Linear Feedback Shift Registers (LFSRS)

* Efficient design for Test Pattern Generators &
Output Response Analyzers (also used in CRC)
— FFs plus a few XOR gates External Feedback LFSR

(Me P
— better than counter P- -
» fewer gates

« higher clock frequency 'f.—i
e Two types of LFSRs
— External Feedback Internal Feedback LFSR
— Internal Feedback
i B M
— defined by XOR positions

 higher clock frequency
 Characteristic polynomiarr
— P(x) = x*+ x3+ x + 1 in both examples

C. Stroud, Dept. of ECE, Auburn
Univ. 10/04



LFSRs (cont)
Characteristic polynomial of LFSR

e n=# of FFs = degree of polynomial

e XOR feedback connection to FF i < coefficient of x’
— coefficient = 0 iIf no connection
— coefficient = 1 if connection

— coefficients always included in characteristic polynomial:
o X" (degree of polynomial & primary feedback)
o x%=1 (principle input to shift register)

* Note: state of the LFSR < polynomial of degree n-1
o Example: P(X)=x3+x+1 v PO R

HEE
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LSFRs (cont)

An LFSR generates periodic sequence
— must start in a non-zero state,

The maximume-length of an LFSR sequence is 2" -1
— does not generate all Os pattern (gets stuck in that state)

The characteristic polynomial of an LFSR generating a
maximum-length sequence is a primitive polynomial

A maximume-length sequence is pseudo-random:
— number of 1s = number of Os + 1
— same number of runs of consectuive Os and 1s
— 1/2 of the runs have length 1
— 1/4 of the runs have length 2
— ... (as long as fractions result in integral numbers of runs)
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LFSRs $cont?

Example: Characteristic polynomial isP(x) = x3+x +1

Beginning at all 1s state
— 7 clock cycles to repeat 1x0 1x1 0X2 1x3
— maximal length = 2"-1

— polynomial is primitive

m
.

] 1 1 1 1
Properties: 1 0 1 2
1 0 O 3

— four 1s and three Os 0 1 0 4
— 4 runs: DY X
 2runs of length 1 (one 0 & one 1) (1) 1 1 7

e 1 run of length 2 (0s)
e 1 run of length 3 (1s)

Note: external & internal LFSRs with same primitive

polynomial do not generate same sequence (only same length)
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LFSRs (cont)

* Reciprocal polynomial, P*(x)
— P*(x) = x" P(1/x)
o example: P(x)=x3+x+1
o then:P*(X)=x3 (X2 +x1+1)=1+xX2+x3=x3+x?+1
— 1f P(X) Is primitive, P*(X) Is also primitive
» same for non-primitive polynomials

« Polynomial arithmetic

Division
— modulo-2 (x" + x" = x" - x" = Q) x4 x+1
Multiplication X2 + 1|x4+x3+x+ 1
Addition/Subtraction (x2+x+1)x(x2+1) X4+ X2
(x> +x2+ 1)+ (x4 +x?) X2+x+1 X3+x2+x+1
X° x2 1 x X2+1 X3 + X
+ Xt X2 X2+ XxX+1 X2+ 1
X> x4 1 X4+ x3 + x2 X2+ 1
=x>+x4+1 =x4+x3+x+1 0
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LFSRs (cont)

« Non-primitive polynomials produce sequences < 2"-1
— Typically primitive polys desired for TPGs & ORAs

e Example of non-primitive polynomial
- PX)=x3+xe+x+1

External Feedback LFSR Internal Feedback LFSR
ARy (M
SN B |
| ._{
000 111 100 010 000 111 110 101
000 111 110 101 000 100 011 101
011 010 010 110
001 001
100 111
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LFSRs (cont)

e Primitive polynomials with minimum # of XORs

Degree (n) Polynomial
2,346,7,1522 | xX"+x+1
5,11,21,29 X"+ x2+ 1
8,19 X"+ X0+ x4+ x+1
9 X"+ x4+ 1
10,17,20,25,28 | x"+x3+ 1
12 X"+ X+ x4+ x3+ 1
13,24 X"+ XA+ x3+x+1
14 X"+ x4+ x4+ x+1
16 X"+XP+x3+x2+ 1
18 X"+ X'+ 1
23 X"+ x°+ 1
26,27 X"+ x84+ x +x+1
30 X"+ x4+ x+x+1
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