
Cryptography
Lecture 8

Dr. Panagiotis Rizomiliotis

TOC

• Key derivation function

– HKDF

• key agreement/transfer

– Diffie Hellman

– (non)-KEM

– KEM

– Quantum Key distribution

• Key size

Contemporary communication
protocol

– First Phase: Authentication (sometimes mutual)
 Public Key
 Symmetric Key

– Second Phase: Key Establishment (master key)

 Key agreement
 Key distribution

– Third Phase: Data Encryption

 KDF (master key)
 Symmetric key encryption

TLS 1.3 (example)

Handshake
• Agree a cipher suite.
• Agree a master secret.
• Authentication using
certificate(s).

Application Data
• Use KDF to generate sessions keys
• Symmetric key encryption.

– AEAD cipher modes.

• Typically HTTP (OWASP presentation)

KEY DERIVATION

Overview

* Algorithms, key size and parameters report. ENISA– 2014

Key derivation function

Key Derivation Functions (KDFs) are used to
derive cryptographic keys

1. from a source of keying material shared random
strings (in the case of key agreement protocols)

2. from an entropy source (in the case of key
generation)

KDFs act both as a randomness extractor as well
as an expander

Deriving many keys from one

Typical scenario. a single source key (SK) is sampled from:

• Hardware random number generator

• A key exchange protocol (discussed later)

Need many keys to secure session:

• unidirectional keys; multiple keys for nonce-based CBC.

Goal: generate many keys from this one source key

SK k1, k2, k3, … KDF

When source key is uniform

F: a PRF with key space K and outputs in {0,1}n

Suppose source key SK is uniform in K

• Define Key Derivation Function (KDF) as:

CTX: a string that uniquely identifies the
application

KDF(SK, CTX, L) :=

 F(SK, (CTX ll 0)) ll F(SK, (CTX ll 1)) ll ⋯ ll F(SK, (CTX ll L))

What is the purpose of CTX?

KDF(SK, CTX, L) :=

 F(SK, (CTX ll 0)) ll F(SK, (CTX ll 1)) ll ⋯ ll F(SK, (CTX ll L))

Even if two apps sample same SK they get indep. keys

It’s good practice to label strings with the app. name

It serves no purpose

What if source key is not uniform?

Recall: PRFs are pseudo random only when key is
uniform in K

• SK not uniform ⇒ PRF output may not look random

Source key often not uniformly random:

• Key exchange protocol: key uniform in some subset of
K

• Hardware RNG: may produce biased output

Extract-then-Expand paradigm

Step 1: extract pseudo-random key k from
source key SK

step 2: expand k by using it as a PRF key as before

p
ro

b

SK

p
ro

b

k

extractor

salt

salt: a fixed non-secret string chosen at random

HKDF: a KDF from HMAC

Implements the extract-then-expand paradigm:

 extract: use k ⟵ HMAC(salt, SK)

 Then expand using HMAC as a PRF with key k

HKDF in TLS

Key derivation function

Password-Based KDF (PBKDF)

Deriving keys from passwords:

 Do not use HKDF: passwords have insufficient entropy

 Derived keys will be vulnerable to dictionary attacks

PBKDF defenses: salt and a slow hash function

Standard approach: PKCS#5 (PBKDF1)

 H(c)(pwd ll salt): iterate hash function c times

Password based key derivation
Goal: derive cryptographic keys from a secret random string (passwords)

 PBKDF2

 NIST SP 800-132
Based on any secure PRF (for instance a hash function)

 The PRF is iterated several times (at least 103, recommended 4*104)
increase the workload of dictionary attacks

 Input is the password, a salt and the desired key length

 Possible to implement dictionary attacks on ASICs or GPUs

 Bcrypt

 Based on block cipher (Blowfish)

 Scrypt

 Since 2009. Looks more resistant so far.

 Argon2

 From 2013 to 2015 the Password Hashing Competition (https://password-hashing.net/)

 Main security goal is that these hash functions are ‘memory hard’, it is difficult to
speed them up with dedicated hardware

 Another similar proposal is Blocki

https://password-hashing.net/
https://password-hashing.net/
https://password-hashing.net/
https://password-hashing.net/

KEY AGREEMENT/TRANSFER

ToC

• Bob and Alice must agree on a common key.

• Then, they use a key derivation function to
produce several symmetric keys

Protecting data confidentiality

 Public key encryption and decryption are expensive
computations.

 Rarely used for plaintext confidentiality protection.

 Main schemes used in practice:
 KEM: Key Encapsulation Mechanism
 Combine a public key encryption with key derivation functions (KDF)

 Non-KEM
 Just traditional public key encryption (only two options in practice):

1. RSA-PKCS# 1 v1.5
2. RSA-OAEP

 Symmetric key based data protection.
 DEM: Data Encryption Mechanism

Protecting data confidentiality

Non-kem

 RSA-PKCS# 1 v1.5

 No modern security proof

 Used in SSL/TLS protocol extensively (until v1.2)

 The weak form of padding

 Attacks on various cryptographic devices

 RSA-OAEP

 the preferred method of using the RSA primitive to encrypt a
small message

 Provably secure in the random oracle model

 The hash functions used can be SHA-1 for legacy applications
and SHA-2/SHA-3 for future applications

Key Encapsulation Mechanism (KEM)

 RSA-KEM
 Takes a random element m and encrypts it using the RSA

 The output key is computed by applying a KDF to m

 Secure in the random oracle model

 PSEC-KEM
 It is based on elliptic curves.

 Provable secure

 Based on the hardness of the (computational) DH problem

 More secure than ECIES-KEM, less efficient

 ECIES-KEM
 Discrete logarithm based encryption scheme

 Very popular

Key agreement

 1976: “New directions in Cryptography”

 Two entities agree upon a common secret over a public

channel

 No pre-shared keys.

 Based on the discrete logarithm problem

The main idea - DH

Implementation

 p and g are both publicly available numbers
 Users, Alice and Bob, pick private random values

(when used once are called ephemeral):
 Private Alice: a
 Private Bob: b

 They compute public values
Public Alice: x = ga mod p
Public Bob: y = gb mod p

 Public values x and y are exchanged

(Ephemeral) DH

Bob Alice x = ga mod p

y = gb mod p

K = ka = ya mod p K= kb = xb mod p

 Algebraically it can be shown that ka = kb

 Users now have a symmetric secret key to encrypt

 They use a KDF first…

Toy Example

• Alice and Bob get public numbers
– p = 23, g = 9

• Alice and Bob compute public values
– X = 94 mod 23 = 6561 mod 23 = 6
– Y = 93 mod 23 = 729 mod 23 = 16

• Alice and Bob exchange public numbers

• Alice and Bob compute symmetric keys
– ka = ya mod p = 164 mod 23 = 9

– kb = xb mod p = 63 mod 23 = 9

• Alice and Bob now can talk securely!

Person-in-the-middle attack

Alice Bob Mallory

ga

gb gd

gc

Key1 = gad Key1 = gcb

Mallory gets to listen to everything.

Solution

 AKE protocols (authentication and key establishment protocols)

 Authenticate before key establishment

 Literally hundreds of AKE protocols

 Authentication:

 Use public key encryption (and usually certificates)

 Use pre-shared keys (like passwords)

 Two main types of key establishment:

 Key agreement (DH)

 Key distribution/transfer (key encryption/KEM)

Authentications

 Use public key encryption (and usually certificates)

 Use pre-shared keys (like passwords or master key of the last session)

 Insecure!

 Can be easily eavesdroped

Simple Transmission (PSK)

Alice Bob I’m Alice, password

OK/error

32

Secure simple Transmission (PSK)

Alice Bob

I’m Alice, password

OK/error

33

Establish secure channel

One-way Challenge-Response

Alice Bob I’m Alice

challenge R

response Z
K = password

f() can be:

– encryption function – Bob just decrypts and verifies time in within allowed

skew

– hash – Bob needs to hash all times in allowable interval or Alice sends time

34

Z=f(password,R)
Z=? f(password,R)

One-way Challenge-Response (PSK)

Alice Bob I’m Alice

challenge R

response Z
K = shared key

f() can be:

– encryption function – Bob just decrypts and verifies time in within allowed

skew

– hash – Bob needs to hash all times in allowable interval or Alice sends time

– It is better to use MAC (usually HMAC)

35

Z=f(K,R)
Z=?f(K,R)

One-Way using Timestamp (PSK)

 Problems?
 Impersonate Alice if intercept and send message – race condition

 If use same K with multiple servers, could send message to another server and
impersonate Alice

 Clock skew/synchronization

Alice Bob I’m Alice, f(K,timestamp)

36

 Authentication often needed in both directions

 Server trusting user is not only concern

 User must trust server

 Ex. User accessing online bank account

37

2-Way Authentication

Mutual Authentication with Secret Key

Alice Bob I’m Alice

R1

f(K,R1)

R2

f(K,R2)

38

Mutual Authentication with Secret Key

Alice Bob I’m Alice, R2

f(K,R1)

R1, f(K,R2)

More efficient version:

39

Mutual Authentication with Secret Key

Trudy Bob I’m Alice, R2

Doesn’t
know K so
can’t send
f(K,R1)

R1, f(K,R2)

Trudy Bob I’m Alice, R1

Now use
f(K,R1) in
above attempt

R3, f(K,R1)

Reflection attack:

40

 Solutions:

• Separate keys for each direction/different passwords

• Requirements on R values: odd in one direction, even in the other, concatenate

with senders’ name

41

Mutual Authentication with Secret Key

Password/Key Guessing

 Also note, Trudy can get Bob to encrypt a value (or a several
of values) and then try an offline attack to guess K

 Have Bob return R1 value for Alice to encrypt

Alice Bob I’m Alice

f(K,R2)

R2, f(K,R1)

R1

Now Bob would have to reuse R1 in order for
Trudy, who eavesdrops, to be able to use
f(K,R1)

42

Timestamps

 Same issues as before plus clock skew

 Any modification to timestamp will work

Alice Bob I’m Alice, f(K,timestamp)

f(K,timestamp+1)

43

 We use public key cryptography

 Prove the possession of a public key

 Usually it is based on certificates

 Very popular

Certification based

44

One-way Using Public Key

Alice Bob I’m Alice

R

[R]Apriv

Bob decrypts with Alice’s
public key and verifies R
was returned.

One-way Using Public Key

Alice Bob I’m Alice

R

[R]Apriv

[R]Ax = R signed with
Alice’s x key, where x is
private (priv) or public
(pub) key

Alice Bob I’m Alice

[R]Apub

R

Bob decrypts with Alice’s
public key and verifies R
was returned.

Alice proves to Bob
she has her private
key by returning R

46

One-way Problems

 First case:

 Can send anything to Alice as R and get Alice to sign it

 Second case:

 Intercepted an encrypted message for Alice, send it and get

Alice to decrypt it

47

Mutual Authentication with Public Keys

 Always the same issue!
◦ how to obtain/store/validate Bob’s public key

Alice Bob I’m Alice, [R2]Bpub

R1

[R1]Apub, R2

48

gbmod p||CertB||SigB(Alice|| gb ||ga)

Ake based on DH:

Station-to-station protocol

gamod p||CertA

SigA(Bob||ga|| gb)

K = gab
K = gab

Key length

• Difference between symmetric and public key cryptography

 Symmetric key: best attack (must be) exhaustive search

 Public key: more efficient attacks due to the mathematical algorithms

– Several reports exist with recommendations: (www.keylength.com)
o Lenstra and Verheul Equations (2000)
o Lenstra Updated Equations (2004)
o ECRYPT-CSA Recommendations (2018)
o NIST Recommendations (2016)
o ANSSI Recommendations (2014)
o IAD-NSA CNSA Suite (2016)
o Network Working Group RFC3766 (2004)
o BSI Recommendations (2018)

Key-size Equivalence

