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1. Introduction

1.1 Background

Even though people’s tastes may vary, they generally follow patterns. By that, I mean
that there are similarities in the things that people tend to like. Or another way to look
at it is that people tend to like things in the same category or things that share the same
characteristics. For example, if you’ve recently purchased a book on “Machine
Learning in Python” and you’ve enjoyed reading it, it’s very likely that you’ll also enjoy
reading a book on Data Visualization. People also tend to have similar tastes to those of
the people they’re close to in their lives. Recommender systems try to capture these
patterns and similar behaviours, to help predict what else you might like.

Recommender systems have many applications that I’m sure you’re already familiar
with. Indeed, Recommender systems are usually at play on many websites. For
example, suggesting books on Amazon and movies on Netflix. In fact, everything on
Netflix’s website is driven by customer selection. If a certain movie gets viewed
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frequently enough, Netflix’s recommender system ensures that that movie gets an
increasing number of recommendations. Another example can be found in a daily-use
mobile app, where a recommender engine is used to recommend anything from where
to eat or what job to apply to. On social media, sites like Facebook or LinkedIn, regularly
recommend friendships.

Most streaming services utilize recommender systems.

Recommender systems are even used to personalize your experience on the web. For
example, when you go to a news platform website, a recommender system will make
note of the types of stories that you clicked on and make recommendations on which
types of stories you might be interested in reading in the future. There are many of
these types of examples and they are growing in number every day.

One of the main advantages of using recommendation systems is that users get broader
exposure to many different products they might be interested in. This exposure
encourages users towards the continual usage or purchase of their products. Not only
does this provide a better experience for the user but it benefits the service provider, as
well, with increased potential revenue and better security for its customers.

1.2 Types of Recommender Systems

https://unsplash.com/photos/ngMtsE5r9eI
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There are generally 2 main types of recommendation systems: Content-based and
collaborative filtering. The main difference between each can be summed up by the
type of statement that a consumer might make. For instance, the main paradigm of a
content-based recommendation system is driven by the statement: “Show me more of
the same of what I’ve liked before.”

Content-based systems try to figure out what a user’s favorite aspects of an item are,
and then make recommendations on items that share those aspects. Collaborative
filtering is based on a user saying, “Tell me what’s popular among my neighbours because I
might like it too.” Collaborative filtering techniques find similar groups of users and
provide recommendations based on similar tastes within that group. In short, it
assumes that a user might be interested in what similar users are interested in. There
are also hybrid recommender systems that combine various mechanisms. Though the
focal point of this article is on the collaborative filtering approach.

Collaborative Filtering vs Content-Based Filtering

1.3 Implementation of Recommender Systems
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In terms of implementing recommender systems, there are 2 types: memory-based and
model-based. In memory-based approaches, we use the entire user-item dataset to
generate a recommendation system. It uses statistical techniques to approximate users
or items. Examples of these techniques include Pearson Correlation, Cosine Similarity,
Euclidean Distance, and among others. In model-based approaches, a model of users is
developed in an attempt to learn their preferences. Models can be created using
machine learning techniques like regression, clustering, classification, and so on.

2. Collaborative Filtering

2.1 Intuition

Collaborative filtering is based on the fact that relationships exist between products
and people’s interests. Many recommendation systems use collaborative filtering to
find these relationships and to give an accurate recommendation of a product that the
user might like or be interested in. Collaborative filtering has basically two
approaches: user-based and item-based. User-based collaborative filtering is based on
the user similarity or neighborhood. Item-based collaborative filtering is based on
similarity among items. Let’s first understand the intuition behind the user-based
approach.

In user-based collaborative filtering, we have an active user for whom the
recommendation is aimed at. The collaborative filtering engine first looks for users
who are similar to that particular active user, that is, users who share the active user’s
rating patterns. Collaborative filtering bases this similarity on things like history,
preference, and choices that users make when buying, watching, or enjoying
something, for example, movies that similar users have rated highly. Then it uses the
ratings from these similar users to predict the possible ratings by the active user for a
movie that they had not previously watched. For instance, if two users are similar or,
are neighbors in terms of their interested movies, we can recommend a movie to the
active user that their neighbor has already seen.
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User-based Collaborative Filtering

2.2 Algorithm

Now, let’s dive into the algorithm to see how all of this works.

Fig 1

Assume that we have a simple user-item matrix, which shows the ratings of four users
for five different movies. Let’s also assume that our active user has watched and rated

https://mc.ai/deep-learning-for-collaborative-filtering-using-fastai/
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three out of these five movies. Let’s find out which of the two movies that our active
user hasn’t watched should be recommended to her.

The first step is to discover how similar the active user is to the other users. How do we
do this? Well, this can be done through several different statistical and vectorial
techniques such as distance or similarity measurements including Euclidean Distance,
Pearson Correlation, Cosine Similarity, and so on. To calculate the level of similarity
between two users, we use the three movies that both the users have rated in the past.

Fig 2

Regardless of what we use for similarity measurement, for example, the similarity
could be 0.7, 0.9, and 0.4 between the active user and other users. These numbers
represent similarity weights or proximity of the active user to other users in the
dataset. The next step is to create a weighted rating matrix. We just calculated the
similarity of users to our active user in Fig 2; now, we can use it to calculate the
possible opinion of the active user about our two target movies. This is achieved by
multiplying the similarity weights to the user ratings.
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Fig 3

It results in a weighted ratings matrix, which represents the user’s neighbours’ opinions
about our two candidate movies for recommendation. In fact, it incorporates the
behaviour of other users and gives more weight to the ratings of those users who are
more similar to the active user.

Now, we can generate the recommendation matrix by aggregating all of the weighted
rates. However, as three users rated the first potential movie and two users rated the
second movie, we have to normalize the weighted rating values. We do this by dividing
the sum of weighted ratings by the sum of the similarity index for users.
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Fig 4

The result is the potential rating that our active user will give to these movies based on
her similarity to other users. It is obvious that we can use it to rank the movies for
providing recommendation to our active user.

Now, let’s examine the difference between user-based and item-based collaborative
filtering.



5/11/23, 9:04 PM How to Build Simple Recommender Systems in Python | by Bryan Tan | The Startup | Medium

https://medium.com/swlh/how-to-build-simple-recommender-systems-in-python-647e5bcd78bd 10/29

Fig 5

In the user-based approach, the recommendation is based on users of the same
neighbourhood with whom he or she shares common preferences. For example, as
User 1 and User 3 both liked Item 3 and Item 4, we consider them as similar — or
neighbour users — and recommend Item 1 which is positively rated by User 1 to User 3.

In the item-based approach, similar items build neighbourhoods on the behaviour of
users (not based on their contents!). For example, Item 1 and Item 3 are considered
neighbours as they were positively rated by both User 1 and User 2. So, Item 1 can be
recommended to User 3 as he or she has already shown interest in Item 3. Therefore,
the recommendations here are based on the items in the neighborhood that a user
might prefer.

2.3 Challenges of Collaborative Filtering

Collaborative filtering is a very effective recommendation system. However, there are
some challenges with it as well. One of them is data sparsity. Data sparsity happens
when you have a large data set of users who generally rate only a limited number of
items. As mentioned, collaborative based recommenders can only predict the scoring
of an item if there are other existing users who have rated it. Due to sparsity, we might
not have enough ratings in the user-item dataset which makes it impossible to provide
proper recommendations.



5/11/23, 9:04 PM How to Build Simple Recommender Systems in Python | by Bryan Tan | The Startup | Medium

https://medium.com/swlh/how-to-build-simple-recommender-systems-in-python-647e5bcd78bd 11/29

Another issue to keep in mind is something called cold start. Cold start refers to the
difficulty the recommendation system has when there is a new user, and as such, a
profile doesn’t exist for them yet. Cold start can also happen when we have a new item
which has not received a rating.

Scalability can become an issue as well. As the number of users or items increases, and
the amount of data expands, collaborative filtering algorithms will begin to suffer
performance dips, simply due to growth and the similarity computation. There are
some solutions for each of these challenges, such as using hybrid based recommender
systems, but they are out of the scope of this topic.

3. Building a Simple Recommender System in Python

3.1 Acquiring Data

The dataset for this project was acquired from GroupLens.

3.2 Preprocessing

First, let’s get all of the imports out of the way:

#Dataframe manipulation library

import pandas as pd

#Math functions, we’ll only need the sqrt function so let’s import 
only that

from math import sqrt

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

Now let’s read each file into their Dataframes:

#Storing the movie information into a pandas dataframe

movies_df = pd.read_csv(‘movies.csv’)

#Storing the user information into a pandas dataframe

https://grouplens.org/datasets/movielens/
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ratings_df = pd.read_csv(‘ratings.csv’)

Let’s also take a peek at how each of them are organized:

movies_df.head()

So each movie has a unique ID, a title with its release year along with it (which may
contain unicode characters), and several different genres in the same field. Let’s
remove the year from the title  column and store it a new year  column by using the
handy extract  function that Pandas has.

#Using regular expressions to find a year stored between parentheses

#We specify the parantheses so we don’t conflict with movies that have 
years in their titles

movies_df[‘year’] = movies_df.title.str.extract(‘(\
(\d\d\d\d\))’,expand=False)

#Removing the parentheses

movies_df[‘year’] = 
movies_df.year.str.extract(‘(\d\d\d\d)’,expand=False)

#Removing the years from the ‘title’ column

movies_df[‘title’] = movies_df.title.str.replace(‘(\(\d\d\d\d\))’, ‘’)

#Applying the strip function to get rid of any ending whitespace 
characters that may have appeared

movies_df[‘title’] = movies_df[‘title’].apply(lambda x: x.strip())

Let’s look at the result:
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movies_df.head()

With that, let’s also drop the genres column since we won’t need it for this particular
recommendation system:

#Dropping the genres column

movies_df = movies_df.drop(‘genres’, 1)

Here’s the final movies dataframe:

movies_df.head()

Next, let’s look at the ratings dataframe:
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ratings_df.head()

3.3 Collaborative Filtering

Now, time to start our work on the recommendation system.

The technique we’re going to take a look at, as titled, is Collaborative Filtering, which
is also known as User-User Filtering. As hinted by its alternate name, this technique
uses other users to recommend items to the input user. It attempts to find users that
have similar preferences and opinions as the input and then recommends items that
they have liked to the input. There are several methods of finding similar users (even
some making use of Machine Learning). The one we will be using here is going to be
based on the Pearson Correlation Function.

To recap the process for creating a user-based recommendation system:

Select a user with the movies the user has watched

Based on his rating to movies, find the top X neighbours

Get the watched movie record of the user for each neighbour.

Calculate a similarity score using some formula

Recommend the items with the highest score
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Let’s begin by creating an input user to recommend movies to:

Notice: To add more movies, simply increase the amount of elements in the userInput.
Feel free to add more in! Just be sure to write it in with capital letters and if a movie
starts with a “The”, like “The Matrix” then write it in like this: ‘Matrix, The’.

userInput = [

{‘title’:’Breakfast Club, The’, ‘rating’:5},

{‘title’:’Toy Story’, ‘rating’:3.5},

{‘title’:’Jumanji’, ‘rating’:2},

{‘title’:”Pulp Fiction”, ‘rating’:5},

{‘title’:’Akira’, ‘rating’:4.5}

]

inputMovies = pd.DataFrame(userInput)

inputMovies

inputMovies

With the input complete, let’s extract the input movies’ ID’s from the movies dataframe
and add them into it.
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We can achieve this by first filtering out the rows that contain the input movies’ title
and then merging this subset with the input dataframe. We also drop unnecessary
columns for the input to save memory space.

#Filtering out the movies by title

inputId = 
movies_df[movies_df[‘title’].isin(inputMovies[‘title’].tolist())]

#Then merging it so we can get the movieId. It’s implicitly merging it 
by title.

inputMovies = pd.merge(inputId, inputMovies)

#Dropping information we won’t use from the input dataframe

inputMovies = inputMovies.drop(‘year’, 1)

#Final input dataframe

#If a movie you added in above isn’t here, then it might not be in the 
original

#dataframe or it might spelled differently, please check 
capitalisation.

inputMovies

inputMovies
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Now with the movieId  in our input, we can now get the subset of users that have
watched and reviewed the movies in our input.

#Filtering out users that have watched movies that the input has 
watched and storing it

userSubset = 
ratings_df[ratings_df[‘movieId’].isin(inputMovies[‘movieId’].tolist())
]

userSubset.head()

userSubset.head()

We now group up the rows by userId :

#Groupby creates several sub dataframes where they all have the same 
value in the column specified as the parameter

userSubsetGroup = userSubset.groupby([‘userId’])

lets look at one of the users, e.g. the one with userID =1130
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userSubsetGroup.get_group(1130)

Let’s also sort these groups so the users that share the most movies in common with
the input have higher priority. This provides a richer recommendation since we won’t
go through every single user.

#Sorting it so users with movie most in common with the input will 
have priority

userSubsetGroup = sorted(userSubsetGroup, key=lambda x: len(x[1]), 
reverse=True)

Now lets look at the first user:
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userSubsetGroup[0:3]

3.3.1 Similarity of users to input user

Next, we are going to compare all users (not really all !!!) to our specified user and find
the one that is most similar.
we’re going to find out how similar each user is to the input through the Pearson
Correlation Coefficient. It is used to measure the strength of a linear association
between two variables. The formula for finding this coefficient between sets X and Y
with N values can be seen in the image below:

Pearson Correlation Coefficient formula

Why Pearson Correlation?

Pearson correlation is invariant to scaling, i.e. multiplying all elements by a nonzero
constant or adding any constant to all elements. For example, if you have two vectors X
and Y,then, pearson(X, Y) == pearson(X, 2 * Y + 3). This is a pretty important property in
recommendation systems because for example two users might rate two series of items

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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totally different in terms of absolute rates, but they would be similar users (i.e. with
similar ideas) with similar rates in various scales .

The values given by the formula vary from r = -1 to r = 1, where 1 forms a direct
correlation between the two entities (it means a perfect positive correlation) and -1
forms a perfect negative correlation.

In our case, a 1 means that the two users have similar tastes while a -1 means the
opposite.

We will select a subset of users to iterate through. This limit is imposed because we
don’t want to waste too much time going through every single user.

userSubsetGroup = userSubsetGroup[0:100]

Now, we calculate the Pearson Correlation between input user and subset group, and
store it in a dictionary, where the key is the userId  and the value is the coefficient.

#Store the Pearson Correlation in a dictionary, where the key is the 
user Id and the value is the coefficient

pearsonCorrelationDict = {}

#For every user group in our subset

for name, group in userSubsetGroup:

#Let’s start by sorting the input and current user group so the values 
aren’t mixed up later on

group = group.sort_values(by=’movieId’)

inputMovies = inputMovies.sort_values(by=’movieId’)

#Get the N for the formula

nRatings = len(group)

#Get the review scores for the movies that they both have in common

temp_df = 
inputMovies[inputMovies[‘movieId’].isin(group[‘movieId’].tolist())]

#And then store them in a temporary buffer variable in a list format 
to facilitate future calculations
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tempRatingList = temp_df[‘rating’].tolist()

#Let’s also put the current user group reviews in a list format

tempGroupList = group[‘rating’].tolist()

#Now let’s calculate the pearson correlation between two users, so 
called, x and y

Sxx = sum([i**2 for i in tempRatingList]) — 
pow(sum(tempRatingList),2)/float(nRatings)

Syy = sum([i**2 for i in tempGroupList]) — 
pow(sum(tempGroupList),2)/float(nRatings)

Sxy = sum( i*j for i, j in zip(tempRatingList, tempGroupList)) — 
sum(tempRatingList)*sum(tempGroupList)/float(nRatings)

#If the denominator is different than zero, then divide, else, 0 
correlation.

if Sxx != 0 and Syy != 0:

pearsonCorrelationDict[name] = Sxy/sqrt(Sxx*Syy)

else:

pearsonCorrelationDict[name] = 0

Converting the dictionary to a dataframe:

pearsonDF = pd.DataFrame.from_dict(pearsonCorrelationDict, 
orient=’index’)

pearsonDF.columns = [‘similarityIndex’]

pearsonDF[‘userId’] = pearsonDF.index

pearsonDF.index = range(len(pearsonDF))

pearsonDF.head()
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pearsonDF.head()

3.3.2 The top x similar users to input user

Now let’s get the top 50 users that are most similar to the input:

topUsers=pearsonDF.sort_values(by=’similarityIndex’, ascending=False)
[0:50]

topUsers.head()
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topUsers.head()

Now, let’s start recommending movies to the input user.

3.3.3 Rating of selected users to all movies

We’re going to do this by taking the weighted average of the ratings of the movies using
the Pearson Correlation as the weight. But to do this, we first need to get the movies
watched by the users in our pearsonDF  from the ratings dataframe and then store their
correlation in a new column called similarityIndex . This is achieved below by merging
of these two tables.

topUsersRating=topUsers.merge(ratings_df, left_on=’userId’, 
right_on=’userId’, how=’inner’)

topUsersRating.head()
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topUsersRating.head()

Now all we need to do is simply multiply the movie rating by its weight (the similarity
index), then sum up the new ratings and divide it by the sum of the weights.

We can easily do this by simply multiplying two columns, then grouping up the
dataframe by movieId  and then dividing two columns:

It shows the idea of all similar users to candidate movies for the input user:

#Multiplies the similarity by the user’s ratings

topUsersRating[‘weightedRating’] = 
topUsersRating[‘similarityIndex’]*topUsersRating[‘rating’]

topUsersRating.head()

topUsersRating.head()
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#Applies a sum to the topUsers after grouping it up by userId

tempTopUsersRating = topUsersRating.groupby(‘movieId’).sum()
[[‘similarityIndex’,’weightedRating’]]

tempTopUsersRating.columns = 
[‘sum_similarityIndex’,’sum_weightedRating’]

tempTopUsersRating.head()

tempTopUsersRating.head()

#Creates an empty dataframe

recommendation_df = pd.DataFrame()

#Now we take the weighted average

recommendation_df[‘weighted average recommendation score’] = 
tempTopUsersRating[‘sum_weightedRating’]/tempTopUsersRating[‘sum_simil
arityIndex’]

recommendation_df[‘movieId’] = tempTopUsersRating.index

recommendation_df.head()
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recommendation_df.head()

Now let’s sort it and see the top 20 movies that the algorithm recommended.

recommendation_df = recommendation_df.sort_values(by=’weighted average 
recommendation score’, ascending=False)

recommendation_df.head(10)

recommendation_df.head()
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movies_df.loc[movies_df[‘movieId’].isin(recommendation_df.head(10)[‘movieId’].tolist())]

4. Advantages and Disadvantages of Collaborative Filtering

Advantages

Takes other user’s ratings into consideration

Doesn’t need to study or extract information from the recommended item

Adapts to the user’s interests which might change over time

Disadvantages

Approximation function can be slow

There might be a low of amount of users to approximate

Privacy issues when trying to learn the user’s preferences
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