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Abstract 

Arithmetic modules can be utilized to generate test patterns 

and compact test responses. In this work we investigate the 

utilization of an accumulator whose inputs are driven by a 

Feedback Shift Register as a candidate structure for bit-serial 

test-pattern generation. The proposed scheme compares 

favorably to previously proposed schemes with respect to the 

length of the output sequence / hardware overhead tradeoff.   
 

1. INTRODUCTION 

Built-In Self-Test (BIST) [1]–[4] schemes reduce the need for 

external testing equipment and can be used to determine faulty 

parts during manufacturing and in the field. In BIST, pattern 

generation and response evaluation are handled on chip with 

the use of hardware structures. Arithmetic BIST [5]–[21] is 

based on the use of adders, subtractors, multipliers, and shifter 

modules that already exist in modern general-purpose 

processors and digital signal processing units. The advantage 

of arithmetic BIST is that due to the reuse of existing on-chip 

modules, hardware overhead and performance degradation are 

reduced.  

 

Test-per-scan BIST is employed in sequential circuits with 

scan paths, embedded cores with isolation ring, circuits with 

boundary scan and portions of multichip modules, which 

require the transfer of test data in a bit-serial way. The period 

of the bit-serial test sequence generated by any bit position of 

an accumulator accumulating a constant value is low [11], 

therefore, simple arithmetic units are not efficient for bit-serial 

test-pattern generation. Bit-serial test-pattern generation 

schemes based on the use of adder–multiplier or accumulator–

multiplier pairs were proposed in [10]. These schemes achieve 

similar fault coverage with similar number of test patterns 

compared to Linear Feedback Shift Registers (LFSR) bit-

serial test-pattern generators. However, their applicability is 

limited to cases in which the required configuration of the 

adder–multiplier or accumulator–multiplier is available.  

 

In [19] the modification of accumulators to operate in test 

mode as nonlinear feedback shift registers was presented. The 

quality of this scheme depends on the selection of a constant 

additive value. However, finding an additive value to 

guarantee maximum sequences requires exhaustive searching. 

Furthermore, for some accumulator sizes, no additive value 

that ensures maximum period of bit sequences was found. In 

[20] another accumulator-based configuration is proposed that 

generates a sequence with period 2
k
-1 for all values of k, the 

accumulator width. 

 

In this paper we propose an alternative bit-serial accumulator-

based scheme where the inputs of the accumulator are driven 

by the outputs of an easily implemented feedback shift 

register. Comparisons with the schemes in [19], [20] indicate 

that the proposed here scheme results in lower hardware 

overhead for the same length of the resulting sequence. 
 

The paper is organized as follows. In Section 2 some 

theoretical background is presented. In Section 3 the proposed 

scheme is implemented and illustrated. In Section 4 the 

scheme is compared with the previously proposed ones; in 

Section 5 we conclude the work. Table 2 and Figure 3 can be 

found at the end of the manuscript for layout reasons. 

 

2. BACKGROUND 

The analysis of this Section is similar to the one investigated 

in [21] in a different context. First we note that if N and k are 

non-negative integer numbers, then the following relation 

holds (GCD and LCM denote the Greatest Common Divisor 

and Least Common Multiple, respectively). 

N × k = LCM(N, k) × GCD(N, k) => 
LCM N k

k

( , )
 = 

N

GCD N k( , )   
 

In the sequel, we shall denote with n the number of bits in the 

number; N=2
n
, i.e. N is a power of 2. Hence, the only numbers 

dividing N are 2
i
, 0<i≤n. Thus GCD(N, k)>1 if and only if k is 

even, and GCD(N, k)=1 if and only if k is odd.  

 

Lemma 1: If we start from any binary value A and 

consecutively add a constant value k (modulo N) we shall 

return to A in 
N

GCD N k( , )  cycles. 
 

Proof: Suppose we return to A after m STEPS. Then  

A + k×m ≡ A mod N => k×m ≡ 0 mod N => N×c = k×m = i 

where c, i  are integers. The smallest integer i satisfying the 

above relation is LCM(N,k). Thus,  

m = 
LCM N k

k

( , )
 =

N

GCD N k( , ) , Q.E.D. 
 

Corollary 1: If we consecutively add an odd number modulo 

N, then we will return to the initial value after N steps. 
 

Corollary 1 states the well-known fact that if we repeatedly 

accumulate an n-bit odd number in an n-stage accumulator we 

will generate all n-bit patterns before returning to the initial 

value.  
 

Definition 1: A Sequence(k) is a sequence of all integer 

numbers from 1 to k, where each number is taken exactly 

once.  
 

Note that for k>1 more than one Sequences(k) exist (in fact, 

the number of Sequences(k) is 1×2×3..×k=k!) For example, 
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the Sequences(3) are {1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, 

{3,1,2}, {3,2,1}.  
 

In the sequel we shall denote by Sk the sum of the values of 

the elements of a Sequence(k). Sk is irrespective of the order 

of the patterns in the Sequence(k) and is equal to k×(k+1)/2. 

 

Definition 2: A Circle(k, N, A) is a sequence of vectors 

generated starting from A and consecutively accumulating 

(modulo N) the elements of a Sequence(k) until we return to 

A after accumulating the last element of the Sequence(k).  
 

According to the definition of the Circle, there are k! different 

Circles(k, N, A) starting from the same starting value A, one 

for each utilized Sequence(k). For example, let n=2 (N=4) and 

k=2. The Sequences(2) are {1,2} and {2,1}. The Circles(2, 4, 

0) that correspond to these sequences are presented below:  
 

  Sequence(2)={1,2} 

 A 1 2 1 2 1 2 1 2 

Circle(2,4,0) 0 1 3 0 2 3 1 2 0 

 
  Sequence(2)={2,1} 

 A 2 1 2 1 2 1 2 1 

Circle(2,4,0) 0 2 3 1 2 0 1 3 0 

 

Theorem 1: If Sk is odd, a Circle(k, N, A) will return to A 

(the initial value) after k×N steps,. 
 

Proof: Let us consider an inclusive step stating when a 

Sequence starts and completing when a Sequence completes. 

From Lemma 1, is Sk is odd then N Sequences(k) will be 

applied. Hence, since each Sequence generates k steps, the 

number of applied steps is k×N. Q.E.D. 

 

Corollary 2: A Circle(N-2, N, 0) generates (N-2)×N patterns 

before returning to the initial state.  

Proof: SN-2 is an odd number, since SN-2 = 
( ) ( )N N− × −1 2

2 = 

( ) ( )2 1 2 2

2

n n

− × −

= (2
n
-1)×(2

n-1
-1) which is odd as the product of 

two odd numbers. Therefore the proof follows directly from 

Theorem 1. Q.E.D. 
 

For example, let us consider the case of a three bit generator. 

The possible values that can be generated by an LFSR 

implementing a primitive polynomial are (in decimal) 1, 2, 3, 

4, 5, 6 and 7 in different arrangements. According to the 

above discussion, if the sequence 1, 2, 3, 4, 5, 6 is repeatedly 

applied to the inputs of a 3-stage accumulator, then a sequence 

consisting of (2
n
-2)×2

n
 = 6×8= 48 patterns is generated. 

Therefore, the (2
n
-2)×2

n
 sequence is non-repeated. Hence, 

without need for extra control, the sequence generated is 

distinct for these 2
n
×(2

n
-2) patterns. 

 

After the above discussion, in order to generate a sequence 

with period (2
n
-2)×2

n
 = (N-2) × N, we can feed an 

accumulator with a Sequence(N-2). In the next Section we 

shall present an implementation of the scheme along with the 

design of a Non-linear Feedback Shift Register (NFSR) to 

generate the Sequence(N-2). The design of the NFSR stems 

from Theorem 2. 
 

Theorem 2: If an n-stage maximal cycle external LFSR is 

initialized to the pattern 011...1 and clocked until the pattern 

11...10 is generated, then a Sequence(N-2) is generated at the 

outputs of the LFSR.  

 

Proof: First, note that in the sequence of vectors generated by 

an external maximal cycle LFSR, if {11...1} is generated at 

cycle number t, then  

(a) {11...10} is generated at cycle t-1 (i.e. in the previous 

cycle) and  

(b) {011...1} is generated at cycle t+1 (i.e. in the next cycle).  
 

Indeed, let P denote the vector generated at cycle t-1 and S 

denote the vector generated at cycle t+1. The n-1 high-order 

bits of P are 1, since they are shifted to the right (in the next 

cycle) to form the n-1 low-order bits of {11...1}; the high-

order bit is 0 (since if it were 1, then no change would occur 

in the LFSR); thereby, P={111...0}.  
 

Similarly, the n-1 low-order bits of S are 1, since they were 

(in the previous cycle) the n-1 high-order bits of {11...1}, 

which are shifted to the right. The high-order bit of S is 0 

(since if it were 1, then no change in the state of the LFSR 

would occur); thereby, S={011...1}. 
 

From the above it is implied that if the LFSR is initialized to S 

and clocked until P is generated, N-2 non-zero n-bit patterns 

are generated (all non-zero patterns except from {11...1}). 

Therefore, N-2 distinct vectors are generated, whose decimal 

values are from 1 to N-2. Q.E.D. 
 

According to Theorem 2, if an LFSR is initialized to 011...1 

(=
N

2 -1 decimal) and clocked for N-2 cycles, all non-zero 

vectors except 11...1 are generated. This will be exploited in 

the next Section for the design of the NFSR structure. 

 

3. Implementation 

Following the results of the previous Section, the 

implementation is based on a binary accumulator whose 

inputs are driven by a Non-Linear Feedback Shift Register 

(NFSR) than can generate the Sequence(N-2), as shown in 

Figure 1.  

 
Figure 1: NFSR-based hardware implementation  

 

For the implementation of the NFSR that generates the 

Sequences(N-2), the results of Theorem 2 are used. More 

precisely, what is needed is a maximal cycle LFSR modified 

in such way that it cycles through all the patterns except from 

the all-1 pattern. This can be achieved by inserting gates with 

(n+1) inputs in total.  



 

For example, let us consider the 3-stage maximal cycle LFSR 

presented in Figure 2(a). The NFSR of Figure 2(b) stems from 

the LFSR of Figure 2(a) with the addition of gates with totally 

5 inputs. If the structure of Figure 2(b) is initialized to the 

pattern 011, the following sequence of vectors is repeatedly 

generated: N[3:1]: {011, 101, 010, 001, 100, 110}, i.e. the 

Sequence(6)={3,5,2,1,4,6}.  
 

In Table 1 we present the sequence generated from a 3-stage 

accumulator whose inputs are driven from the 3-stage NFSR 

of Figure 2(b). In Table 1 in the first column we present the 

cycle number; in the second column we present the value 

added to the input of the accumulator; in the 3
rd
, 4

th
, 5

th
 

column we present the values of the output bits of the 

accumulator. From Table 1 it is trivial to note that the period 

of the leftmost bit is 48 (after cycle #48, the patterns 6 will be 

accumulated, that will return the accumulator to state 000 and 

the sequence will start from the beginning). 
 

Table 1: Sequence generated by applying the sequence  

{3, 5, 2, 1, 4, 6} in a 3-stage accumulator 
          

# 
Added  
value 

#3 #2 #1 # 
Added 
 value 

#3 #2 #1 

1  0 0 0 25 6 1 0 0 

2 3 0 1 1 26 3 1 1 1 

3 5 0 0 0 27 5 1 0 0 

4 2 0 1 0 28 2 1 1 0 

5 1 0 1 1 29 1 1 1 1 

6 4 1 1 1 30 4 0 1 1 

7 6 1 0 1 31 6 0 0 1 

8 3 0 0 0 32 3 1 0 0 

9 5 1 0 1 33 5 0 0 1 

10 2 1 1 1 34 2 0 1 1 

11 1 0 0 0 35 1 1 0 0 

12 4 1 0 0 36 4 0 0 0 

13 6 0 1 0 37 6 1 1 0 

14 3 1 0 1 38 3 0 0 1 

15 5 0 1 0 39 5 1 1 0 

16 2 1 0 0 40 2 0 0 0 

17 1 1 0 1 41 1 0 0 1 

18 4 0 0 1 42 4 1 0 1 

19 6 1 1 1 43 6 0 1 1 

20 3 0 1 0 44 3 1 1 0 

21 5 1 1 1 45 5 0 1 1 

22 2 0 0 1 46 2 1 0 1 

23 1 0 1 0 47 1 1 1 0 

24 4 1 1 0 48 4 0 1 0 

 

4. COMPARISONS 

In order to investigate the merit of the proposed scheme we 

compare it with previously proposed accumulator-based serial 

sequence generators that have been proposed in the literature 

[19], [20]. These schemes utilize a k-stage accumulator 

comprising a properly modified adder and a register; the 

modifications of the adder consists of a series of n 2-to-1 

multiplexers, and one XOR gate to generate a sequence with 

length. Therefore, assuming the availability of an k-stage 

accumulator and considering that a multiplexer requires 1.7 

gates, the hardware overhead is 1.7×k+1.3 (for [19]) and 

1.7×k + 3.3 (for [20]); the resulting schemes can generate a 

sequence with length 2
k
-1.  

 

For the implementation of the proposed scheme, considering 

the availability of an n-stage accumulator and the register that 

will form the NFSR to feed the accumulator inputs, the 

hardware overhead will be (n+1) input gates plus one XOR 

gate to form the linear feedback. Therefore (we consider a 

XOR gate requires 1.7 gates as is the case for the multiplexer) 

the overhead is (n+1)+1.7 = n+2.7; the length of the resulting 

sequence is 2
n
×(2

n
-2).  

 

It should be noted that the values of k (for the schemes in 

[19], [20]) and n (for the proposed scheme) are different. This 

is due to the fact that the proposed scheme generates 

sequences of the order 2
n
×(2

n
-2), while the schemes in [19], 

[20] generate patterns of the order 2
k
-1.  

 

Table 2 summarizes, for various values of the length of the 

sequence, the hardware overhead of the three schemes. In 

Table 2, in the first column we present the number of the 

stages of the modules for [19] and [20]. In the second and 

fourth column we present the length of the generated 

sequence; in the third and fifth column we present their 

respective hardware overhead. In the sixth through the eighth 

column we present the respective data for the proposed 

scheme. Finally, in the ninth column we present the decrease 

in hardware presented by the proposed scheme. 
 

From Table 2, the value of n is roughly half of k, since they 

result in test lengths of the same order. 
 

Figure 3 graphically illustrates the hardware overhead of the 

various schemes as a function of the binary logarithm of L, 

the length of the required sequence.  

 

Figure 3: Accumulator-based bit-serial TPG schemes: 

comparison 
 

It should be also noted that, since the proposed scheme is 

based on a smaller data path (roughly half the size of the 

previously proposed schemes) the maximum operation 

frequency is expected to be higher. Furthermore, in case a 

large datapath is not available the proposed scheme is further 

favoured. For example, if a length of 4×10
10
 is required, then 

the previously proposed schemes require a 32-bit datapath, 

while the proposed scheme can generate the same length with 

a 16-bit datapath. 

 

5. CONCLUSIONS 

We have proposed the utilization of binary accumulators 

whose inputs are fed by the output of an NFSR structure, in 

order to generate bit serial patterns. Comparisons with 

previously proposed accumulator-based schemes indicate that 



the proposed here scheme results in considerably lower 

hardware overhead for the same length of the generated 

sequence.  
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Figure 2: 3-stage LFSR and corresponding NFSR 

 



 

Table 2: Comparisons 

[19] [20] Proposed 

k Length h/w Length h/w n Length h/w %Decr 

6 63 12 63 14 3 48 6 65% 

8 255 15 255 17 4 224 7 66% 

10 1.023 18 1.023 20 5 960 8 67% 

12 4.095 22 4.095 24 6 3.968 9 68% 

14 16.383 25 16.383 27 7 16.128 10 68% 

16 65.535 29 65.535 31 8 65.024 11 68% 

18 262.143 32 262.143 34 9 261.120 12 68% 

20 1.048.575 35 1.048.575 37 10 1.046.528 13 69% 

22 4.194.303 39 4.194.303 41 11 4.190.208 14 69% 

24 16.777.215 42 16.777.215 44 12 16.769.024 15 69% 

26 67.108.863 46 67.108.863 48 13 67.092.480 16 69% 

28 268.435.455 49 268.435.455 51 14 268.402.688 17 69% 

30 1073.741.823 52 1.073.741.823 54 15 1.073.676.288 18 69% 

32 4.294.967.295 56 4.294.967.295 58 16 4.294.836.224 19 69% 

34 17.179.869.183 59 17.179.869.183 61 17 17.179.607.040 20 69% 

36 68.719.476.735 63 68.719.476.735 65 18 68.718.952.448 21 69% 

38 274.877906.943 66 274.877.906.943 68 19 274.876.858.368 22 70% 

 


