
Bit-Serial Test Pattern Generation by an Accumulator behaving as a Non-Linear
Feedback Shift Register

G. Dimitrakopoulos†, D. Nikolos†‡ and D. Bakalis†‡

†Computer Engineering and Informatics Dept., University of Patras, 26 500, Patras, Greece
‡Computer Technology Institute, 61 Riga Feraiou Str., 26 221 Patras, Greece

e-mails: dimitrak@ceid.upatras.gr, nikolosd@cti.gr, bakalis@cti.gr

Abstract
Arithmetic function modules which are available in

many circuits can be utilized to generate test patterns and
compact test responses. Recently, it was shown that an
adder or an accumulator cannot be used as a bit serial test
pattern generator due to the poor random properties of the
generated sequences. Thus, accumulator-multiplier or
adder-multiplier structures have been proposed. In this
paper we show that an accumulator behaving, in test
mode, as a Non-Linear Feedback Shift Register (NLFSR)
can be used efficiently for bit serial test pattern
generation. A hardware as well as a software
implementation of the proposed scheme is given. The
efficiency of the proposed scheme is verified by comparing
it against LFSR and other arithmetic function based bit
serial test pattern generators.

1. Introduction

Built–In Self–Test (BIST) [1-4] technique gained
increasing interest in the past few years as it provides with
little cost, a well-defined increase in the testability of the
Circuit Under Test (CUT) offering at the same time a
structured and modular approach in the problem of testing
a digital system from board-level down to single-chips. In
BIST, test pattern generation and response monitoring and
evaluation are handled on-chip, with the use of extra
hardware structures. Common BIST schemes used in
practice for many years are based on the use of Linear
Feedback Shift Registers (LFSRs) or cellular automata for
test pattern generation and response compaction. Such
conventional approaches impose hardware overhead and
may lead to performance degradation, during normal
operation mode, due to the insertion of extra multiplexers
in the signal paths. Recently, new Arithmetic-BIST [5-13]
schemes were proposed based on the use of adders,
subtracters, multipliers and shifter modules that already
exist in modern general purpose processors and digital
signal processing units. The advantage of Arithmetic-BIST

This work was partially supported by GiGA Hellas S.A. an Intel
Company.

against the LFSR-based BIST is that due to the reuse of
existing on-chip modules hardware overhead and
performance degradation are reduced or virtually
eliminated.

Arithmetic BIST schemes for test-per-clock as well as
for test-per-scan environment have been considered [6-
13]. In this paper we concentrate on the arithmetic test-
per-scan BIST environment. In this case, test patterns are
generated in a bit-per-bit fashion and shifted along the
primary inputs and the scan path of the CUT, while the
collected responses are shifted out in a similar way, in
order to be evaluated. Common cases where such an
approach is compulsory are. a) Sequential circuits with
scan paths, b) Embedded cores with an isolation ring, c)
Circuits with a boundary scan path and d) Portions of
multi-chip modules, which require the transfer of test data
in a bit-serial way.

The quality of the random properties of the bit serial
test sequence generated by a bit position of an accumulator
or an adder is poor [11]. Therefore these simple arithmetic
units cannot be used efficiently for bit serial test pattern
generation. To this end, three new bit serial test pattern
generation schemes based on the use of adder-multiplier or
accumulator-multiplier pairs were recently proposed in
[10, 11]. These schemes compared to an LFSR bit serial
test pattern generator have the advantage that achieve
similar fault coverage with similar number of test patterns,
while they do not impose any hardware overhead since
they are already part of the functional circuit. The
disadvantages of the schemes proposed in [10,11] are. a)
Their applicability is limited to applications in which the
required configuration of the adder-multiplier or
accumulator-multiplier is available and b) since a
multiplier-adder or multiplier-accumulator is used for test
pattern generation, these schemes have increased power
and energy consumption during testing.

Recently in [12] it was shown that an accumulator can
be modified to operate, in test mode, as a Non-Linear
Feedback Shift Register (NLFSR) and that it can be used
effectively for test response compaction [12, 13]. In this
paper we show that an accumulator behaving as a NLFSR
can also be used as a bit-serial test pattern generator
achieving the same fault coverage with the schemes

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

proposed in [10, 11] using in most cases a smaller number
of test vectors. Furthermore, the applicability of the
proposed scheme is wider, since, in contrast to the
schemes proposed in [10, 11], it does not require the
availability of a multiplier in the functional circuit.

The rest of the paper is organized as follows. Section 2
refers to bit serial test pattern generation schemes based on
arithmetic units. In Section 3 we present a new
accumulator-based bit serial test pattern generation
scheme, while on Section 4 we give experimental results
in order the proposed scheme to be evaluated and
compared with the already known bit-serial test pattern
generation schemes.

2. Bit-Serial Arithmetic Test Pattern
Generation: A Retrospection

Bit-serial test pattern generation based on arithmetic
units was firstly investigated in [10]. In particular Rajski
and Tysjer [10] presented a datapath configuration which
consists of a k× k multiplier, a 2k× 2k adder and 2k register
(see Figure 1.a).

Figure 1. The multiplier structures presented in [10, 11]
for bit-serial test pattern generation.

In each step the k lower significant bits of the register are
multiplied with a constant M and the product is added to
the rest k most significant bits of the register. The state
transitions are described by, R(t) = [M·R(L)(t-1) + R(H)(t-1)]
mod22k, where R(t) denotes the contents of the register,
while R(L)(t) and R(H)(t) are the k less significant and the k
most significant bits of the register respectively. The bit-
sequence that feeds the scan path is generated by the least
significant bit position of the register. The constant M,
which guarantee a maximal period, have been derived
experimentally for k = 3 up to 16 along with the
corresponding period for each k.

All application specific circuits are tailored to and
optimized for specific tasks. Hence, their busses do not
connect registers and functional units in a completely
regular fashion. In order to cope with the variety of
hardware structures Stroele [11] asserts that we need a set

of many different pattern generators. Then we will be able
to choose those pattern generators that can be easily
configured from the available arithmetic function units and
are best suited for the specific situation. To this end
Stroele [11] investigated the suitability of several simple
and more complex arithmetic modules for bit-serial test
pattern generation.

Stroele [11] shown that 2's complement adders, 1's
complement adders as well as stored overflow bit adders
are not suitable for bit-serial test pattern generation due to
the poor random quality of the sequences generated from
any bit position. Stroele [11] has also investigated the
capabilities of two additional schemes called Multiply &
Add and Multiply & Accumulate respectively (Figure 1.b).

The first one consists of a k× k multiplier, a 2k× 2k
adder and register, while the design is completed with the
use of an extra shifter which selects in every step the k-
lower significant bits of the register. The state transitions
are described by R(t) = [w·R(L)(t-1) + v]mod22k, which
means that in each time step the lower significant bits of
the register are multiplied with a constant w and the
product is added to v. As presented in [11] the sequence
generated by the multiply-add configuration consists of a
long cycle passing through 2k states, when the constant
additive value v is odd and the constant w is an element of
{4x+1 | x ∈ N}. The source of the serial random vectors is
the bit position Rk-1 which generates bit-sequences with
period 2k.

The second structure needs an extra 2k bits wide 2-to-1
multiplexer and a new pattern is produced in every two
cycles. During the first cycle the k-lower significant bits of
the register R(L)(t) are multiplied with the constant w and
the product is added to the contents of the register. In the
second cycle the constant additive value v is also added to
the register's value. The presented function is described by
the recursive equations, R(t+1)=[R(t)+w·R(L)(t)]mod22k

and R(t+2) = [R(t+1) + v]mod22k. The Multiply-
Accumulate configuration generates random patterns with
period 22k and the sequence produced by the most
significant bit of the k lower significant bits of the register
has exactly the same period.

The above mentioned multiplier-adder and multiplier-
accumulator based schemes exhibit attractive pseudo-
random and fault-detecting characteristics that are
sometimes even better than those of the conventional
LFSRs, achieving high-fault coverage with a rather small
number of test vectors. We have to note that any of the
schemes proposed in [10,11] can also be implemented in
software in a microprocessor environment.

3. The Proposed Scheme

The basic module of the proposed test pattern
generation scheme is the accumulator consisting of an
adder and a k-bits register. The structure is completed with
the addition of k 2-to-1 multiplexers M1,M2,…,Mk, a XOR

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

gate and an extra flip-flop (D-FF) as shown in Figure 2.

D

adder

CinCout

M1M2M3Mk-1Mk

Register (R)

R1R2Rk-1Rk

Constant Additive
value u

D-FF

...

. . .

...

.

.

.

T
k

k

T

u input B input Normal
carry in

Figure 2. The proposed Accumulator behaving in test
mode as a NLFSR.

In normal mode, T=0, the output Ri, 1≤i<k, of the
register drives the Bi input of the adder, while the
exclusive-OR gate and the D-FF flip-flop are not used. In
test mode, T=1, the output Ri, 1≤i<k, of the register drives
the Bi+1 input of the adder and the output Rk feeds the
additional exclusive-OR gate. Additionally, the output of
the D-FF flip-flop drives the B1 input of the adder while
Cin receives the value zero. Therefore in test mode the
modified accumulator of Figure 2 behaves identically to
the circuit of Figure 3 which is a NLFSR [12].
Functionally we can say that in test mode the contents of
the register are shifted one position to the left and are then
added with a constant value u and the value D of the D-FF
flip-flop. We store the k bits of the result back to the
register and the (k+1)-bit at the D-FF.

The hardware overhead calculation will be based on
gate equivalents. Using the Synopsys tools driven by the
AMS CUB implementation technology (0.6μm, 2-metal
layer, 5.0V) and taking one 2-input NAND or one 2-input
NOR gate equal to 1 gate equivalent, we get: one 2-input
exclusive-OR gate equals 2.0 gate equivalents, one 2-input
AND gate equals 1.3 gate equivalents, one D flip-flop
equals 3.6 gate equivalents and a 2-to-1 multiplexer equals
1.7 gate equivalents. Then the hardware required so that an
accumulator to behave, in test mode, as a NLFSR is equal
to 1.7k+6.5 equivalent gates. The hardware overhead of
the MAC [10], Multiply-Add and Multiply-Accumulate
schemes [11] is zero. However, they assume the existence
of a multiplier-accumulator or multiplier-adder pair in the
circuit. According to our scheme only the existence of an
accumulator is required. In most LFSR based test-per-scan
BIST, the LFSR is a dedicated circuit. In this case the
hardware required for the implementation is equal to
3.6k+2m where m is the number of the XOR gates. We

can see that the hardware overhead imposed by modifying
the accumulator is roughly equal to the half of the cost of
the LFSR. In the case that an existing register is modified
to function in test mode as a LFSR then the cost is equal to
1.7k+2m equivalent gates, which is similar to the cost of
our scheme.

. . . + D1 +D2++ Dk +D-FF

u1u2u3uk

Carry
Generation

Logic
.
.
.

. . .

c1c2ck-1ck

X

r1r2rk

. . .

. . .
Cin = 0

Figure 3. The accumulator behaving as a Multiple Input
Non-Linear Feedback Shift Register

In the case that the accumulator belongs to the datapath
of a processor then, instead of the hardware
implementation, the NLFSR can be emulated by a
program. In this case the hardware overhead is zero. A
general form of code that can be used to generate one test
bit is shown on Figure 5. At each step, the state s(t) is
stored in the accumulator (ACC) and in register Rflag
which emulates the D-FF added in the hardware version of
the NLFSR. Lines 1-4 produce the next state in the
accumulator while the code in lines 5-7 update the value of
the D-FF (Rflag) by adding modulo-2 the bit that was
shifted out and the carry-out produced from the addition
step in lines 3 and 4. In general, the code segment of
Figure 4 should be executed N x L times in order to
generate L vectors, of length N each.
SHL ACC % Shift Left Accumulator
ADDC Temp,#0 % Preserve carry out in temp
ADD ACC,ACC,u % Add constant u to ACC
ADDC ACC,ACC,Rflag, % Add the contents of Rflag
LD Rflag,#0 % Clear Rflag
ADDC Rflag,#0 % Preserve carry out in Rflag
XOR Rflag,Rflag,Temp % Update Rflag for the next loop

Figure 4. The code segment that emulates one state
transition of the NLFSR.

Let us now declare s(t) the state of the generator of
Figure 2 which is defined as the contents of the register
R(t) and the contents of the extra flip-flop D(t),
considering D(t) as the most significant bit of s(t). In other
words s(t) is equivalent to a (k+1)-bit vector with elements
{D(t),Rk-1(t),...,R1(t),R0(t)}. Taking into account the
previous description of operation, the next state is
computed by the following recursive equation.





≥++
<+

=+
+

+

k1k

k1k

2s(t),1]mod2u[2s(t)
2 s(t),u]mod2[2s(t)

 1)s(t

The period of the generated sequence strongly depends
on the proper selection of the constant additive value u. In
the rest of the paragraph we will investigate the structural

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

properties of the generated sequence and how they are
affected by the selection of the constant additive value u.
After performing several experiments and by thoroughly
examining the generated sequences we have made the
following observations. a) For the majority of different
register sizes there is at least one constant additive value u
that gives a maximum period p = 2k+1-1. For these cases
the state transition diagram of the proposed scheme
consists of a single long cycle of length 2k+1-1, which
implies that the test pattern generation scheme can pass
through p different states irrespective of the initial state
s(0). b) For the cases where a maximal period cannot be
obtained such as for k = 12, there is a constant additive
value that gives a period very close to 2k+1-1. Hence in
Table 2 we present for each k the additive values that give
the maximum period, along with the obtained period. The
cases that the period is equal to 2k+1-1 have been shaded.
c) Stroele has proven [9] that if the transition diagram, of
either a k-bit accumulator operating under constant input
or an arbitrary finite state machine with k-state bits,
contains a cycle of length 2k-1, then the generated bit
sequences from each bit position i, i=0,1,…,k-1 has period
2k-1. Therefore, when the proposed test pattern generator,
with k+1 state bits, operates under a constant input and
produces a state cycle of length 2k+1-1 (only one state is
not reached for every k) then the sequence generated from
the j-th bit position Rj(t-1), Rj(t), Rj(t+1),… has period
pj = 2k+1-1 for j = 0, 1, …, k-1.

Table 1. The constant additive values that ensure a
maximal period for each k

K Constant Additive Value Period
5 16 20 22 24 63
6 32 34 127
7 60 244
8 168 170 511
9 320 1023

10 834 2038
11 1282 1302 1644 1648 1650 4095
12 2368 8169
13 5216 16368

14
8192
9644
9648

9650
9652
9656

9658
9672
9674

9676
9678
9698

10218
10252
10254

32767

15 24218
24222

24226
24230

24232
24316 65535

16 40864 131071
17 65526 262094

18
142634
142636
142688

142690
142694
142696

142700
142982
142992

143022
143024
143026

524287

19 327258
327260

327262
327264

327754
327982

327984
327994 1048575

20 841936 2097134
Since bit serial test pattern generation is our primary

interest the Most Significant Bit of the Register (Rk-1) was
chosen to be the source of the random test sequence. The
selection of the most significant bit position is based upon
the observation presented in [14] which states that the least

significant bits of a pseudorandom number sequence are
much less “random” than the most significant ones. Using
as randomness metric the Cesaro method for the
calculation of π we found out that the randomness of the
proposed test pattern generators approaches the random
quality of the sequences generated by the corresponding
MAC [10], adder-multiplier, accumulator-multiplier [11]
and LFSRs. Furthermore the analysis of the generated
sequence with respect to the length of runs of “0” and “1”
as well as the number of combinations appearing in a
sliding window of four adjacent bits [11] give promising
results.

Motivated by Gold Sequences [15] we investigated the
random properties of the sequences generated from the
output of a XOR gate receiving as inputs the sequences
generated by two different bit positions of the register. We
examined the sequences XOR (Rk-1, Ri), with i=0,1,…,k-2,
using as randomness metric the Cesaro method for the
calculation of π. In all cases the sequence that appeared to
be more random was the one that combined the most
significant bits of the upper and the lower part of the
register, as shown in Figure 5.

Figure 5. The serial output of the Enhanced test pattern
generator

The randomness of the sequence generated from the
output of the additional XOR gate is improved against the
case that the XOR gate is not used and is similar to the
randomness of the sequences generated by the
corresponding MAC [10], adder-multiplier, accumulator-
multiplier [11] and LFSRs. Also their structural properties
have improved compared to the case that the XOR gate is
not used. The improvements are valid even in the cases
that the constant additive value is chosen randomly. For
example, we considered a 24-bit wide accumulator and
chose an additive constant value u=9642306. The chosen
value produces numbers with period 14790812, which is
less than the maximum possible period 225-1. Producing a
106 bit sequence either from the most significant bit
position of the register or from the output of the additional
XOR gate, all possible runs of "0" and "1" with length up
to 17 appeared. A difference appeared when a sliding
window of 4 adjacent bits in the sequence was considered.
In the first case 9 of all possible 16 combinations occurred
while in the second 12, thus improving the structural
properties of the sequence.

The quality of the new generated sequence will be far
more evident from the results that we present in the next
section along with the results obtained from the simple
version of the proposed generator, and the already known

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

bit-serial test pattern generation schemes. In the following
sections we will refer to the proposed test pattern
generator as "Simple" when the MSB of the register is the
source of the test sequence and as "Enhanced" when the
test sequence is produced from the output of the additional
XOR gate.

4. Evaluation and Comparisons

A lot of experiments were conducted in order to
evaluate the quality of the test sequences generated by our
scheme. In the first set of our experiments we used the
non-redundant version of the ISCAS'85 benchmark
circuits [16] while in the second set we present results of
the fault coverage obtained using the ISCAS'89
benchmarks [17]. For both benchmarks sets we assume
that the primary inputs and the internal flip-flops are
connected to a single scan chain. The fault coverage in
every case was calculated as the fraction of the number of
faults detected by the test vectors of the test pattern
generator over the total number of detectable faults. In
each case, the number of clock cycles that are used to
produce and shift-in a new test vector were chosen to be
relatively prime to the period of the generated sequence, in
order to guarantee that a maximal number of different
patterns can be applied to the CUT.

For each type of pattern generator, 4 different input
constants or 4 different primitive polynomials were
investigated and 10 randomly selected initial states were
tried in each case. Thus, 40 experiments were conducted
for each type of pattern generator and for each benchmark
circuit respectively. The input constants for the arithmetic
bit serial test pattern generation structures where chosen
according to the results reported in [10] for the MAC
structure and the theorems presented in [11] for the
multiply-add and multiply-accumulate schemes. LFSRs
have been designed according to the primitive polynomials
taken from [2].

Table 2. Results achieved by 16-bit TPGs
 [11] Proposed

CUT LFSR Mult&
Add

Mult&
Acc

[10]
MAC Simple Enhanced

c432 366 99.52% 510 454 425 273
c499 645 97.15% 572 603 491 475
c880 6377 95.97% 99.77% 3985 4750 4096

c1355 1541 94.55% 1426 1529 1421 1400
c1908 4288 86.25% 99.97% 5256 4983 4675
c2670 90.90% 82.55% 84.41% 81.84% 84.36% 90.74%
c3540 12607 91.02% 99.89% 11514 99.92% 10940
c5315 1862 98.55% 1951 1712 1687 1504
c6288 58 78 82 67 59 48
c7552 97.90% 93.55% 96.54% 97.30% 97.80% 97.37%

Each entry to the following tables gives the smallest
number of test vectors required to achieve 100% coverage
of all testable single stuck-at faults or the fault coverage
obtained after applying 64K patterns to the corresponding

CUT. The best results obtained for each benchmark circuit
are shaded. Table 3 lists the best results obtained by each
bit-serial test pattern generator assuming a 16-bit wide
accumulator, adder or LFSR. In the case of the proposed
scheme the given constant additive value u = 40864 and 3
other randomly selected additive constants were used for
each benchmark circuit, while the number of test vectors
that appear in the column referring to the LFSR, are taken
from Table 1 of [11]. Data clearly show that the bit-
sequences produced by the proposed scheme in most cases
outperform both the LFSR and the other arithmetic module
based test pattern generators. From Table 3 we can see
that, in the case of 16-bit wide adder, the Multiply&Add
scheme gives significantly worse results than the other
schemes. This is due to the fact that the period obtained by
this scheme is equal to 216/2 = 256, which is too short.

Table 3. Results achieved by 32-bit TPGs
[11] Proposed

CUT LFSR Mult&
Add

Mult&
Acc

[10]
MAC Simple Enhanced

c432 445 415 353 470 381 338
c499 576 532 431 708 493 422
c880 7412 3389 1118 4427 3400 3117

c1355 1413 1641 1602 1554 1515 1432
c1908 6571 4428 9280 5237 3861 4447
c2670 90.66% 86.9% 95.6% 91.10% 91.08% 92.33%
c3540 90.88% 9377 22399 14671 99.94% 8680
c5315 2632 1605 1739 2373 2261 1589
c6288 88 73 84 64 62 67
c7552 97.84% 98.0% 98.8% 98.20% 97.97% 97.78%

Table 4. Results achieved by 16-bit TPGs
[11] Proposed

CUT LFSR Mult&
Add

Mult&
Acc

[10]
MAC Simple Enhanced

s27 34 22 20 21 19 15
s208 97.02% 80.77% 1932 4123 96.10% 4646
s298 242 147 214 231 201 198
s344 116 122 120 98 90 106
s349 128 87 118 135 105 124
s382 236 99.87% 207 221 99.87% 306
s386 2478 85.88% 2768 2866 2122 2552
s420 88.01% 68.88% 86.46% 90.39% 81.88% 92.36%
s444 93.76% 99.31% 242 263 303 240
s510 99.31% 99.60% 1014 580 99.02% 598
s526 4328 89.49% 99.86% 9872 6243 8406
s641 98.74% 95.94% 98.51% 98.74% 98.59% 98.59%
s713 98.82% 93.94% 98.60% 98.81% 98.67% 98.89%
s820 93.78% 78.66% 98.98% 16388 83.78% 18671
s832 93.62% 78.32% 96.85% 13752 84.09% 18954
s838 62.47% 47.17% 58.95% 61.80% 58.90% 63.22%
s953 97.53% 81.22% 99.12% 99.94% 89.77% 99.95%

s1196 99.79% 80.73% 99.79% 99.71% 99.96% 99.87%
s1238 99.87% 76.96% 97.24% 99.54% 99.83% 99.91%
s1423 99.85% 94.80% 99.75% 99.86% 99.82% 16437
s1488 3513 91.06% 6343 3685 3595 3974
s1494 3729 91.45% 4673 3397 3671 4004

In Table 4, bit serial test pattern generators assuming a
32-bit wide accumulator, adder or LFSR are compared.
With respect to the proposed scheme, since there is no

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

information about the proper selection of a constant
additive value in order to achieve a maximal period, we
randomly selected 8 constant inputs and tried 5 different
initial states s(0) for each benchmark circuit in order to
complete the needed 40 experiments. The results that
appear in columns 3-4 were taken from [11].

The increase in the accumulator size has clearly
resulted in certain improvements in the obtained fault
coverage and in many cases has lead to a considerable
reduction of the required test length to achieve 100% fault
coverage, in comparison to the results obtained with a 16-
bit wide accumulator. We can observe that although the
selected constant additive value does not offer the
maximal period, the proposed test pattern generator still
offers an effective solution.

Table 5. Results achieved by 32-bit TPGs
[11] Proposed

CUT LFSR Mult&
Add

Mult&
Acc

[10]
MAC Simple Enhanced

s27 14 21 10 19 16 12
s208 3268 1670 1802 3818 1780 2324
s298 237 198 256 257 218 231
s344 213 115 94 157 95 92
s349 125 113 102 102 106 99
s382 268 208 243 320 264 263
s386 2224 1525 2312 1862 1706 1599
s420 94.56% 94.54% 97.82% 93.45% 94.87% 96.40%
s444 226 170 232 253 238 306
s510 413 504 418 481 571 514
s526 6438 5509 9631 8317 7254 9051
s641 99.53% 98.82% 98.90% 98,74% 98.67% 99.69%
s713 99.56% 98.89% 99.58% 99.63% 98.72% 99.61%
s820 11633 14083 14295 19855 14662 15442
s832 16533 14095 8746 9684 20105 15311
s838 68.08% 64.98% 71.59% 63.86% 65.72% 65.57%
s953 32987 34152 21804 27556 29217 19350

s1196 50722 44213 52182 60023 61832 33671
s1238 55124 54283 59874 63125 55481 58126
s1423 13124 14188 26433 22984 17887 16953
s1488 3760 4107 3691 4002 3751 3688
s1494 3920 3317 2998 4426 3998 3871

In the same way, Tables 5 and 6 present the best results
obtained after performing 40 experiments on the ISCAS'89
benchmark circuits using the bit-serial test pattern
generators with 16 and 32 bit wide accumulators, adders of
LFSRs respectively. Once more we verify the
effectiveness of the proposed scheme.

5. Conclusions

In this paper we have shown that an accumulator
behaving as a NLFSR can be used efficiently for bit serial
test pattern generation and in most cases, compares
favorably to LFSR and other arithmetic function based bit
serial sequence generators. Furthermore, our scheme has
the advantage of wider applicability against the other
arithmetic function based bit serial sequence generators
proposed in [10, 11] since it can be applied even in circuits

that an accumulator-multiplier or adder-multiplier
configuration [10, 11] is not available. Finally, taking into
account the suitability of the proposed scheme for parallel
and serial test response compaction [12, 13] we conclude
that the same scheme, depending on the test session, can
be used effectively either as a test pattern generator or a
test response compactor.

Acknowledgements
The authors would like to thank Dr. Y. Stamatiou for

the useful discussion on randomness metrics.

References
[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,

Digital Systems Testing and Testable Design, Computer
Science Press, NY, 1990.

[2] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test
for VLSI: Pseudo-Random Techniques, NY: Wiley, 1987.

[3] M. Bushnell and V. Agrawal, Essentials of Electronic
Testing for Digital, Memory & Mixed Signal VLSI circuits,
Kluwer Academic Publishers, 2000.

[4] H. J. Wunderlich, BIST for systems-on-a-chip, Integration,
The VLSI Journal, vol. 26, no.1-2, pp. 55-78, Dec. 1998.

[5] J.Rajski and J.Tyszer, Arithmetic Built–In Self–Test for
Embedded Systems, Prentice Hall, 1998.

[6] Rajski J., Tyszer J., Test Response Compaction in
Accumulators with Rotate Carry Adders, IEEE Trans. on
CAD, vol. 12, no.4, pp. 531-539, April 1993.

[7] Stroele A. P., Test Response Compaction Using Arithmetic
Functions, Proc. of IEEE VTS, pp. 380-386, 1996.

[8] Gupta S., Rajski J. and Tyszer J., Arithmetic Additive
Generators of Pseudo-Exhaustive Test Patterns, IEEE
Trans. on Comp., vol. 45, no. 8, pp. 939-949, Aug. 1996.

[9] Stroele A. P., BIST Pattern Generators Using Addition and
Subtraction Operations, JETTA, vol. 11, pp. 69-80, Aug.
1997.

[10] J.Rajski and J.Tyszer, Multiplicative Window Generators
of Pseudo–random Test Vectors, Proc. of European Design
and Test Conference, pp. 42-48, 1996.

[11] A.P.Stroele, Bit Serial Pattern Generation and Response
Compaction Using Arithmetic Functions, Proc. of 16th

IEEE VLSI Test Symposium, pp 78–84, 1998.
[12] D. Bakalis, D. Nikolos and X. Kavousianos, Test Response

Compaction by an Accumulator behaving as a Multiple
Input Non–Linear Feedback Shift Register. Proc. of IEEE
ITC, pp. 804-811, 2000.

[13] D. Bakalis, D. Nikolos, H. T. Vergos and X. Kavousianos,
On Accumulator-Based Bit-Serial Test Response
Compaction Schemes, Proc. of 2nd IEEE ISQED, pp. 350-
355, 2001.

[14] D.E.Knuth, The Art of Computer Programming, Vol. 2,
Addison-Wesley, 1981.

[15] R. Gold, Optimal Binary Sequences for Spread Spectrum
Multiplexing, IEEE Trans. on Information Theory, vol. IT-
B, pp. 619-621, October 1967.

[16] F. Brglez and H. Fujiwara, A neutral netlist of 10
combinational benchmark circuits and a target translator
in FORTRAN, Proc. of IEEE ISCAS, 1985.

[17] F. Brglez, D.Bryan and K.Kozminski, Combinational
Profiles of Sequential Benchmark Circuits, Proc. of IEEE
ISCAS, pp. 1929–1934, 1989.

Proceedings of the Eighth IEEE International On-Line Testing Workshop (IOLTW’02)
0-7695-1641-6/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

