7298848 2.87012 Sign change
27 Residual(t) 2 216.1005891 1.59941 0 2.87012
28 and Residual(t-1) 3 219.7811822 -0.18118 1 1.59941
29 0.8227 4  223.9218494 3.27815 1 -0.18118
30 5 226.9123312 3.98767 0 3.27815
31 6 2315130725 1.78693 0 3.98767
32 7 2324332208 1.66678 0 1.78693
33 8  235.6537397 -3.35374 1 1.66678
34 9  237.4940363 -3.79404 0 -3.35374
35 10 240.024444 -3.52444 0 -3.79404
36 11 245.3152965 -6.6153 0 -3.52444
37 12 250.376112 -7.17611 0 -6.6153
38 13 254.7468163 -5.34682 0 -7.17611
39 14 257.277224 -2.97722 0 -5.34682
40 15 259.8076317 1.09237 1 -2.97722
41 16 262.1080024 1.192 0 1.09237
42 17  263.0281506 2.57185 0 1.192
43 18  265.0984842 3.10152 0 257185
44 19 266.9387808 3.46122 0 3.10152
k450 20 2602301514 A3ANBS N 346122

Figure 10-22: Residuals for Autocorrelation example

In cell J22 compute the “cutoff” for the number of sign changes that indi-
cates the presence of positive autocorrelation. If the number of sign changes
is <5.41, then you can suspect the positive autocorrelation is present:
=9.5-SQRT(19).

Because you have only four sign changes, you can conclude that positive
autocorrelation is present.

To correct for autocorrelation, find the correlation between the residuals
and lagged residuals. Create the lagged residuals in K27:K45 by copying the
formula =126 from K27 to K28:K45.

Find the correlation between the residuals and lagged residuals (0.82) in cell
126 using the formula =CORREL(127:145, K27:K45).

To correct for autocorrelation run a regression with dependent variable
Expenditures — .82 Expenditures_, and independent variable Money Supply, —
.82 Money Supply, . See Figure 10-23.
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A D

1 Exp Money stock EXp(t)-.82EXp(t- MS(t)-.82(MS(t-1)
2 214.6 159.3

3 217.7 161.2 41.728 30.574
4 219.6 162.8 41.086 30.616
5 227.2 164.6 47.128 31.104
6 230.9 165.9 44,596 30.928
7 233.3 167.9 43.962 31.862
8 234.1 168.3 42.794 30.622
9 232.3 169.7 40.338 31.694
10 233.7 170.5 43.214 31.346
1 236.5 171.6 44.866 31.79
12 238.7] 173.9 44.77 33.188
13 243.2 176.1 47.466 33.502
14 249.4 178 49.976 33.508
15 254.3 179.1 49.792 33.14
16 260.9 180.2 52.374 33.338
17 263.3 181.2 49.362 33.436
18 265.6 181.6 49.694 33.016
19 268.2 182.5 50.408 33.588
20 270.4 183.3 50.476 33.65
21 275.6 184.3 53.872 33.994

Figure 10-23: Transformed data to correct for autocorrelation

In Column C create your transformed dependent variable by copying the
formula =A3-0.82*A2 from C3 to C4:C21.
Copy this same formula from D3 to D4:D21 to create the transformed inde-

pendent variable Money Supply, — .82Money Supply, _,.
Now run a regression with the Y Range as C3:C21 and X Range as D3:D21.
Figure 10-24 shows the results.

Because the p-value for your independent variable is less than .15, you can con-

clude that your transformed independent variable is useful for predicting your trans-

formed independent variable. You can find the residuals from your new regression

change sign seven times. This exceeds the positive autocorrelation cutoff of 4.37 sign

changes. Therefore you can conclude that you have successfully removed the positive

autocorrelation. You can predict period t expenditures with the following equation:

Period t expenditures — 0.82Period(t — 1) Expenditures = -41.97 + 2.74(Period(t)
Money Supply — .82Period(t — 1) Money Supply)
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\ H 1 J K L M N

1

2 SUMMARY OUTPUT

3 Exp(t)-.82Exp(t-1)=-41.98+2.74%(MS(t)-.82MS(t-1))

4 Regression Statistics or

5 Multiple R 0.82491 Exp(t)=.82Exp(t-1)-41.98+2.74*(MS(t)-.82MS(t-1))

6 R Square 0.68048

7 Adjusted R Square  0.66051

8 Standard Error 2.30236

9 Observations 18

10

11 ANOVA

12 df Ss MS F iignificance F

13 Regression 1 180.6254254 180.625 34.0748 2.5233E-05

14 Residual 16 84.81364059 5.30085

15 Total 17 265.439066

16

17 Coefficient Standard Error  tStat  P-value Lower 95% Upper 95%
| 18 Intercept -41.9766 15.25392438 .2.75186 0.01418 -74.313504 .9.6397687
19 |var 1 2.74079 0.469526345 5.83736 2.5E-05 1.74544379 3.7361461

Figure 10-24: Regression output for transformed data
You can rewrite this equation as the following:

Period t expenditures = .82Period(t — 1) Expenditures — 41.97 +
2.74(Period(t) Money Supply — .82Period(t — 1) Money Supply)

Because everything on the right hand side of the last equation is known at Period
t, you can use this equation to predict Period t expenditures.

Multicollinearity

If two or more independent variables in a regression analysis are highly correlated,
a regression analysis may yield strange results. Whenever two or more independent
variables are highly correlated and the regression coefficients do not make sense,
you can say that multicollinearity exists.

Figure 10-25 (see file housing.x1s) gives the following data for the years 1963—
1985: the number of housing starts (in thousands), U.S. population (in millions),
and mortgage rate. You can use this data to develop an equation that can forecast
housing starts by performing the following steps:

It seems logical that housing starts should increase over time, so include the
year as an independent variable to account for an upward trend. The more
people in the United States, the more housing starts you would expect, so
include Housing Starts as an independent variable. Clearly, an increase in
mortgage rates decreases housing starts, so include the mortgage rate as an
independent variable.
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A B C D
1 Housing data
Zthousand millions

3 Starts Pop Mort Rate Year

4 1635 189 5.89 1963
) 1561 192 5.82 1964
6 1510 194 5.81 1965
7 1196 197 6.25 1966
8 1322 199 6.46 1967
9 1545 201 6.97 1968
10 1500 203 7.8 1969
11 1434 205 8.45 1970
12 2085 208 7.74 1971
13 2379 210 7.6 1972
14 2057 212 7.96 1973
13 1353 214 8.92 1974
16 1171 216 9 1975
17 1548 218 9 1976
18 2002 220 9.02 1977
19 2036 223 9.56 1978
20 1760 225 10.78 1979
21 1312 228 12.66 1980
22 1100 230 14.7 1981
23 1072 232 15.14 1982
24 1712 234 12.57 1983
25 1756 236 12.38 1984
26 1745 238 11.55 1985

Figure 10-25: Multicollinearity data

Now run a multiple regression with the Y range being A3:A26 and the X Range
being B3:D26 to obtain the results shown in Figure 10-26.

Observe that neither POP nor YEAR is significant. (They have p-values
of .59 and .74, respectively.) Also, the negative coefficient of YEAR indicates
that there is a downward trend in housing starts. This doesn’t make sense
though. The problem is that POP and YEAR are highly correlated. To see this,
use the DATA ANALYSIS TOOLS CORRELATION command to find the correlations
between the independent variables.

A [ B [ c [ D [ E F G

[ 1 |SUMMARY OUTPUT

2

2 Regression
| 4 |Multiple R 0.660983152
| 5 |R Square 0.436898728
| 6 |Adjusted R Squ  0.347988001
| 7 |Standard Error  279.5855911

& |Observations 23
=N

10 |ANOVA

11 df 8§ MS F Significance F
| 12 |Regression 3 1152331.626  384110.5087  4.913903437  0.010796446
| 13 |Residual 19  1485193.952  78168.10274

14 |Total 22  2637525.478

15

16 Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
[ 17 |Intercept 221794.5255 661959.9507  0.335057318  0.741252754 -1163704.005 1607293.056
| 18 |Pop 90.39255757  162.9146358  0.554846145  0.585473195 -250.5917998 431.376915
| 19 |Mort Rate -206.8964396  55.49611616 -3.728124668 0.00142535 -323.0511818 -90.74169748
20 |Year -120.3847361  352.8922741 -0.341137352  0.736743719 -858.9969839  618.2275117

Figure 10-26: First regression output: Multicoillinearity example
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Select Input Range B3:D26.
Check the labels box.
Put the output on the new sheet Correlation.

You should obtain the output in Figure 10-27.

A B c D
1 Pop  Mort Rate  Year
2 Pop 1
3 |Mort Rate 0.913679 1
4 Year 0.999655  0.90995 1

Figure 10-27: Correlation matrix for Multicollinearity example

The .999 correlation between POP and YEAR occurs because both POP and YEAR
increase linearly over time. Also note that the correlation between Mort Rate and the
other two independent variables exceeds .9. Due to this, multicollinearity exists. What
has happened is that the high correlation between the independent variables has con-
fused the computer about which independent variables are important. The solution to
this problem is to drop one or more of the highly correlated independent variables and
hope that the independent variables remaining in the regression will be significant. If
you decide to drop YEAR, change your X Range to B3:C26 to obtain the output shown in
Figure 10-28. If you have access to a statistical package, such as SAS or SPSS, you can
identify the presence of multicollinearity by looking at the Variance Inflation Factor
(VIF) of each independent variable. A general rule of thumb is that any independent
variable with a variance inflation factor exceeding 5 is evidence of multicollinearity.

Adjusted R Squa
Standard Error
Observations

0.376794716
273.3396002
23

A B Cc D E F G
1 SUMMARY OUTPUT
2
3 Regression
4 Multiple R 0.658369001
5 R Square 0.433449742
6
7
8

10 ANOVA

11 af SS MS F Significance F

12 |Regression 2 1143234.737 571617.3685 7.650684739 0.003407096

13 Residual 20 1494290.741 74714.53706

14 Total 22 2637525.478

15

16 Coefficients  Standard Error t Stat P-value Lower 95% Upper 95%

17 /Intercept -4024.025797 1627.113433 -2.473107108 0.022486161 -7418.123366 -629.9282276
18 Pop 34.91659242 9.564839902 3.650515092 0.001590215 14.96469527 54.86848956
19 Mort Rate -200.8475581 51.41238103 -3.906599034 0.000875172 -308.0918558 -93.60326032

Figure 10-28: Final regression output for Multicollinearity example

POP is now highly significant (p-value = .001). Also, by dropping YEAR you actually
decreased s, from 280 to 273. This decrease is because dropping YEAR reduced the
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confusion the computer had due to the strong correlation between POP and YEAR.
The final predictive equation is as follows:

Housing Starts = -4024.03 + 34.92P0P — 200.85MORT RAT

The interpretation of this equation is that after adjusting for interest rates, an
increase in U.S. population of one million people results in $34,920 in housing
starts. After adjusting for Population, an increase in interest rates of 1 percent can
reduce housing starts by $200,850. This is valuable information that could be used
to forecast the future cash flows of construction-related industries.

NOTE  After correcting for multicollinearity, the independent variables now have
signs that agree with common sense. This is a common by-product of correcting
for multicollinearity.

Validation of a Regression

The ultimate goal of regression analysis is for the estimated models to be
used for accurate forecasting. When using a regression equation to make fore-
casts for the future, you must avoid over fitting a set of data. For example,
if you had seven data points and only one independent variable, you could obtain
an R? = 1 by fitting a sixth degree polynomial to the data. Unfortunately, such an
equation would probably work poorly in fitting future data. Whenever you have
a reasonable amount of data, you should hold back approximately 20 percent of
your data (called the Validation Set) to validate your forecasts. To do this, simply
fit regression to 80 percent of your data (called the Test Set). Compute the standard
deviation of the errors for this data. Now use the equation generated from the Test
Set to compute forecasts and the standard deviation of the errors for the Validation
Set. Hopefully, the standard deviation for the Validation Set will be fairly close to
the standard deviation for the Test Set. If this is the case, you can use the regression
equation for future forecasts and be fairly confident that the accuracy of future fore-
casts will be approximated by the s_ for the Test Set. You can illustrate the important
idea of validation with the data from your housing example.

Using the years 1963-1980 as your Test Set and the years 1981-1985 as the
Validation Set, you can determine the suitability of the regression with independent
variables POP and MORT RAT for future forecasting using the powerful TREND func-
tion. The syntax of the TREND function is TREND (known_y s, [known_x"s], [new_x"s]
,[const]). This function fits a multiple regression using the known y’s and known
x’s and then uses this regression to make forecasts for the dependent variable using
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the new x’s data. [Constant] is an optional argument. Setting [Constant]=False

causes Excel to fit the regression with the constant term set equal to 0. Setting

[Constant]=True or omitting [Constant] causes Excel to fit a regression in the

normal fashion.

The TREND function is an array function (see Chapter 2) so you need to select

the cell range populated by the TREND function and finally press Ctrl+Shift+Enter

to enable TREND to calculate the desired results. As shown in Figure 10-29 and

worksheet Data, you will now use the TREND function to compare the accuracy of

regression predictions for the 1981-1985 validation period to the accuracy of regres-

sion predictions for the fitted data using the following steps.

Pop

189
192
194
197
199

232
234
236
238

A
1 Housing data
| 2 |thousand millions

3 Starts

4 1635
5 1561
6 1510
7 1196
8 1322
9 1545
10 1500
1 1434
12 2085
13 2379
14 2057
15 1363
16 1171
17 1548
18 2002
19 2036
20 1760
21 1312
22 1100
23 1072
24 1712
25 1756
26 1745

Mort Rate Year
5.89
5.82
5.81
6.25

9.02
9.56
10.78
12.66
14.7
15.14
12.57
12.38
11.65

Predictions Error

1329.1723
1490.6514
1587.9926

1606.047
1641.5187
1592.6229
1453.7362

1365.468

1706.931
1840.8314
1834.1193
1668.6724
1730.7033
1825.2322
1914.1366
1904.0686
1666.5031
1268.56938
789.42395
760.21392
1577.4907
1725.4524
2063.3979

306.828
70.3486
-77.9926
-410.047
-319.519
-47.6229
46.2648
68.532
378.069
538.169
222,881
-306.672
-669.703
-277.232
87.8634
131.931
104.497
43.4062
310.576
311.786
134.509
30.5476
-308.398

|1933-1QBO ] 285.701

G H
Std Dev

1981.1985  255.886

Figure 10-29: Use of Trend function to validate regression

To generate forecasts for the years 1963-1985 using the 1963-1980 data, sim-
ply select the range E4:E26 and enter in E4 the array formula =TREND (A4:A21,
B4:C21,B4:C26) (refer to Figure 10-29). Rows 4-21 contain the data for the
years 1963-1980 and Rows 4-26 contain the data for the years 1963-1985.

Compute the error for each year’s forecast in Column F. The error for 1963

is computed in F4 with the formula =A4-F4.

Copy this formula down to row 26 to compute the errors for the years
1964-1985.
In cell H2 compute the standard deviation (285.70) of the errors for the years
1963-1980 with the formula =STDEV(F4:F21).
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In cell H3 compute the standard deviation (255.89) of the forecast errors for
the years 1981-1985 with the formula =AVERAGE (F22:F26).

The forecasts are actually more accurate for the Validation Set! This is unusual,
but it gives you confidence that 95 percent of all future forecasts should be accurate
within 2s_= 546,700 housing starts.

Summary

In this chapter you learned the following:

The multiple linear regression model models a dependent variable Y as B +
B X, +BX, +...B X _+ error term.
The error term is required to satisfy the following assumptions:

The error term is normally distributed.

The variability or spread of the error term is assumed not to depend
on the value of the dependent variable.

For time series data, successive values of the error term must be inde-
pendent. This means, for example, that if for one observation the error
term is a large positive number, then this tells you nothing about the
value of successive error terms.

Violation of these assumptions can invalidate the p-values in the Excel output.
You can run a regression analysis using the Data Analysis Tool.

The Coefficients portion of the output gives the least squares estimates of
B,B,,...,B..
A Significance F in the ANOVA section of the output less than .05 causes
you to reject the hypothesis of no linear regression and conclude that your
independent variables have significant predictive value.

Independent variables with p-value greater than .05 should be deleted, and
the regression should be rerun until all independent variables have p-values
of .05 or less.

Approximately 68 percent of predictions from a regression should be accurate
within one standard error and approximately 95 percent of predictions from
a regression should be accurate within two standard errors.

Qualitative independent variables are modeled using indicator variables.

By adding the square of an independent variable as a new independent vari-
able, you can test whether the independent variable has a nonlinear effect
onY.
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By adding the product of two independent variables (say X, and X,) as a new
independent variable, you can test whether X, and X, interact in their effect
onY.

You can check for the presence of autocorrelation in a regression based on
time series data by examining the number of sign changes in the residuals; too
few sign changes indicate positive autocorrelation and too many sign changes
indicate negative autocorrelation.

If independent variables are highly correlated, then their coefhicients in a
regression may be misleading. This is known as multicollinearity.

Exercises

Fizzy Drugs wants to optimize the yield from an important chemical process.
The company thinks that the number of pounds produced each time the
process runs depends on the size of the container used, the pressure, and the
temperature. The scientists involved believe the effect to change one variable
might depend on the values of other variables. The size of the process con-
tainer must be between 1.3 and 1.5 cubic meters; pressure must be between
4 and 4.5 mm; and temperature must be between 22 and 30 degrees Celsius.
The scientists patiently set up experiments at the lower and upper levels of
the three control variables and obtain the data shown in the file Fizzy.x1sx.

Determine the relationship between yield, size, temperature, and
pressure.

Discuss the interactions between pressure, size, and temperature.
What settings for temperature, size, and pressure would you
recommend?

For 12 straight weeks, you have observed the sales (in number of cases) of
canned tomatoes at Mr. D’s Supermarket. (See the file Grocery.x1sx.) Each
week, you keep track of the following:

Was a promotional notice for canned tomatoes placed in all shopping
carts?

Was a coupon for canned tomatoes given to each customer?

Was a price reduction (none, 1, or 2 cents off) given?
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Use this data to determine how the preceding factors influence sales.
Predict sales of canned tomatoes during a week in which you use a shopping
cart notice, a coupon, and reduce price by 1 cent.

The file Countryregion.x1sx contains the following data for several under-
developed countries:

Infant mortality rate

Adult literacy rate

Percentage of students finishing primary school
Per capita GNP

Use this data to develop an equation that can be used to predict infant
mortality. Are there any outliers in this set of data? Interpret the coefficients
in your equation. Within what value should 95 percent of your predictions
for infant mortality be accurate?

The file Basebal196.x1sx gives runs scored, singles, doubles, triples, home
runs, and bases stolen for each major league baseball team during the 1996
season. Use this data to determine the effects of singles, doubles, and other
activities on run production.

The file Cardata.x1sx provides the following information for 392 different
car models:

Cylinders
Displacement
Horsepower

Weight

Acceleration

Miles per gallon (MPG)

Determine an equation that can predict MPG. Why do you think all the
independent variables are not significant?

Determine for your regression predicting computer sales whether the residuals
exhibit non-normality or heteroscedasticity.

The file Oreos.x1sx gives daily sales of Oreos at a supermarket and whether
Oreos were placed 7” from the floor, 6” from the floor, or 5” from the floor.
How does shelf position influence Oreo sales?

The file USmacrodata.x1sx contains U.S. quarterly GNP, Inflation rates, and
Unemployment rates. Use this file to perform the following exercises:
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Develop a regression to predict quarterly GNP growth from the last
four quarters of growth. Check for non-normality of residuals, het-
eroscedasticity, autocorrelation, and multicollinearity.

Develop a regression to predict quarterly inflation rate from the last
four quarters of inflation. Check for non-normality of residuals, het-
eroscedasticity, autocorrelation, and multicollinearity.

Develop a regression to predict quarterly unemployment rate from the
unemployment rates of the last four quarters. Check for non-normality
of residuals, heteroscedasticity, autocorrelation, and multicollinearity.

Does our regression model for predicting auto sales exhibit autocorrelation,
non-normality of errors, or heteroscedasticity?



Modeling Trend and
Seasonality

Whether the marketing analyst works for a car manufacturer, airline, or con-
sumer packaged goods company, she often must forecast sales of her com-
pany’s product. Whatever the product, it is important to understand the trends (either
upward or downward) and seasonal aspects of the product’s sales. This chapter dis-
cusses how to determine the trends and seasonality of product sales. Using monthly
data on U.S. air passenger miles (2003-2012) you will learn how to do the following:

= Use moving averages to eliminate seasonality to easily see trends in sales.
= Use the Solver to develop an additive or multiplicative model to estimate
trends and seasonality.

Using Moving Averages to Smooth Data and
Eliminate Seasonality

Moving averages smooth out noise in the data. For instance, suppose you work for
Amazon.com and you are wondering whether sales are trending upward. For each
January sales are less than the previous month (December sales are always high
because of Christmas), so the unsuspecting marketing analyst might think there is
a downward trend in sales during January because sales have dropped. This conclu-
sion is incorrect, though, because it ignores the fact that seasonal influences tend to
drop January sales below December sales. You can use moving averages to smooth
out seasonal data and better understand the trend and seasonality characteristics
of your data.

NOTE All work in this chapter uses the file airlinemiles.x1sx, which con-
tains monthly airlines miles (in thousands) traveled in the United States during
the period from January 2003 through April 2012. A sample of this data is shown
in Figure 12-1.
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D E F
& MonthNumber Month AirlineMiles (000'S)

9 1 Jan2003  32,854,790.00
10 2 Feb2003  30,814,269.00
1 3 Mar2003 37,586,654.00
12 4 Apr2003  35,226,398.00
13 5 May2002  36,569,670.00
14 6 Jun2003  39,750,216.00
15 7 Jul2003  43,367,508.00
16 8 Aug2003  42,092,669.00
17 9 Sep2003  32,549,732.00
18 10 Oct2003  36,442,428.00
19 11 Nov2003  34,350,366.00
20 12 Dec2003  37,389,382.00
21 13 Jan2004  33,537,392.00
2 14 Feb2004  33,909,139.00
23 15 Mar2004  40,805,211.00
24 16 Apr2004  40,172,829.00
25 17 May2004  39,671,007.00

26
27

=
oo

Jun2004 43,652,277.00
Jul2004 46,262,249.00

=3
=]

28 20 Aug2004  44,701,691.00
29 21 Sep2004  35,470,844.00
30 22 Oct2004  39,627,851.00

31
32

s
W

Nov2004 37,567,116.00
Dec2004 39,117,678.00

[
F4

Figure 12-1: US airline miles

To further illustrate the concept of moving averages, take a look at the graph
of United States airline miles shown in Figure 12-2. To obtain this graph select
the data from the Moving average worksheet of the airlinemiles.x1sx file
in the range E8:F120 and select Insert > Charts > Scatter and choose the second
option (Scatter with Smooth Lines and Markers). You obtain the graph shown in
Figure 12-2.

Due to seasonality (primarily because people travel more in the summer), miles
traveled usually increase during the summer and then decrease during the winter.
This makes it difficult to ascertain the trend in airline travel. Graphing the mov-
ing average of airline miles can help to better understand the trend in this data. A
12-month moving average, for example, graphs the average of the current month’s
miles and the last 11 months. Because moving averages smooth out noise in the
data, you can use a 12-month moving average to eliminate the influence of season-
ality. This is because a 12-month moving average includes one data point for each
month. When analyzing a trend in quarterly data, you should plot a four-quarter
moving average.
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AirlineMiles (000'S)
50,000,000.00
45,000,000.00
40,000,000.00 -
35,000,000.00
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/) A
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30,000,000.00
25,000,000.00
20,000,000.00
15,000,000.00
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== AirlineMiles (000'S)
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Figure 12-2: Graph of US airline miles

To overlay a 12-month moving average on the scatterplot, you return to an
old friend, the Excel Trendline. Right-click the data series and select Add Trendline...
Choose Moving Average and select 12 periods. Then you can obtain the trendline, as
shown in Figure 12-3.

AirlineMiles (000'S)

50,000,000.00
45,000,000.00
40,000,000.00
35,000,000.00
30,000,000.00
25,000,000.00 == AirlineMles (000'S)

20,000,000.00 —— 12 per. Mov. Avg. (AirlineMiles (000'S))

15,000,000.00
10,000,000.00
5,000,000.00

0.00 - . . - - r T T !
Apr2001 Sep2002 Jan2004 May2005 Oct2006 Feb2008 Jul2009 Nov010 Apr2012 Aug2013

Figure 12-3: Moving average trendline

The moving average trendline makes it easy to see how airline travel trended
between 2003 and 2012. You can now see the following:

© In 2003 and 2004 there was a sharp upward trend in airline travel (perhaps
a rebound from 9/11).

m In 2005-2008 airline travel appeared to stagnate.

1 Inlate 2008 there was a sharp drop in airline travel, likely due to the financial
crisis.

 In 2010 a slight upward trend in air travel occurred.
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The next section uses the Excel Solver to quantify the exact nature of the trend
in airline miles and also to learn how to determine how seasonality influences
demand for air travel.

An Additive Model with Trends and
Seasonality

Based on the previous section’s discussion it should be clear that to accurately
forecast sales when the data has seasonality and trends, you need to identify and
separate these from the data series. In this section you learn how this process can
be modeled using Excel’s Solver. These analyses enable you to identify and separate
between the baseline, seasonality, and trend components of a data series.

When predicting product sales, the following additive model is often used to
estimate the trend and seasonal influence of sales:

(1) Predicted Period t Sales = Base + Trend*Period Number + Seasonal Index for
Month ¢

In Equation 1 you need to estimate the base, trend, and seasonal index for each
month of the year. The work for this appears in the Additive trend worksheet (see
Figure 12-4). To simplify matters the data is rescaled in billions of miles. The base,
trend, and seasonal index may be described as follows:

= Base: The base is the best estimate of the level (without seasonality) of
monthly airline miles at the beginning of the observed time period.

= Trend: The trend is the best estimate of the monthly rate of increase in
airline miles traveled. A trend of 5, for example, would mean that the level
of airline travel is increasing at a rate of 5 billion miles per month.

= Seasonal Index: Each month of the year has a seasonal index to reflect
if travel during the month tends to be higher or lower than average.
A seasonal index of +5 for June would mean, for example, that June airline
travel tends to be 5 billion miles higher than an average month.

NOTE The seasonal indices must average to 0.
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A B 5 D E F G H I 1 K
1
2 baseadd 37.37856
3 trendadd 0.059026
4 stddeverr 0.386323
5 1 -4.45733 RSQ 0.988934
6 2 -6.62334 SSE 49251
7 3 1.601041
8 4 -0.319 MonthNumber Month Month Airline Miles (billion Forecast Error  Sq Error
9 5 1.274636 1 7/1/2009 M 7 44.22 43.7238 0.49 0.236896
10 6 3.795057 2 8/1/2009 i 23 42.40 41.95583 0.44 0.194662
11 7 6.291206 3 9/1/2009 i 9 34.68 35.12698 -0.45 0.203932
12 8 4.459215 4 10/1/2009 i 10 37.32 37.69339 -0.38 0.140881
13 9 -2.42866 5 11/1/2009 i 11 34.58 35.31697 -0.74 0.54817
14 10 0.078726 6 12/1/2009 " 12 36.46 36.41780 0.04 0.001696
15 11 -2.35673 7 1/1/2010 i 1 33.49 33.33441 0.15 0.023327
16 12 -1.31482 8 2/1/2010 i 2 30.72 31.22743 -0.51 0.259421
17 I .I 9 3/1/2010 M 3 39.37 30.51084 -0.14 0.019943
18 mean ] 10 4/1/2010 i 4 37.76 37.64982 0.11 0.012653
19 11 5/1/2010 [ 5 38.88 30.30248 -0.42 0.175395
20 12 6/1/2010 i 6 41.90 41.88193 0.02 0.000301
21 13 7/1/2010 i 7 44,02 44.43711 -0.42 0.172428
22 14 8/1/2010 M 3 42,81 42.66414 0.15 0.02222
23 15 9/1/2010 i 9 36.13 35.8353 0.30 0.087799
24 16 10/1/2010 [ 10 39.18 38.4017 0.78 0.611145
25 17 11/1/2010 i 11 36.67 36.02528 0.65 0.41766

Figure 12-4: Additive trend model

To estimate base, trend, and seasonal indices, you need to create formulas based
on trial values of the parameters in Column H. Then in Column I, you will deter-
mine the error for each month’s forecast, and in Column J, you compute the squared
error for each forecast. Finally, you use the Solver to determine the parameter
values that minimize squared errors. To execute this estimation process, perform
the following steps:

Enter trial values of the base and trend in cells B2 and B3. Name cell B2
baseadd and cell B3 trend.

Enter trial seasonal indices in the range B5:B16.

In cell B18, average the seasonal indices with the formula =AVERAGE (B5:B16).
The Solver model can set this average to O to ensure the seasonal indices aver-
age to 0.

Copy the formula =baseadd+trend*D9+VLOOKUP(F9,$A$5:$B$16,2) from H9
to H10:H42 to compute the forecast for each month.

Copy the formula =G9-H9 from 19 to 110:142 to compute each month’s forecast
error.

Copy the formula=(1922) from J9 to J10:J42 to compute each month’s squared
error.

In cell K6, compute the Sum of Squared Errors (SSE) using the formula
=SUM(J9:J42).
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Now set up the Solver model, as shown in Figure 12-5. Change the parameters
to minimize SSE and constrain the average of the seasonal indices to 0. Do
not check the non-negative box because some seasonal indices must be nega-
tive. The forecasting model of Equation 1 is a linear forecasting model because
each unknown parameter is multiplied by a constant. When the forecasts are
created by adding together terms that multiply changing cells by constants,
the GRG Solver Engine always finds a unique solution to the least square
minimizing parameter estimates for a forecasting model.

-
Solver Parameters

Set Objective:

To: ©) Max @ Min ©) Value OF: 0

By Changing Variable Cells:
$B52:8653,5655:56516

Subject to the Constraints:
56518 =0 -

Change

Delete

Reset all

- Load/Save

[~] Make Unconstrained Variables Non-Negative

i |

Select a Solving Method: GRG Monlinear |z| Options

Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth,

Coe [ o

L%

L5

Figure 12-5: Additive trend Solver model

Refer to the data shown in Figure 12-4 and you can make the following estimates:

At the beginning of July 2009, the base level of airline miles is 37.38 billion.
An upward trend in airline miles is 59 billion miles per month.

The busiest month is July (6.29 billion miles above average) and the slowest
month is February with 6.62 billion miles below average.
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Cell K5 uses the formula =RSQ(G9:G42,H9:H42) to show that the model explains
98.9 percent of the variation in miles traveled. Cell K4 also computes the standard
deviation of the errors (989 billion) with the formula =STDEV(19:142). You should
expect 95 percent of the predictions to be accurate within 2 * 0.386 = 0.772 billion
miles. Looking at Column I, no outliers are found.

A Multiplicative Model with Trend and
Seasonality

When predicting product sales, the following multiplicative model is often used to
estimate the trend and seasonal influence of sales:

(2) Predicted Period t Sales = Base * (Trend") * (Seasonal Index for Month t)

As in the additive model, you need to estimate the base, trend, and seasonal
indices. In Equation 2 the trend and seasonal index have different meanings than
in the additive model.

= Trend: The trend now represents the percentage monthly increase in the level
of airline miles. For example, a trend value of 1.03 means monthly air travel
is increasing 3 percent per month, and a trend value of .95 means monthly
air travel is decreasing at a rate of 5 percent per month. If per period growth
is independent of the current sales value, the additive trend model will prob-
ably outperform the multiplicative trend model. On the other hand, if per
period growth is an increasing function of current sales, the multiplicative
trend model will probably outperform the additive trend model.

" Seasonal Index: The seasonal index for a month now represents the percent-
age by which airline travel for the month is above or below an average month.
For example, a seasonal index for July of 1.16 means July has 16 percent more
air travel than an average month, whereas a seasonal index for February of
.83 means February has 17 percent less air travel than an average month. Of
course, multiplicative seasonal indices must average to 1. This is because
months with above average sales are indicated by a seasonal index exceeding
1, while months with below average sales are indicated by a seasonal index
less than 1.

The work for this equation appears in theMultiplicative trend worksheet. All
the formulas are the same as the additive model with the exception of the monthly
forecasts in Column H. You can implement Equation 2 by copying the formula
=base*(trend~D9)*VLOOKUP(F9,$A$5:$B$16,2)from HI to H10:H42.
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The forecasting model in Equation 2 is a nonlinear forecasting model because
you can raise the trend to a power and multiply, rather than add terms involving the
seasonal indices. For nonlinear forecasting models, the GRG Solver Engine often
fails to find an optimal solution unless the starting values for the changing cells are
close to the optimal solution. The remedy to this issue is as follows:

In Solver select Options, and from the GRG tab, select Multistart. This ensures
the Solver will try many (between 50 and 200) starting solutions and find
the optimal solution from each starting solution. Then the Solver reports the
“best of the best” solutions.

To use the Multistart option, input lower and upper bounds on the changing
cells. To speed up solutions, these bounds should approximate sensible values
for the estimated parameters. For example, a seasonal index will probably be
between 0 and 3, so an upper bound of 100 would be unreasonable. As shown
in Figure 12-6, you can choose an upper bound of 3 for each seasonal index
and an upper bound of 2 for the trend. For this example, choose an upper
bound of 100 for the base.

p
Solver Parameters

Set Objective:

To: ) Max @ Min () Value OF: 0

By Changing Variable Cells:
$B52:8653,5655:568516

Subject to the Constraints:

sBslE =1 -
£B$5:4BS15 <=3

base <= 100

trend <=2 Change

Delete

Reset All

- Load/Save

Make Unconstrained Variables Non-Megative

iz
I IIII 7 (] E

Select a Solving Method: GRG Monlinear IZ| Options

Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth.

Ce= =

e 4

Figure 12-6: Solver window for multiplicative trend model
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Cell B18 averages the seasonal indices, so in the Solver window add the con-
straint $B$18 =1 to ensure that the seasonal indices average to 1.

Select Solve, and the Solver will then find the optimal solution (refer to
Figure 12-7).

A B & D E F G H 1 J K
1
2 base 3.74E+01
3 trend 1.001493569 1.00E+06
a stddeverrors  0.411756002
5 1 0.824049011 RSQ 0.987429707
3 2 082837254 SSE
7 3 1.041400111 5.59
8 4 0.991684904 MonthNumber Month Month AirlineMiles (b Forecast Error Sq Error
9 5 10331529 1 7/1/2009" 7 4422 43.63945105 058 033
10 6  1.098599337 2 8/1/2009" 8 4240 41.89570886 0.50 0.25
1 7 1164327334 3 9/1/2000" ] 3468 35.19080607 0.52 0.28
12 8 1116136195 4 10/1/2000" 10 3732 37.71600604 -0.40 0.16
13 9 0936353344 5 11/1/2000" 11 3458 35.38768125 -0.81 0.66
14 10 1.00179316 6 12/1/2009 12 36.46  36.46161088 0.00 0.00
15 11 0.938545346 7 1/1/2010" 1 3349 33.43255124 0.05 0.00
16 12 0.965585734 8 2/1/2010" 2 3072 3137379361 -0.66 0.43
[17] | _| o z/1/2010" 3 3037 30.50001231 0.13 0.02
12 mean 0.999999908 10 4/1/2010" 4 3776 37.67136647 0.00 0.01
19 1 s/1/2010 5 38.88  39.30524076 -0.42 0.18
20 12 6/1/2010 6 4190 41.85750467 0.04 0.00
2 13 7/1/2010" 7 4402 44.4280508 -0.41 0.16
2 14 8/1/2010" 8 4281 42.65279779 0.16 0.03
3 15 9/1/2010" ] 3613 35.8358056 0.30 0.00
2 16 10/1/2010" 10 3018 38.39765605 0.79 0.62
25 17 11/1/2010" 11 36.67  36.02716493 0.64 0.42

Figure 12-7: Multiplicative trend model

NOTE  If the Solver assigns a changing cell, a value near its lower or upper bound
should be relaxed. For example, if you set the upper bound for the base to 30, the
Solver will find a value near 30, thereby indicating the bound should be relaxed.

From the optimal Solver solution you find the following:

The estimated base level of airline miles is 37.4 billion.

You can estimate airline miles increase at a rate of 0.15 percent per month or
1.00149'2 — 1 = 1.8 percent per year.

The busiest month for the airlines is July, when miles traveled are 16 percent
above average, and the least busy month is February, during which miles
traveled are 17 percent below average.

A natural question is whether the additive or multiplicative model should be used
to predict airline miles for future months. Because the additive model has a lower
standard deviation of residuals, you should use the additive model to forecast future
airline miles traveled.
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Summary

In this chapter you learned the following:

= Using a 12-month or 4-quarter moving average chart enables you to easily
see the trend in a product’s sales.

© You can often use seasonality and trend to predict sales by using the follow-
ing equation:

Predicted Period t Sales = Base +Trend * Period Number + Seasonal Index
for Month t

© You can often use the following equation to predict sales of a product:

Predicted period t Sales = Base * (Trend") * (Seasonal Index for Month t)

Exercises

The following exercises use the file airTinedata.x1sx, which contains monthly
U.S. domestic air miles traveled during the years 1970-2004.

Determine the trend and seasonality for the years 1970-1980.
2. Determine the trend and seasonality for the years 1981-1990.
. Determine the trend and seasonality for the years 1995-2004.



Ratio to Moving
Average Forecasting
Method

I n Chapter 12, “Modeling Trend and Seasonality,” you learned how to estimate
trend and seasonal indices. Naturally you would like to use your knowledge
of trend and seasonality to make accurate forecasts of future sales. The Ratio to
Moving Average Method provides an accurate, easy-to-use forecasting method for
future monthly or quarterly sales. This chapter shows how to use this method to
easily estimate seasonal indices and forecast future sales.

Using the Ratio to Moving
Average Method

The simple Ratio to Moving Average Forecasting Method is described in this sec-
tion via examples using data from the Ratioma.x1sx file, which includes sales of a
product during 20 quarters (as shown in Figure 13-1 in rows 5 through 24). This
technique enables you to perform two tasks:

" Easily estimate a time series’ trend and seasonal indices.
= Generate forecasts of future values of the time series.

Using the first 20 quarters for the data exemplified in this chapter, you
will be able to forecast sales for the following four quarters (Quarters 21
through 24). Similar to the one in Chapter 12, this time series data has both trend
and seasonality.

The Ratio to Moving Average Method has four main steps:

= Estimate the deseasonalized level of the series during each period (using
centered moving averages).

= Fit a trend line to your deseasonalized estimates (in Column G).

= Determine the seasonal index for each quarter and estimate the future level
of the series by extrapolating the trend line.

= Predict future sales by reseasonalizing the trend line estimate.
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B C o E F G H 1 1 K L
1 slope | 6.9387868
r seasonal

2 intercept  30.166176 guarter index normalized

3 1 0.818547 0.81373678
4 Quarter#f Year Quarter Sales 4 period MA Centered MA Actual/CMA Forecast 2 0.93934 0.9338196
5 1 1 1 24 3 1.067364 1.06109143
6 2 1 2 44' 52 4 1.198394 1.19135219
7 3 1 3 61 r 58 55.00 1.11
B 4 1 4 797 63.5 60.75 1.30

9 5 2 1 48 f 71 67.25 0.71

10 6 2 2 66 r 715 74.25 0.89

11 7 2 3 01" 82.5 80.00 1.14

12 8 2 4 105 r B87.25 84.88 1.24

13 9 3 1 68 r 89.5 88.38 0.77

14 10 3 2 85 f 94.5 52.00 0.52

15 11 3 3 100' 104.25 599.38 1.01

16 12 3 4 1257 114.25 109.25 1.14

17 13 4 1 107" 123.75 119.00 0.90

18 14 4 2 125 r 132.25 128.00 0.8

19 15 4 3 138 r 13925 135.75 1.02

20 16 4 4 159 f 146.75 143.00 1.11

21 17 5 1 135 f 156 151.38 0.89

22 18 5 2 155" 164.25 160.13 0.57

23 19 5 3 175

24 20 5 4 192

25 21 & 1 175.880699 143.121

26 22 6 2 182.819485 170.72

27 23 6 3 189.758272 201.351

28 24 6 4 196.697059 234,335

Figure 13-1: Example of Ratio to Moving Average Method

The following sections walk you through each main part of this process.

Calculating Moving Averages and Centered
Moving Averages

To begin, you compute a four-quarter (four quarters eliminates seasonality) moving
average for each quarter by averaging the prior quarter, current quarter, and next two
quarters. To do this you copy the formula =AVERAGE (E5:E8) down from cell F6 to
F7:F22. For example, for Quarter 2, the moving average is 24 + 44 + 61 + 79) / 4 = 52.

Because the moving average for Quarter 2 averages Quarters 1 through 4 and the
numbers 1-4 average to 2.5, the moving average for Quarter 2 is centered at Quarter
2.5. Similarly, the moving average for Quarter 3 is centered at Quarter 3.5. Therefore,
averaging these two moving averages gives a centered moving average that estimates
the level of the process at the end of Quarter 3. To estimate the level of the series during
each series (without seasonality), copy the formula =AVERAGE (F6:F7) down from cell G7.
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Fitting a Trend Line to the Centered Moving Averages

You can use the centered moving averages to fit a trend line that can be used to
estimate the future level of the series. To do so, follow these steps:

In cell F1 use the formula =SLOPE(G7:622,B7:822) to find the slope of the
trend line.

In cell F2 use the formula =INTERCEPT(G7:G22,B7:B22) to find the intercept
of the trend line.

Estimate the level of the series during Quarter t to be 6.94t ¢ + 30.17.

Copy the formula=intercept + slope*B25 down from cell G25 to G26:G28
to compute the estimated level (excluding seasonality) of the series from
Quarter 21 onward.

Compute the Seasonal Indexes

Recall that a seasonal index of 2 for a quarter means sales in that quar-
ter are twice the sales during an average quarter, whereas a seasonal index
of .5 for a quarter would mean that sales during that quarter were one-half of an aver-
age quarter. Therefore, to determine the seasonal indices, begin by determining for
each quarter for which you have sales (Actual Sales) / Centered Moving Average. To do
this, copy the formula =E£7/G7 down from cell H7 to H8:H22. You find, for example,
that during Quarter 1 sales were 77 percent, 71 percent, 90 percent and 89 percent
of average, so you could estimate the seasonal index for Quarter 1 as the average of
these four numbers (82 percent). To calculate the initial seasonal index estimates,
you can copy the formula =AVERAGEIF($D$7:$D$22,J3,$H$7:$H$22) from cell K3
to K4:K6. This formula averages the four estimates you have for Q1 seasonality.

Unfortunately, the seasonal indices do not average exactly to 1. To ensure that
your final seasonal indices average to 1, copy the formula =K3/AVERAGE ($K$3:$K$6)
from cell L3 to L4:L6.

Forecasting Sales during Quarters 21-24

To create your sales forecast for each future quarter, simply multiply the trend
line estimate for the quarter’s level (from Column G) by the appropriate seasonal
index. Copy the formula =VLOOKUP(D25,season,3)*G25 from cell G25 to G26:G28
to compute the final forecast for Quarters 21-24. This forecast includes estimates
of trend and seasonality.
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If you think the trend of the series has changed recently, you can estimate the
series’ trend based on more recent data. For example, you could use the centered
moving averages for Quarters 13-18 to get a more recent trend estimate by using
the formula =SLOPE(G17:6G22,B17:B22). This yields an estimated trend of 8.09 units
per quarter. If you want to forecast Quarter 22 sales, for example, you take the last
centered moving average you have (from Quarter 18) of 160.13 and add 4 (8.09)
to estimate the level of the series in Quarter 22. Then multiply the estimate of the
Quarter 22 level by the Quarter 2 seasonal index of .933 to yield a final forecast for
Quarter 22 sales of (160.13 + 4(8.09)) * (.933) = 179.6 units.

Applying the Ratio to Moving Average
Method to Monthly Data

Often the Ratio to Moving Average Method is used to forecast monthly sales as well
as quarterly sales. To illustrate the application of this method to monthly data, let’s
look at U.S. housing starts.

The Housingstarts.x1sx file gives monthly U.S. housing starts (in thousands) for
the period January 2000 through May 2011. Based on the data through November
2010, you can apply the Ratio to Moving Average Method to forecast monthly U.S.
housing starts for the period December 2010 through May 2011. You can forecast a
total of 3.5 million housing starts, and in reality there were 3.374 million housing
starts. The key difference between applying the method to monthly and quarterly
data is that for monthly data you need to use 12-month moving averages to elimi-
nate seasonality.

Summary

In this chapter you learned the following:
= Applying the Ratio to Moving Average Method involves the following tasks:

= Compute four-quarter moving averages and then determine the cen-
tered moving averages.

Fit a trend line to the centered moving averages.

Compute seasonal indices.

H RN

Compute forecasts for future periods.

© You can apply the Ratio to Moving Average Method to monthly data as well
by following the same process but use 12-month moving averages to eliminate
seasonality.
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Exercises

The file WaTmartdata.x1s contains quarterly revenues of Wal-Mart during
the years 1994-2009. Use the Ratio to Moving Average Method to forecast
revenues for Quarters 3 and 4 in 2009 and Quarters 1 and 2 in 2010. Use
Quarters 53-60 to create a trend estimate that you use in your forecasts.

2. Based on the data in the file airlinemiles.x1sx from Chapter 12, use the

Ratio to Moving Average Method to forecast airline miles for the remaining
months in 2012.



HL redicting future values of a time series is usually difficult because the charac-

teristics of any time series are constantly changing. For instance, as you saw
in Chapter 12, “Modeling Trend and Seasonality,” the trend in U.S. airline passen-
ger miles changed several times during the 2000-2012 period. Smoothing or adap-
tive methods are usually best suited for forecasting future values of a time series.
Essentially, smoothing methods create forecasts by combining information from a
current observation with your prior view of a parameter, such as trend or a seasonal
index. Unlike many other smoothing methods, Winter’s Method incorporates both
trend and seasonal factors. This makes it useful in situations where trend and sea-
sonality are important. Because in an actual situation (think U.S. monthly housing
starts) trend and seasonality are constantly changing, a method such as Winter’s
Method that changes trend and seasonal index estimates during each period has a
better chance of keeping up with changes than methods like the trend and seasonal-
ity approaches based on curve fitting discussed in Chapter 12, which use constant
estimates of trend and seasonal indices.

To help you understand how Winter’s Method works, this chapter uses it to
forecast airline passenger miles for April through December 2012 based on the data
studied in Chapter 12. This chapter describes the three key characteristics of a time
series (level, trend, and seasonality) and explains the initialization process, nota-
tion, and key formulas needed to implement Winter’s Method. Finally, you explore
forecasting with Winter’s Method and the concept of Mean Absolute Percentage
Error (MAPE).

Parameter Definitions for Winter’s Method

In this chapter you will develop Winter’s exponential smoothing method using the
three time series characteristics, level (also called base), trend, and seasonal index,
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discussed in Chapter 12 in the “Multiplicative Model with Trend and Seasonality”
section. After observing data through the end of month t you can estimate the fol-
lowing quantities of interest:

L =Level of series
T = Trend of series
S = Seasonal index for current month

The key to Winter’s Method is the use of the following three equations, which are
used to update L, T, and S,. In the following equations, alp, bet, and gam are called
smoothing parameters. The values of these parameters will be chosen to optimize your
forecasts. In the following equations, ¢ equals the number of periods in a seasonal cycle
(c = 12 months for example) and X, equals the observed value of the time series at time t.

(DL =alpx)/(s_)+ A —alp)@L_, *T_ )
2) T = bet(L[ /LH) + (1 — bet) T,

3) S = gam(xt/Ll) +(1- gam)s(t_c)

Equation 1 indicates that the new base estimate is a weighted average
of the current observation (deseasonalized) and last period’s base is updated by the
last trend estimate. Equation 2 indicates that the new trend estimate is a weighted
average of the ratio of the current base to last period’s base (this is a current estimate
of trend) and last period’s trend. Equation 3 indicates that you update the seasonal
index estimate as a weighted average of the estimate of the seasonal index based on
the current period and the previous estimate. In equations 1-3 the first term uses
an estimate of the desired quantity based on the current observation and the second
term uses a past estimate of the desired quantity.

NOTE Note that larger values of the smoothing parameters correspond to put-
ting more weight on the current observation.

You can define F,, as your forecast (F) after period ¢ for the period t + k. This
results in the following equation:

(4) Ft,k = Lt*(Tt)kS

ttk—c
Equation 4 first uses the current trend estimate to update the base k periods

forward. Then the resulting base estimate for period t + k is adjusted by the appro-
priate seasonal index.
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Initializing Winter’s Method

To start Winter’s Method, you must have initial estimates for the series base, trend,
and seasonal indices. You can use the data from the airline winters.x1s file, which
contains monthly U.S. airline passenger miles for the years 2003 and 2004 to obtain
initial estimates of level, trend, and seasonality. See Figure 14-1.

A [ B | ¢ | © E 1 F [ 6 T H T T 1
1
2 |pbase 3.51E401 SSE
'3 |trend  1.006491 5.63)
4 | MonthNu Month Month  AirlineMiles (billions) Forecast Error Sq Error
5| 1 0.90305 1 Jan2003” 1 32.85 31.87289 0.98 0.96|
6 | 2 0.875947 2 Feb2003” 2 30.81 31.11699 -0.30 0.09)
7| 3 1.053815 3 Mar2003” 3 37.59 37.6785 -0.09 0.01]
8 | 4 1.008006 4 Apr2003”~ 4 35.23 36.27456 -1.05 1.10
9| 5 1.011706 5 May2003” 5 36.57  36.644 -0.07 0.01]
10| 6 1.099865 6 Jun2003” 6 39.75 40.09572 -0.35 0.12
il 7 1173706 7 Jul2003” 7 43.37 43.06529 0.30 0.09)
12| 8 1129149 8 AugZOOBV 8 42.09 41.69932 0.39 0.15]
13| 9 0.879644 s sep2003” < 32.55  32.69 -0.15 0.02|
4 10 0977359 10 oct2003” 10 36.44 36.5638 -0.12 0.01]
15 11 0.918146 11 Nov2003~ 11 34.35 34.57155 -0.22 0.05|
16| 12 0.969609 12 Dec2003” 12 37.39 36.74627 0.64 0.41]
7 13 Jan2004” 1 33.54 34.44595 -0.91 0.83|
18 [mean 1 14 Feb2004” 2 33.91 33.62003 0.28 0.08
19 15  Mar2004” 3 40.81 40.72023 0.08 0.01]
20 | 16  Apr2004” 1 40.17 39.20296 0.97 0.9
21| 17  May2004 5 39.67 39.60222 0.07 0.00)
22 | 18 Jun2004” 6 43.65 43.33259 0.32 0.10)
23| 19 Jul2004” 7 46.26 46.54189 -0.23 0.08,
24 | 20 Aug2004” 8 44.70 45.06565 -0.36 0.13|
25| 21 Sep2004” 9 35.47 35.3355 0.14 0.02
26 | 22 oct2004” 10 39.63 39.51555 0.11 0.01]
27| 23 Nov2004~ 11 37.57 37.36247 0.20 0.04
28 24 Dpec2004” 12 39.12 39.71275 -0.60 0.35|

Figure 14-1: Data for Winter’s Method

In the Initial worksheet you can fit the Multiplicative Trend Model from Chapter
12 to the 2003—-2004 data. As shown in Figure 14-2, you use the trend and seasonal
index from this fit as the original seasonal index and the December 2004 trend. Cell
C25 determines an estimate of the base for December 2004 by deseasonalizing the
observed December 2004 miles. This is accomplished with the formula =(B25/H25).
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A | B C D E F G H | J K
1 DATE Airline Miles(billions)
2 _Jan2003 32.85
3 0t
4 Mar2003 37.59
5 Apr2003 35.23
6 May2003 36.57
7 Jun2003 39.75
8 Jul2003 43.37
9 Aug2003 42.09
10 Sep2003 32.55 alp bet gam
11 Oct2003 36.44 0.548512014  0.049142 0.588772719
12 Nov2003 34.35
13 Dec2003 37.39
14 Jan2004 33.54 0.903049602
15 Feb2004 3391 0.875947455
16 ™Mar2004 40.81 1053814727
17 Apr2004 4017 1.00800602
18 May2004 39.67 1011705575
19 Jun2004 43.65 1.099865309
20 Jul2004 46.26 1173705527
21 Aug2004 44.70 SSE 77.8196 1120143564
22 Sep2004 3547 stdeverrol (.9369659 0.879643964 34 sign changes of 87
23 oct2004 39.63 0.977358616 WAPE
24 Nov2004 37.57 Base Trend Forecast Error Sq Eerror  0.918146041 34 0.02062096
25 Dec2004 39.12 40.34378 1.006491 0.969608616 Sign char APE
26 Jan2005 36.12 40.27083 1.006083 36.6689 0.55 0.3038 0.899411078 0.01526167
27 Feb2005 34.56 39.93414 1.005373 35.4897 0.93 0.8628 0.869764432 0 0.02687615
28 Mar2005 43.64  40.8425 1.006227 42.3093 1.33 1.7767  1.062490091 1 0.03054212
29 Apr2005 40.24 40.45404 1.005453 41.42583 118 1.3953  1.000244124 1 0.02935135
30 May2005 41.80 41.02748 1.005882 41.15077 0.65 04235 1.015922148 1 0.01556855
31 Jun2005 44.68 40.91303 1.005456 45.39013 0.7 0.5089  1.095230183 1 0.0159679
32 Jul2005 47.56 40.80036 1.005052 48.28184 0.712 0.5166  1.169022868 0 0.01511087

Figure 14-2: Initialization of Winter’s Method

The next part of Winter’s Method includes choosing the smoothing parameters
to optimize the one-month-ahead forecasts for the years 2005 through 2012.

Estimating the Smoothing Constants

After observing each month’s airline miles (in billions), you are now ready to update
the smoothing constants. In Column C, you will update the series base; in Column
D, the series trend; and in Column H, the seasonal indices. In Column E, you
compute the forecast for next month, and in Column G, you compute the squared
error for each month. Finally, you'll use Solver to choose smoothing constant values
that minimize the sum of the squared errors. To enact this process, perform the
following steps:

In H11:J11, enter trial values (between 0 and 1) for the smoothing constants.
2. In C26:C113, compute the updated series level with Equation 1 by copying
the formula=alp*(B26/H14)+(1-alp)*(C25*D25) from cell C26 to C27:C113.
In D26:D113, use Equation 2 to update the series trend. Copy the formula
=bet*(C26/C25)+(1-bet)*D25 cell from D26 to D27:D113.
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In H26:H113, use Equation 3 to update the seasonal indices. Copy the formula
=gam*(B26/C26)+(1-gam)*H14 from cell H26 to H27:H113.

In E26:E113, use Equation 4 to compute the forecast for the current month
by copying the formula =(C25*D25)*H14 from cell E26 to E27:E113.

In F26:F113 compute each month’s error by copying the formula =(B26-E26)
from cell E26 to E27:E113.

In G26:G113, compute the squared error for each month by copying the
formula =F26~2 from cell F26 to F27:F113. In cell G21 compute the Sum of
Squared Errors (SSE) using the formula =SUM(G26:G113).

Now use the Solver to determine smoothing parameter values that minimize
SSE. The Solver Parameters dialog box is shown in Figure 14-3.

Salver Parameters

Set Objective: scs21]
To: (©) Max @ Min () Value Of: 0

By Changing Variable Cells:
SHS11:83811

Subject to the Constraints:

$HS1L:SIS11 <=1 -
SHS11:83811 >=10

Change

Delete

Reset All

- Load/Save

Make Unconstrained Variables Mon-MNegative

Select a Solving Method: GRG Nonlinear EI Options

T

Solving Method

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
non-smooth,

[ s ][ ce

Figure 14-3: Solver Window for optimizing smoothing constants

Choose the smoothing parameters (H11:J11) to minimize SSE (cell G21).
The Excel Solver ensures you can find the best combination of smoothing
constants. Smoothing constants must be o.. The Solver finds that alp = 0.55,
bet = 0.05, and gamma = 0.59.
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Forecasting Future Months

Now that you have estimated the Winter’'s Method smoothing constants
(@, B, v, etc.), you are ready to use these estimates to forecast future airline miles.
This can be accomplished using the formula in cell D116. Copying this formula
down to cells D117:D123 enables you to forecast sales for the months of May through
December of 2012. Figure 14-4 offers a visual summary of the forecasted sales.

A B C D E F G H
101 Apr2011 38.51 38.09331 0.999196 38.63321 0.13 0.0162 1.011448481
102 May2011 4043 38.7357 1.000064 39.16698 1.26 1.5942 1.03767775
103 Jun2011 4257 38.84163 1.000195 42.36397 0.21 0.0425 1.095009094
104 Jul2011 45.07 39.00168 1.000388 44.75388 0.32 0.1025 1154171797
105 Aug2011 4278 38.66139 0.99994 43.50483 0.72 0.5220 1.110060016
106 Sep2011 36.70 39.65425 1.001205 35.05387 1.65 2.7064 0.917771587
107 Oct2011 3870 39.72586 1.001235 38.66143 0.04 0.0018 0.974072493
102 Nov2011 36.83 40.16433 1.001716  36.182 0.65 0.4171 0.913943328
109 Dec2011 37.49 39.82658 1.001219 38.1972 0.70 0.4955 0.944695094
110 Jan2012 3431 39.32558 1.000541 35.19792 -0.88 0.7821 0.876725748
111 Feb2012 3326 329.53299 1.000773 32.97971 0.28 0.0309 0.840092107
112 Mar2012 40.78 38.94334 1.000002 41.9811 -1.20 1.4396 1.05291499
113 Apr2012 38.81 38.6274 0.999604 39.38927 -0.58 0.3396 1.00743814
114 Base Trend Forecast Error Sq Eerror  Seasonal Indices
115 forecasts
116 1 May-12 40.06691
117 2 Jun-12 42.26383
113 3 Jul12 44.52966
119 4  Aug-12 42.31079
120 5 Sep-12 35.38093
121 6  Oct12 37.53649
122 7 Nov12 35.20542
123 8 Dec12 36.37556
124 total 314.1696

Figure 14-4: Forecasting with Winter’s Method

Figure 14-4 shows the forecasted sales for May through December 2012 by copy-
ing the formula =($C$113*$0$113~B116)*H102 from cell D116 to D117:D123. Cell
D124 adds up these forecasts and predicts the rest of 2012 to see 314.17 billion
airline miles traveled.

Cell G22 computes the standard deviation (0.94 billion) of the one-month-
ahead forecast errors. This implies that approximately 95 percent of the
forecast errors should be at most 1.88 billion. From Column F you see none of
the one-month-ahead forecasts are outliers.
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Mean Absolute Percentage Error (MAPE)

Statisticians like to estimate parameters for a forecast model by minimizing squared
errors. In reality, however, most people are more interested in measuring forecast
accuracy by looking at the Mean of Absolute Percentage Error (MAPE). This is
probably because MAPE, unlike SSE, is measured in the same units as the data.
Figure 14-5 shows that the one-month-ahead forecasts are off by an average of 2.1
percent. To compute the Absolute Percentage Error (APE) for each month, copy
the formula =ABS(B26-E26)/B26 from cell G26 to ]J26:]113. In cell J24 the formula
=AVERAGE(J26:J113) computes the MAPE.

cC [ D E [ F [ 6 ] H [ I J K [ L
22 stdeverrors 0.9369659 0.879643964 34 sign changes of 87
23 0.977358616 MAPE
24 |Base Trend  Forecast Error Sq Eerror 0.918146041 34| 0.0206!
25 40.34378 1.006491 0.969608616 Sign change  APE
26 40.27083 1.006083 36.6689 -0.55 0.3038 0.899411078 0.0153
27 39.93414 1.005373 25.4897 0.93 0.8628 0.869764432 0 0.0269
25 40.3425 1.006227 42.3093 1.33 1.7767 1.062430091 1 0.0305
29 40.45404 1.005453 41.42583 -1.18 1.3953 1.000244124 1 0.0294
30| 41.02748 1.005882 41.15077 0.65 0.4235 1.015922148 1 0.0156
31 40.91303 1.005456 45.39013 0.71 0.5089 1.095230183 1 0.016
32| 40.80036 1.005052 48.28184 £0.72 0.5166 1.169022868 0 0.0151
33 40.43957 1.00437 46.30243 117 1.3621 1.121476998 0 0.0259
34 4143753 1.005368 35.72786 1.32 1.7346 0.888092908 1 0.0356
35 40.61218 1.004125 40.71671 1.87 3.4855 0.965138667 1 0.0481
36 41.20776 1.004643 237.44173 0.72 0.5134 0.922768159 1 0.0188
37 | 40.85333 1.003992 40.14091 .96 0.9307 0.963331236 1 0.0246
33 40.83625 1.003835 36.89062 021 0.0456 0.898023391 0 0.0058
39| 40.44253 1003114 35.6978 0.95 0.9068 0.863505332 0 0.0274
40 40.45961 1.002981 43.10358 0.21 0.0445 1.061104844 0 0.0049

Figure 14-5: Computation of MAPE

Winter’s Method is an attractive forecasting method for several reasons:

= Given past data, the method can easily be programmed to provide quick
forecasts for thousands of products.

" Winter’s Method catches changes in trend or seasonality.

= Smoothing methods “adapt” to the data. That is, if you underforecast you raise

parameter estimates and if you overforecast you lower parameter estimates.
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Summary

In this chapter you learned the following:

Exponential smoothing methods update time series parameters by computing
a weighted average of the estimate of the parameter from the current observa-
tion with the prior estimate of the parameter.

Winter’s Method is an exponential smoothing method that updates the base,
trend, and seasonal indices after each equation:

(D L= alp(xl) / (sH) + (l—alp)(Ll_l *T_, )
(2) T =bet(L /L_) + (1-bet) T _,
3) S, = gam(xl/L) + (1-gam)s

(t—)

Forecasts for k periods ahead at the end of period t are made with Winter’s
Method using Equation 4:

trk—c

#) F, =L * (T)ks

Exercises

All the data for the following exercises can be found in the file Quarterly.xTsx.

Use Winter’'s Method to forecast one-quarter-ahead revenues for Wal-Mart.

Use Winter’'s Method to forecast one-quarter-ahead revenues for Coca-Cola.
Use Winter's Method to forecast one-quarter-ahead revenues for Home Depot.
Use Winter’'s Method to forecast one-quarter-ahead revenues for Apple.

Use Winter’s Method to forecast one-quarter-ahead revenues for Amazon.
com.

Suppose at the end of 2007 you were predicting housing starts in Los Angeles
for the years 2008 and 2009. Why do you think Winter’s Method would pro-
vide better forecasts than multiple regression?
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