Classification: Basic Concepts

Classification is a form of data analysis that extracts models describing important data classes.
Such models, called classifiers, predict categorical (discrete, unordered) class labels. For
example, we can build a classification model to categorize bank loan applications as either
safe or risky. Such analysis can help provide us with a better understanding of the data at
large. Many classification methods have been proposed by researchers in machine learn-
ing, pattern recognition, and statistics. Most algorithms are memory resident, typically
assuming a small data size. Recent data mining research has built on such work, develop-
ing scalable classification and prediction techniques capable of handling large amounts of
disk-resident data. Classification has numerous applications, including fraud detection,
target marketing, performance prediction, manufacturing, and medical diagnosis.

We start off by introducing the main ideas of classification in Section 8.1. In the
rest of this chapter, you will learn the basic techniques for data classification such as
how to build decision tree classifiers (Section 8.2), Bayesian classifiers (Section 8.3), and
rule-based classifiers (Section 8.4). Section 8.5 discusses how to evaluate and compare
different classifiers. Various measures of accuracy are given as well as techniques for
obtaining reliable accuracy estimates. Methods for increasing classifier accuracy are pre-
sented in Section 8.6, including cases for when the data set is class imbalanced (i.e.,
where the main class of interest is rare).

Basic Concepts

We introduce the concept of classification in Section 8.1.1. Section 8.1.2 describes the
general approach to classification as a two-step process. In the first step, we build a clas-
sification model based on previous data. In the second step, we determine if the model’s
accuracy is acceptable, and if so, we use the model to classify new data.

8.1.| What Is Classification?

A bank loans officer needs analysis of her data to learn which loan applicants are “safe”
and which are “risky” for the bank. A marketing manager at AllElectronics needs data

Data Mining: Concepts and Techniques. DOI: 10.1016/B978-0-12-381479-1.00008-3 3 2 7
(© 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-381479-1.00008-3

328

Chapter 8 Classification: Basic Concepts

8.1.2

analysis to help guess whether a customer with a given profile will buy a new computer.
A medical researcher wants to analyze breast cancer data to predict which one of three
specific treatments a patient should receive. In each of these examples, the data analysis
task is classification, where a model or classifier is constructed to predict class (categor-
ical) labels, such as “safe” or “risky” for the loan application data; “yes” or “no” for the
marketing data; or “treatment A,” “treatment B,” or “treatment C” for the medical data.
These categories can be represented by discrete values, where the ordering among values
has no meaning. For example, the values 1, 2, and 3 may be used to represent treatments
A, B, and C, where there is no ordering implied among this group of treatment regimes.

Suppose that the marketing manager wants to predict how much a given customer
will spend during a sale at AllElectronics. This data analysis task is an example of numeric
prediction, where the model constructed predicts a continuous-valued function, or
ordered value, as opposed to a class label. This model is a predictor. Regression analysis
is a statistical methodology that is most often used for numeric prediction; hence the
two terms tend to be used synonymously, although other methods for numeric predic-
tion exist. Classification and numeric prediction are the two major types of prediction
problems. This chapter focuses on classification.

General Approach to Classification

“How does classification work?” Data classification is a two-step process, consisting of a
learning step (where a classification model is constructed) and a classification step (where
the model is used to predict class labels for given data). The process is shown for the
loan application data of Figure 8.1. (The data are simplified for illustrative purposes.
In reality, we may expect many more attributes to be considered.

In the first step, a classifier is built describing a predetermined set of data classes or
concepts. This is the learning step (or training phase), where a classification algorithm
builds the classifier by analyzing or “learning from” a training set made up of database
tuples and their associated class labels. A tuple, X, is represented by an n-dimensional
attribute vector, X = (xj, x,..., x,), depicting n measurements made on the tuple
from n database attributes, respectively, A, A, ..., A,.! Each tuple, X, is assumed to
belong to a predefined class as determined by another database attribute called the class
label attribute. The class label attribute is discrete-valued and unordered. It is categor-
ical (or nominal) in that each value serves as a category or class. The individual tuples
making up the training set are referred to as training tuples and are randomly sam-
pled from the database under analysis. In the context of classification, data tuples can be
referred to as samples, examples, instances, data points, or objects.”

Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term fea-
ture vector rather than attribute vector. In our discussion, we use the term attribute vector, and in our
notation, any variable representing a vector is shown in bold italic font; measurements depicting the
vector are shown in italic font (e.g., X = (x1, X2, x3)).

%In the machine learning literature, training tuples are commonly referred to as training samples.
Throughout this text, we prefer to use the term tuples instead of samples.

8.1 Basic Concepts 329

[Classification algorithm]

Training data

name age income loan_decision

Sandy Jones youth low risky

Bill Lee youth low risky v

Caroline Fox middle_aged high safe

Rick Field middle_aged low risky —

Susan Lake senior low safe Classification rules

Claire Phips senior medium safe

Joe Smith middle_aged high safe

IF age = youth THEN loan_decision = risky

IF income = high THEN loan_decision = safe
IF age = middle_aged AND income = low
THEN loan_decision = risky

(a)

[Classification rules]

—

Test data
name age income loan_decision (John Henry, middle_aged, low)
- Loan decision?
Juan Bello senior low safe

Sylvia Crest middle_aged low risky
Anne Yee middle_aged high safe

risky
(b)

Figure 8.1 The data classification process: (a) Learning: Training data are analyzed by a classification
algorithm. Here, the class label attribute is loan_decision, and the learned model or classifier is
represented in the form of classification rules. (b) Classification: Test data are used to estimate
the accuracy of the classification rules. If the accuracy is considered acceptable, the rules can
be applied to the classification of new data tuples.

330 Chapter 8 Classification: Basic Concepts

Because the class label of each training tuple is provided, this step is also known as
supervised learning (i.e., the learning of the classifier is “supervised” in that it is told
to which class each training tuple belongs). It contrasts with unsupervised learning (or
clustering), in which the class label of each training tuple is not known, and the number
or set of classes to be learned may not be known in advance. For example, if we did not
have the loan_decision data available for the training set, we could use clustering to try to
determine “groups of like tuples,” which may correspond to risk groups within the loan
application data. Clustering is the topic of Chapters 10 and 11.

This first step of the classification process can also be viewed as the learning of a map-
ping or function, y = f(X), that can predict the associated class label y of a given tuple X.
In this view, we wish to learn a mapping or function that separates the data classes. Typ-
ically, this mapping is represented in the form of classification rules, decision trees, or
mathematical formulae. In our example, the mapping is represented as classification
rules that identify loan applications as being either safe or risky (Figure 8.1a). The rules
can be used to categorize future data tuples, as well as provide deeper insight into the
data contents. They also provide a compressed data representation.

“What about classification accuracy?” In the second step (Figure 8.1b), the model is
used for classification. First, the predictive accuracy of the classifier is estimated. If we
were to use the training set to measure the classifier’s accuracy, this estimate would likely
be optimistic, because the classifier tends to overfit the data (i.e., during learning it may
incorporate some particular anomalies of the training data that are not present in the
general data set overall). Therefore, a test set is used, made up of test tuples and their
associated class labels. They are independent of the training tuples, meaning that they
were not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples that
are correctly classified by the classifier. The associated class label of each test tuple is com-
pared with the learned classifier’s class prediction for that tuple. Section 8.5 describes
several methods for estimating classifier accuracy. If the accuracy of the classifier is con-
sidered acceptable, the classifier can be used to classify future data tuples for which the
class label is not known. (Such data are also referred to in the machine learning liter-
ature as “unknown” or “previously unseen” data.) For example, the classification rules
learned in Figure 8.1(a) from the analysis of data from previous loan applications can
be used to approve or reject new or future loan applicants.

Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled training
tuples. A decision tree is a flowchart-like tree structure, where each internal node (non-
leaf node) denotes a test on an attribute, each branch represents an outcome of the
test, and each leaf node (or ferminal node) holds a class label. The topmost node in
a tree is the root node. A typical decision tree is shown in Figure 8.2. It represents
the concept buys_computer, that is, it predicts whether a customer at AllElectronics is

8.2 Decision Tree Induction 331

middle_aged senior

credit_rating?

yes excellent

youth

no fair

Figure 8.2 A decision tree for the concept buys_computer, indicating whether an AllElectronics cus-
tomer is likely to purchase a computer. Each internal (nonleaf) node represents a test on
an attribute. Each leaf node represents a class (either buys_computer = yes or buys_computer
= no).

likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes
are denoted by ovals. Some decision tree algorithms produce only binary trees (where
each internal node branches to exactly two other nodes), whereas others can produce
nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the asso-
ciated class label is unknown, the attribute values of the tuple are tested against the
decision tree. A path is traced from the root to a leaf node, which holds the class
prediction for that tuple. Decision trees can easily be converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree clas-
sifiers does not require any domain knowledge or parameter setting, and therefore is
appropriate for exploratory knowledge discovery. Decision trees can handle multidi-
mensional data. Their representation of acquired knowledge in tree form is intuitive and
generally easy to assimilate by humans. The learning and classification steps of decision
tree induction are simple and fast. In general, decision tree classifiers have good accu-
racy. However, successful use may depend on the data at hand. Decision tree induction
algorithms have been used for classification in many application areas such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology.
Decision trees are the basis of several commercial rule induction systems.

In Section 8.2.1, we describe a basic algorithm for learning decision trees. During
tree construction, attribute selection measures are used to select the attribute that best
partitions the tuples into distinct classes. Popular measures of attribute selection are
given in Section 8.2.2. When decision trees are built, many of the branches may reflect
noise or outliers in the training data. Tree pruning attempts to identify and remove such
branches, with the goal of improving classification accuracy on unseen data. Tree prun-
ing is described in Section 8.2.3. Scalability issues for the induction of decision trees

332

Chapter 8 Classification: Basic Concepts

8.2.1

from large databases are discussed in Section 8.2.4. Section 8.2.5 presents a visual mining
approach to decision tree induction.

Decision Tree Induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning,
developed a decision tree algorithm known as ID3 (Iterative Dichotomiser). This work
expanded on earlier work on concept learning systems, described by E. B. Hunt, J. Marin,
and P. T. Stone. Quinlan later presented C4.5 (a successor of ID3), which became a
benchmark to which newer supervised learning algorithms are often compared. In 1984,
a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published
the book Classification and Regression Trees (CART), which described the generation of
binary decision trees. ID3 and CART were invented independently of one another at
around the same time, yet follow a similar approach for learning decision trees from
training tuples. These two cornerstone algorithms spawned a flurry of work on decision
tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which deci-
sion trees are constructed in a top-down recursive divide-and-conquer manner. Most
algorithms for decision tree induction also follow a top-down approach, which starts
with a training set of tuples and their associated class labels. The training set is recur-
sively partitioned into smaller subsets as the tree is being built. A basic decision tree
algorithm is summarized in Figure 8.3. At first glance, the algorithm may appear long,
but fear not! It is quite straightforward. The strategy is as follows.

The algorithm is called with three parameters: D, attribute_list, and Attribute_
selection_method. We refer to D as a data partition. Initially, it is the complete set
of training tuples and their associated class labels. The parameter attribute_list is a
list of attributes describing the tuples. Attribute_selection_method specifies a heuris-
tic procedure for selecting the attribute that “best” discriminates the given tuples
according to class. This procedure employs an attribute selection measure such as
information gain or the Gini index. Whether the tree is strictly binary is generally
driven by the attribute selection measure. Some attribute selection measures, such as
the Gini index, enforce the resulting tree to be binary. Others, like information gain,
do not, therein allowing multiway splits (i.e., two or more branches to be grown from
a node).

The tree starts as a single node, N, representing the training tuples in D (step 1).’

3The partition of class-labeled training tuples at node N is the set of tuples that follow a path from
the root of the tree to node N when being processed by the tree. This set is sometimes referred to in
the literature as the family of tuples at node N. We have referred to this set as the “tuples represented
at node N,” “the tuples that reach node N,” or simply “the tuples at node N.” Rather than storing the
actual tuples at a node, most implementations store pointers to these tuples.

8.2 Decision Tree Induction 333

Algorithm: Generate_decision _tree. Generate a decision tree from the training tuples of
data partition, D.

Input:
Data partition, D, which is a set of training tuples and their associated class labels;
attribute_list, the set of candidate attributes;
Attribute_selection_method, a procedure to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This criterion consists of a
splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:

(1) create anode Nj;
(2) iftuplesin D are all of the same class, C, then

(3) return N as a leaf node labeled with the class C;
(4) if attribute_list is empty then
(5) return N as a leaf node labeled with the majority class in D; // majority voting

(6) apply Attribute_selection_method(D, attribute_list) to find the “best” splitting criterion;
(7) label node N with splitting_criterion;
(8) if splitting_attribute is discrete-valued and
multiway splits allowed then // not restricted to binary trees
9) attribute_list < attribute_list — splitting_attribute; |/ remove splitting_attribute
(10) for each outcome j of splitting_criterion
// partition the tuples and grow subtrees for each partition
(11) let D; be the set of data tuples in D satisfying outcome j; // a partition
(12) if D; is empty then
(13) attach a leaf labeled with the majority class in D to node N;
(14) else attach the node returned by Generate_decision_tree(D;, attribute_list) to node Nj;
endfor
(15) return N;

Figure 8.3 Basic algorithm for inducing a decision tree from training tuples.

If the tuples in D are all of the same class, then node N becomes a leaf and is labeled
with that class (steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All
terminating conditions are explained at the end of the algorithm.

Otherwise, the algorithm calls Attribute_selection_method to determine the splitting
criterion. The splitting criterion tells us which attribute to test at node N by deter-
mining the “best” way to separate or partition the tuples in D into individual classes
(step 6). The splitting criterion also tells us which branches to grow from node N
with respect to the outcomes of the chosen test. More specifically, the splitting cri-
terion indicates the splitting attribute and may also indicate either a split-point or
a splitting subset. The splitting criterion is determined so that, ideally, the resulting

334 Chapter 8 Classification: Basic Concepts

(a)

(b)

(c)

partitions at each branch are as “pure” as possible. A partition is pure if all the tuples
in it belong to the same class. In other words, if we split up the tuples in D according
to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting
partitions to be as pure as possible.

The node N is labeled with the splitting criterion, which serves as a test at the node
(step 7). A branch is grown from node N for each of the outcomes of the splitting
criterion. The tuples in D are partitioned accordingly (steps 10 to 11). There are three
possible scenarios, as illustrated in Figure 8.4. Let A be the splitting attribute. A has v
distinct values, {a1, a2, ..., a,}, based on the training data.

I. A is discrete-valued: In this case, the outcomes of the test at node N correspond
directly to the known values of A. A branch is created for each known value,
aj, of A and labeled with that value (Figure 8.4a). Partition D; is the subset
of class-labeled tuples in D having value a; of A. Because all the tuples in a

Partitioning scenarios Examples
> % s 2 g
a; a, a, ¢ §F < 2 Y 5 =)
t ;£ E 2 % £ 2
O\ CF e i
|

~

=42,000

/

>42,000

\

A =split_point

/

A > split_point

\

color € {red, green}?

no

\

yes

/

yes

/

Figure 8.4

This figure shows three possibilities for partitioning tuples based on the splitting criterion,

each with examples. Let A be the splitting attribute. (a) If A is discrete-valued, then one
branch is grown for each known value of A. (b) If A is continuous-valued, then two branches
are grown, corresponding to A < split_point and A > split_point. (c) If A is discrete-valued
and a binary tree must be produced, then the test is of the form A € Sy, where Sy is the
splitting subset for A.

8.2 Decision Tree Induction 335

given partition have the same value for A, A need not be considered in any future
partitioning of the tuples. Therefore, it is removed from attribute_list (steps 8
and 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes,
corresponding to the conditions A < split_point and A > split_point, respectively,
where split_point is the split-point returned by Attribute_selection_method as part
of the splitting criterion. (In practice, the split-point, g, is often taken as the
midpoint of two known adjacent values of A and therefore may not actually be
a preexisting value of A from the training data.) Two branches are grown from
N and labeled according to the previous outcomes (Figure 8.4b). The tuples are
partitioned such that D; holds the subset of class-labeled tuples in D for which
A < split_point, while D, holds the rest.

3. Aisdiscrete-valued and a binary tree must be produced (as dictated by the attribute
selection measure or algorithm being used): The test at node N is of the form “A €
Sa?” where Sy is the splitting subset for A, returned by Attribute_selection_method
as part of the splitting criterion. It is a subset of the known values of A. If a given
tuple has value a; of A and if aj € Sa, then the test at node N is satisfied. Two
branches are grown from N (Figure 8.4c). By convention, the left branch out of N
is labeled yes so that D; corresponds to the subset of class-labeled tuples in D that
satisfy the test. The right branch out of N is labeled #o so that D, corresponds to
the subset of class-labeled tuples from D that do not satisfy the test.

The algorithm uses the same process recursively to form a decision tree for the tuples
at each resulting partition, Dj, of D (step 14).

The recursive partitioning stops only when any one of the following terminating
conditions is true:

I. All the tuples in partition D (represented at node N) belong to the same class
(steps 2 and 3).

2. There are no remaining attributes on which the tuples may be further partitioned
(step 4). In this case, majority voting is employed (step 5). This involves con-
verting node N into a leaf and labeling it with the most common class in D.
Alternatively, the class distribution of the node tuples may be stored.

3. There are no tuples for a given branch, that is, a partition D; is empty (step 12).
In this case, a leaf is created with the majority class in D (step 13).

The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n x |D| x
log(|D|)), where # is the number of attributes describing the tuples in D and |D] is the
number of training tuples in D. This means that the computational cost of growing a
tree grows at most n x |D| x log(|D|) with | D| tuples. The proof is left as an exercise for
the reader.

336

Chapter 8 Classification: Basic Concepts

Incremental versions of decision tree induction have also been proposed. When
given new training data, these restructure the decision tree acquired from learning on
previous training data, rather than relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in
creating the tree (Section 8.2.2) and the mechanisms used for pruning (Section 8.2.3).
The basic algorithm described earlier requires one pass over the training tuples in D for
each level of the tree. This can lead to long training times and lack of available memory
when dealing with large databases. Improvements regarding the scalability of decision
tree induction are discussed in Section 8.2.4. Section 8.2.5 presents a visual interactive
approach to decision tree construction. A discussion of strategies for extracting rules
from decision trees is given in Section 8.4.2 regarding rule-based classification.

8.2.2 Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that
“best” separates a given data partition, D, of class-labeled training tuples into individual
classes. If we were to split D into smaller partitions according to the outcomes of the
splitting criterion, ideally each partition would be pure (i.e., all the tuples that fall into a
given partition would belong to the same class). Conceptually, the “best” splitting crite-
rion is the one that most closely results in such a scenario. Attribute selection measures
are also known as splitting rules because they determine how the tuples at a given node
are to be split.

The attribute selection measure provides a ranking for each attribute describing the
given training tuples. The attribute having the best score for the measure® is chosen as
the splitting attribute for the given tuples. If the splitting attribute is continuous-valued
or if we are restricted to binary trees, then, respectively, either a split point or a splitting
subset must also be determined as part of the splitting criterion. The tree node created
for partition D is labeled with the splitting criterion, branches are grown for each out-
come of the criterion, and the tuples are partitioned accordingly. This section describes
three popular attribute selection measures—information gain, gain ratio, and Gini index.

The notation used herein is as follows. Let D, the data partition, be a training set of
class-labeled tuples. Suppose the class label attribute has m distinct values defining m
distinct classes, C; (for i = 1,..., m). Let C; p be the set of tuples of class C; in D. Let | D|
and |C; p| denote the number of tuples in D and C; p, respectively.

Information Gain

ID3 uses information gain as its attribute selection measure. This measure is based on
pioneering work by Claude Shannon on information theory, which studied the value or
“information content” of messages. Let node N represent or hold the tuples of partition
D. The attribute with the highest information gain is chosen as the splitting attribute for
node N. This attribute minimizes the information needed to classify the tuples in the

“Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures
strive to maximize while others strive to minimize).

8.2 Decision Tree Induction 337

resulting partitions and reflects the least randomness or “impurity” in these parti-
tions. Such an approach minimizes the expected number of tests needed to classify
a given tuple and guarantees that a simple (but not necessarily the simplest) tree is
found.

The expected information needed to classify a tuple in D is given by

Info(D) = = pilog, (pi), (8.1)

=1

where p; is the nonzero probability that an arbitrary tuple in D belongs to class C; and
is estimated by |C; p|/| D|. A log function to the base 2 is used, because the information
is encoded in bits. Info(D) is just the average amount of information needed to identify
the class label of a tuple in D. Note that, at this point, the information we have is based
solely on the proportions of tuples of each class. Info(D) is also known as the entropy
of D.

Now, suppose we were to partition the tuples in D on some attribute A having v dis-
tinct values, {ai, a,..., a,}, as observed from the training data. If A is discrete-valued,
these values correspond directly to the v outcomes of a test on A. Attribute A can be used
to split D into v partitions or subsets, { D1, Ds,..., D,}, where D; contains those tuples in
D that have outcome a; of A. These partitions would correspond to the branches grown
from node N. Ideally, we would like this partitioning to produce an exact classification
of the tuples. That is, we would like for each partition to be pure. However, it is quite
likely that the partitions will be impure (e.g., where a partition may contain a collection
of tuples from different classes rather than from a single class).

How much more information would we still need (after the partitioning) to arrive at
an exact classification? This amount is measured by

v
D.
Info, (D) = Z % x Info(Dj). (8.2)
j=1
The term % acts as the weight of the jth partition. Info, (D) is the expected informa-
tion required to classify a tuple from D based on the partitioning by A. The smaller the
expected information (still) required, the greater the purity of the partitions.

Information gain is defined as the difference between the original information
requirement (i.e., based on just the proportion of classes) and the new requirement (i.e.,

obtained after partitioning on A). That is,

Gain(A) = Info(D) — Info, (D). (8.3)

In other words, Gain(A) tells us how much would be gained by branching on A. It is
the expected reduction in the information requirement caused by knowing the value of
A. The attribute A with the highest information gain, Gain(A), is chosen as the splitting
attribute at node N. This is equivalent to saying that we want to partition on the attribute
A that would do the “best classification,” so that the amount of information still required
to finish classifying the tuples is minimal (i.e., minimum Info, (D)).

338 Chapter 8 Classification: Basic Concepts

Table 8.1

Example 8.1

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID age income student credit_rating Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle_aged medium no excellent yes

13 middle_aged high yes fair yes

14 senior medium no excellent no

Induction of a decision tree using information gain. Table 8.1 presents a training set,
D, of class-labeled tuples randomly selected from the AllElectronics customer database.
(The data are adapted from Quinlan [Qui86]. In this example, each attribute is discrete-
valued. Continuous-valued attributes have been generalized.) The class label attribute,
buys_computer, has two distinct values (namely, {yes, no}); therefore, there are two dis-
tinct classes (i.e., m = 2). Let class C; correspond to yes and class C, correspond to no.
There are nine tuples of class yes and five tuples of class no. A (root) node N is created
for the tuples in D. To find the splitting criterion for these tuples, we must compute
the information gain of each attribute. We first use Eq. (8.1) to compute the expected
information needed to classify a tuple in D:

Info(D) ° o > > 0.940 bit
njo = ——10 — | — — 10 —_— = V. 1TS.
14 %82\ 14 14 %82\ 14

Next, we need to compute the expected information requirement for each attribute.
Let’s start with the attribute age. We need to look at the distribution of yes and o tuples
for each category of age. For the age category “youth,” there are two yes tuples and three
no tuples. For the category “middle_aged,” there are four yes tuples and zero no tuples.
For the category “senior,” there are three yes tuples and two no tuples. Using Eq. (8.2),
the expected information needed to classify a tuple in D if the tuples are partitioned
according to age is

2

R NI
Infoage(D)_ ﬁ X _g Ong_g ngg

8.2 Decision Tree Induction 339

N 4 44
14 19823

+5 3 02— 2 1og. 2
— x| —=log, - — = log, -
14 508257 5 9823

= 0.694 bits.
Hence, the gain in information from such a partitioning would be

Gain(age) = Info(D) — Info,_,(D) = 0.940 — 0.694 = 0.246 bits.

age

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits,
and Gain(credit_rating) = 0.048 bits. Because age has the highest information gain
among the attributes, it is selected as the splitting attribute. Node N is labeled with age,
and branches are grown for each of the attribute’s values. The tuples are then partitioned
accordingly, as shown in Figure 8.5. Notice that the tuples falling into the partition for

age = middle_aged all belong to the same class. Because they all belong to class “yes,

>

a leaf should therefore be created at the end of this branch and labeled “yes.” The final
decision tree returned by the algorithm was shown earlier in Figure 8.2.

age? '

youth middle_aged senior

income student credit_rating class income student credit_rating class
high no fair no medium no fair yes
high no excellent no low yes fair yes
medium | no fair no low yes excellent no
low yes fair yes medium yes fair yes
medium | yes excellent yes medium no excellent no

income student credit_rating class

high no fair yes

low yes excellent yes

medium | no excellent yes

high yes fair yes

Figure 8.5 The attribute age has the highest information gain and therefore becomes the splitting

attribute at the root node of the decision tree. Branches are grown for each outcome of age.
The tuples are shown partitioned accordingly.

340 Chapter 8 Classification: Basic Concepts

“But how can we compute the information gain of an attribute that is continuous-
valued, unlike in the example?” Suppose, instead, that we have an attribute A that is
continuous-valued, rather than discrete-valued. (For example, suppose that instead
of the discretized version of age from the example, we have the raw values for this
attribute.) For such a scenario, we must determine the “best” split-point for A, where
the split-point is a threshold on A.

We first sort the values of A in increasing order. Typically, the midpoint between each
pair of adjacent values is considered as a possible split-point. Therefore, given v values
of A, then v — 1 possible splits are evaluated. For example, the midpoint between the
values g; and a;y1 of Ais

R (8.4)
2

If the values of A are sorted in advance, then determining the best split for A requires
only one pass through the values. For each possible split-point for A, we evaluate
Info, (D), where the number of partitions is two, that is, v =2 (or j = 1,2) in Eq. (8.2).
The point with the minimum expected information requirement for A is selected as the
split_point for A. Dy is the set of tuples in D satisfying A < split_point, and D is the set
of tuples in D satisfying A > split_point.

Gain Ratio

The information gain measure is biased toward tests with many outcomes. That is, it
prefers to select attributes having a large number of values. For example, consider an
attribute that acts as a unique identifier such as product_ID. A split on product_ID would
result in a large number of partitions (as many as there are values), each one containing
just one tuple. Because each partition is pure, the information required to classify data
set D based on this partitioning would be Info,, 4, 1p(D) = 0. Therefore, the informa-
tion gained by partitioning on this attribute is maximal. Clearly, such a partitioning is
useless for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio,
which attempts to overcome this bias. It applies a kind of normalization to information
gain using a “split information” value defined analogously with Info(D) as

. ~ |Dj| |Djl
Splitlnfo,(D) = —) |_D]| x log, (ﬁ) . (8.5)
j:l

This value represents the potential information generated by splitting the training
data set, D, into v partitions, corresponding to the v outcomes of a test on attribute A.
Note that, for each outcome, it considers the number of tuples having that outcome
with respect to the total number of tuples in D. It differs from information gain, which
measures the information with respect to classification that is acquired based on the

Example 8.2

8.2 Decision Tree Induction 341

same partitioning. The gain ratio is defined as

Gain(A)

GainRatio(A) = ——2D
ainRatiold) = o o (D)

(8.6)
The attribute with the maximum gain ratio is selected as the splitting attribute. Note,
however, that as the split information approaches 0, the ratio becomes unstable. A con-
straint is added to avoid this, whereby the information gain of the test selected must be
large—at least as great as the average gain over all tests examined.

Computation of gain ratio for the attribute income. A test on income splits the data of
Table 8.1 into three partitions, namely low, medium, and high, containing four, six, and
four tuples, respectively. To compute the gain ratio of income, we first use Eq. (8.5) to
obtain

. 4 4 6 6 4 4
Splitlnfo,,, .o (D) = I x log,) x log,) 1 x log, I

= 1.557.

From Example 8.1, we have Gain(income) = 0.029. Therefore, GainRatio(income) =
0.029/1.557 = 0.019. [

Gini Index

The Gini index is used in CART. Using the notation previously described, the Gini index
measures the impurity of D, a data partition or set of training tuples, as

Gini(D) =1-)_p}, (8.7)

=1

where p; is the probability that a tuple in D belongs to class C; and is estimated by
|C;,pl/|D]. The sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider the case
where A is a discrete-valued attribute having v distinct values, {a;, a2,..., a,}, occur-
ring in D. To determine the best binary split on A, we examine all the possible subsets
that can be formed using known values of A. Each subset, S4, can be considered as a
binary test for attribute A of the form “A € S4?” Given a tuple, this test is satisfied if
the value of A for the tuple is among the values listed in S4. If A has v possible val-
ues, then there are 2" possible subsets. For example, if income has three possible values,
namely {low, medium, high}, then the possible subsets are {low, medium, high}, {low,
medium}, {low, high}, {medium, high}, {low}, {mediumy}, {high}, and {}. We exclude the
power set, {low, medium, high}, and the empty set from consideration since, conceptu-
ally, they do not represent a split. Therefore, there are (2" — 2) /2 possible ways to form
two partitions of the data, D, based on a binary split on A.

342 Chapter 8

Example 8.3

Classification: Basic Concepts

When considering a binary split, we compute a weighted sum of the impurity of each
resulting partition. For example, if a binary split on A partitions D into D; and D;, the
Gini index of D given that partitioning is

Giniy(D) = 1Dil Gini(Dy) + 1D Gini(Dy). (8.8)
| D | D

For each attribute, each of the possible binary splits is considered. For a discrete-valued
attribute, the subset that gives the minimum Gini index for that attribute is selected as
its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The
strategy is similar to that described earlier for information gain, where the midpoint
between each pair of (sorted) adjacent values is taken as a possible split-point. The point
giving the minimum Gini index for a given (continuous-valued) attribute is taken as
the split-point of that attribute. Recall that for a possible split-point of A, D is the
set of tuples in D satisfying A < split_point, and D, is the set of tuples in D satisfying
A > split_point.

The reduction in impurity that would be incurred by a binary split on a discrete- or
continuous-valued attribute A is

AGini(A) = Gini(D) — Ginix(D). (8.9)

The attribute that maximizes the reduction in impurity (or, equivalently, has the
minimum Gini index) is selected as the splitting attribute. This attribute and either
its splitting subset (for a discrete-valued splitting attribute) or split-point (for a
continuous-valued splitting attribute) together form the splitting criterion.

Induction of a decision tree using the Gini index. Let D be the training data shown
earlier in Table 8.1, where there are nine tuples belonging to the class buys_computer =
yes and the remaining five tuples belong to the class buys_computer = no. A (root) node
N is created for the tuples in D. We first use Eq. (8.7) for the Gini index to compute the

impurity of D:
9\ (5)\°
GniD)=1—-{—) —| — | =0.459.
14 14

To find the splitting criterion for the tuples in D, we need to compute the Gini index
for each attribute. Let’s start with the attribute income and consider each of the possible
splitting subsets. Consider the subset {low, medium}. This would result in 10 tuples in
partition Dj satisfying the condition “income € {low, medium}.” The remaining four
tuples of D would be assigned to partition D,. The Gini index value computed based on

8.2 Decision Tree Induction 343

this partitioning is

Gittlipcome ¢ {low,medium} (D)

10 . (D0 + 4 D)
= — U1t — Gini
14 B! 2

() -6

= Gittijncome € {high} (D).

Similarly, the Gini index values for splits on the remaining subsets are 0.458 (for the sub-
sets {low, high} and {medium}) and 0.450 (for the subsets {medium, high} and {low}).
Therefore, the best binary split for attribute income is on {low, medium} (or {high})
because it minimizes the Gini index. Evaluating age, we obtain {youth, senior} (or
{middle_aged}) as the best split for age with a Gini index of 0.375; the attributes student
and credit_rating are both binary, with Gini index values of 0.367 and 0.429, respectively.

The attribute age and splitting subset {youth, senior} therefore give the minimum
Gini index overall, with a reduction in impurity of 0.459 — 0.357 = 0.102. The binary
split “age € {youth, senior?}” results in the maximum reduction in impurity of the tuples
in D and is returned as the splitting criterion. Node N is labeled with the criterion, two
branches are grown from it, and the tuples are partitioned accordingly. (]

Other Attribute Selection Measures

This section on attribute selection measures was not intended to be exhaustive. We
have shown three measures that are commonly used for building decision trees. These
measures are not without their biases. Information gain, as we saw, is biased toward
multivalued attributes. Although the gain ratio adjusts for this bias, it tends to prefer
unbalanced splits in which one partition is much smaller than the others. The Gini index
is biased toward multivalued attributes and has difficulty when the number of classes is
large. It also tends to favor tests that result in equal-size partitions and purity in both
partitions. Although biased, these measures give reasonably good results in practice.
Many other attribute selection measures have been proposed. CHAID, a decision tree
algorithm that is popular in marketing, uses an attribute selection measure that is based
on the statistical x2 test for independence. Other measures include C-SEP (which per-
forms better than information gain and the Gini index in certain cases) and G-statistic
(an information theoretic measure that is a close approximation to x? distribution).
Attribute selection measures based on the Minimum Description Length (MDL)
principle have the least bias toward multivalued attributes. MDL-based measures use
encoding techniques to define the “best” decision tree as the one that requires the fewest
number of bits to both (1) encode the tree and (2) encode the exceptions to the tree

344 Chapter 8 Classification: Basic Concepts

8.23

(i.e., cases that are not correctly classified by the tree). Its main idea is that the simplest
of solutions is preferred.

Other attribute selection measures consider multivariate splits (i.e., where the par-
titioning of tuples is based on a combination of attributes, rather than on a single
attribute). The CART system, for example, can find multivariate splits based on a lin-
ear combination of attributes. Multivariate splits are a form of attribute (or feature)
construction, where new attributes are created based on the existing ones. (Attribute
construction was also discussed in Chapter 3, as a form of data transformation.) These
other measures mentioned here are beyond the scope of this book. Additional references
are given in the bibliographic notes at the end of this chapter (Section 8.9).

“Which attribute selection measure is the best?” All measures have some bias. It has
been shown that the time complexity of decision tree induction generally increases
exponentially with tree height. Hence, measures that tend to produce shallower trees
(e.g., with multiway rather than binary splits, and that favor more balanced splits) may
be preferred. However, some studies have found that shallow trees tend to have a large
number of leaves and higher error rates. Despite several comparative studies, no one
attribute selection measure has been found to be significantly superior to others. Most
measures give quite good results.

Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training
data due to noise or outliers. Tree pruning methods address this problem of overfitting
the data. Such methods typically use statistical measures to remove the least-reliable
branches. An unpruned tree and a pruned version of it are shown in Figure 8.6. Pruned
trees tend to be smaller and less complex and, thus, easier to comprehend. They are
usually faster and better at correctly classifying independent test data (i.e., of previously
unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning:
prepruning and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g.,
by deciding not to further split or partition the subset of training tuples at a given node).
Upon halting, the node becomes a leaf. The leaf may hold the most frequent class among
the subset tuples or the probability distribution of those tuples.

When constructing a tree, measures such as statistical significance, information gain,
Gini index, and so on, can be used to assess the goodness of a split. If partitioning the
tuples at a node would result in a split that falls below a prespecified threshold, then fur-
ther partitioning of the given subset is halted. There are difficulties, however, in choosing
an appropriate threshold. High thresholds could result in oversimplified trees, whereas
low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees
from a “fully grown” tree. A subtree at a given node is pruned by removing its branches
and replacing it with a leaf. The leaf is labeled with the most frequent class among the
subtree being replaced. For example, notice the subtree at node “A3?” in the unpruned

8.2 Decision Tree Induction 345

Figure 8.6 An unpruned decision tree and a pruned version of it.

tree of Figure 8.6. Suppose that the most common class within this subtree is “class B.”
In the pruned version of the tree, the subtree in question is pruned by replacing it with
the leaf “class B”

The cost complexity pruning algorithm used in CART is an example of the postprun-
ing approach. This approach considers the cost complexity of a tree to be a function of
the number of leaves in the tree and the error rate of the tree (where the error rate is the
percentage of tuples misclassified by the tree). It starts from the bottom of the tree. For
each internal node, N, it computes the cost complexity of the subtree at N, and the cost
complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf node). The
two values are compared. If pruning the subtree at node N would result in a smaller cost
complexity, then the subtree is pruned. Otherwise, it is kept.

A pruning set of class-labeled tuples is used to estimate cost complexity. This set is
independent of the training set used to build the unpruned tree and of any test set used
for accuracy estimation. The algorithm generates a set of progressively pruned trees. In
general, the smallest decision tree that minimizes the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complex-
ity method in that it also uses error rate estimates to make decisions regarding subtree
pruning. Pessimistic pruning, however, does not require the use of a prune set. Instead,
it uses the training set to estimate error rates. Recall that an estimate of accuracy or
error based on the training set is overly optimistic and, therefore, strongly biased. The
pessimistic pruning method therefore adjusts the error rates obtained from the training
set by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based
on the number of bits required to encode them. The “best” pruned tree is the one that
minimizes the number of encoding bits. This method adopts the MDL principle, which
was briefly introduced in Section 8.2.2. The basic idea is that the simplest solution is pre-
ferred. Unlike cost complexity pruning, it does not require an independent set of tuples.

346 Chapter 8 Classification: Basic Concepts

Alternatively, prepruning and postpruning may be interleaved for a combined
approach. Postpruning requires more computation than prepruning, yet generally leads
to a more reliable tree. No single pruning method has been found to be superior over
all others. Although some pruning methods do depend on the availability of additional
data for pruning, this is usually not a concern when dealing with large databases.

Although pruned trees tend to be more compact than their unpruned counterparts,
they may still be rather large and complex. Decision trees can suffer from repetition
and replication (Figure 8.7), making them overwhelming to interpret. Repetition occurs
when an attribute is repeatedly tested along a given branch of the tree (e.g., “age < 60?,”

Figure 8.7 An example of: (a) subtree repetition, where an attribute is repeatedly tested along a given
branch of the tree (e.g., age) and (b) subtree replication, where duplicate subtrees exist
within a tree (e.g., the subtree headed by the node “credit_rating?”).

8.2 Decision Tree Induction 347

followed by “age < 45?2, and so on). In replication, duplicate subtrees exist within the
tree. These situations can impede the accuracy and comprehensibility of a decision tree.
The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representa-
tion, such as rules, instead of decision trees. This is described in Section 8.4.2, which
shows how a rule-based classifier can be constructed by extracting IF-THEN rules from
a decision tree.

8.2.4 Scalability and Decision Tree Induction

“What if D, the disk-resident training set of class-labeled tuples, does not fit in memory? In
other words, how scalable is decision tree induction?” The efficiency of existing decision
tree algorithms, such as ID3, C4.5, and CART, has been well established for relatively
small data sets. Efficiency becomes an issue of concern when these algorithms are applied
to the mining of very large real-world databases. The pioneering decision tree algorithms
that we have discussed so far have the restriction that the training tuples should reside
in memory.

In data mining applications, very large training sets of millions of tuples are com-
mon. Most often, the training data will not fit in memory! Therefore, decision tree
construction becomes inefficient due to swapping of the training tuples in and out
of main and cache memories. More scalable approaches, capable of handling train-
ing data that are too large to fit in memory, are required. Earlier strategies to “save
space” included discretizing continuous-valued attributes and sampling data at each
node. These techniques, however, still assume that the training set can fit in memory.

Several scalable decision tree induction methods have been introduced in recent stud-
ies. RainForest, for example, adapts to the amount of main memory available and applies
to any decision tree induction algorithm. The method maintains an AVC-set (where
“AVC” stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node,
describing the training tuples at the node. The AVC-set of an attribute A at node N
gives the class label counts for each value of A for the tuples at N. Figure 8.8 shows AVC-
sets for the tuple data of Table 8.1. The set of all AVC-sets at a node N is the AVC-group
of N. The size of an AVC-set for attribute A at node N depends only on the number of
distinct values of A and the number of classes in the set of tuples at N. Typically, this size
should fit in memory, even for real-world data. RainForest also has techniques, how-
ever, for handling the case where the AVC-group does not fit in memory. Therefore, the
method has high scalability for decision tree induction in very large data sets.

BOAT (Bootstrapped Optimistic Algorithm for Tree construction) is a decision tree
algorithm that takes a completely different approach to scalability—it is not based on
the use of any special data structures. Instead, it uses a statistical technique known as
“bootstrapping” (Section 8.5.4) to create several smaller samples (or subsets) of the
given training data, each of which fits in memory. Each subset is used to construct a
tree, resulting in several trees. The trees are examined and used to construct a new tree,
T, that turns out to be “very close” to the tree that would have been generated if all the
original training data had fit in memory.

348 Chapter 8 Classification: Basic Concepts

buys_computer buys_computer
age yes no income yes no
youth 2 3 low 3 1
middle_aged| 4 0 medium 4 2
senior 3 2 high 2 2
buys_computer buys_computer
student yes no credit_ratting yes no
yes 6 1 fair 6 2
no 3 4 excellent 3 3

Figure 8.8 The use of data structures to hold aggregate information regarding the training data (e.g.,
these AVC-sets describing Table 8.1’s data) are one approach to improving the scalability of
decision tree induction.

BOAT can use any attribute selection measure that selects binary splits and that is
based on the notion of purity of partitions such as the Gini index. BOAT uses a lower
bound on the attribute selection measure to detect if this “very good” tree, T, is different
from the “real” tree, T, that would have been generated using all of the data. It refines
T’ to arrive at T.

BOAT usually requires only two scans of D. This is quite an improvement, even
in comparison to traditional decision tree algorithms (e.g., the basic algorithm in
Figure 8.3), which require one scan per tree level! BOAT was found to be two to three
times faster than RainForest, while constructing exactly the same tree. An additional
advantage of BOAT is that it can be used for incremental updates. That is, BOAT can
take new insertions and deletions for the training data and update the decision tree to
reflect these changes, without having to reconstruct the tree from scratch.

8.2.5 Visual Mining for Decision Tree Induction

“Are there any interactive approaches to decision tree induction that allow us to visual-
ize the data and the tree as it is being constructed? Can we use any knowledge of our
data to help in building the tree?” In this section, you will learn about an approach to
decision tree induction that supports these options. Perception-based classification
(PBC) is an interactive approach based on multidimensional visualization techniques
and allows the user to incorporate background knowledge about the data when building
a decision tree. By visually interacting with the data, the user is also likely to develop a
deeper understanding of the data. The resulting trees tend to be smaller than those built
using traditional decision tree induction methods and so are easier to interpret, while
achieving about the same accuracy.

“How can the data be visualized to support interactive decision tree construction?”
PBC uses a pixel-oriented approach to view multidimensional data with its class label

8.2 Decision Tree Induction 349

information. The circle segments approach is adapted, which maps d-dimensional data
objects to a circle that is partitioned into d segments, each representing one attribute
(Section 2.3.1). Here, an attribute value of a data object is mapped to one colored pixel,
reflecting the object’s class label. This mapping is done for each attribute—value pair of
each data object. Sorting is done for each attribute to determine the arrangement order
within a segment. For example, attribute values within a given segment may be orga-
nized so as to display homogeneous (with respect to class label) regions within the same
attribute value. The amount of training data that can be visualized at one time is approx-
imately determined by the product of the number of attributes and the number of data
objects.

The PBC system displays a split screen, consisting of a Data Interaction window and
a Knowledge Interaction window (Figure 8.9). The Data Interaction window displays
the circle segments of the data under examination, while the Knowledge Interaction
window displays the decision tree constructed so far. Initially, the complete training set
is visualized in the Data Interaction window, while the Knowledge Interaction window
displays an empty decision tree.

Traditional decision tree algorithms allow only binary splits for numeric attributes.
PBC, however, allows the user to specify multiple split-points, resulting in multiple
branches to be grown from a single tree node.

. Perception-Dased Classification - seqment 1_train_txd

Al rawslue rroan Spiti- £.9]-38.7 |- 7
? 33 2uc mzar [Bpit(- 2.7 1.9)
W rousct
W whnCevy
Oy wokin progress
[} workir progress
D watkir progress
D #oIkir prograss

AlribJte :
| R=cords: 937

[Ty

A | B o s fisisiicd| L]

Lt mauce buton insorts linc. 3hitslefl roLoo bition meves line Rightmouse butlon splitc atfribute.

Figure 8.9 A screenshot of PBC, a system for interactive decision tree construction. Multidimensional
training data are viewed as circle segments in the Data Interaction window (left). The Know-
ledge Interaction window (right) displays the current decision tree. Source: From Ankerst,
Elsen, Ester, and Kriegel [AEEK99].

350 Chapter 8 Classification: Basic Concepts

8.3.1

A tree is interactively constructed as follows. The user visualizes the multidimen-
sional data in the Data Interaction window and selects a splitting attribute and one or
more split-points. The current decision tree in the Knowledge Interaction window is
expanded. The user selects a node of the decision tree. The user may either assign a class
label to the node (which makes the node a leaf) or request the visualization of the train-
ing data corresponding to the node. This leads to a new visualization of every attribute
except the ones used for splitting criteria on the same path from the root. The interactive
process continues until a class has been assigned to each leaf of the decision tree.

The trees constructed with PBC were compared with trees generated by the CART,
C4.5, and SPRINT algorithms from various data sets. The trees created with PBC were
of comparable accuracy with the tree from the algorithmic approaches, yet were signifi-
cantly smaller and, thus, easier to understand. Users can use their domain knowledge in
building a decision tree, but also gain a deeper understanding of their data during the
construction process.

Bayes Classification Methods

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can
predict class membership probabilities such as the probability that a given tuple belongs
to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies compar-
ing classification algorithms have found a simple Bayesian classifier known as the naive
Bayesian classifier to be comparable in performance with decision tree and selected neu-
ral network classifiers. Bayesian classifiers have also exhibited high accuracy and speed
when applied to large databases.

Naive Bayesian classifiers assume that the effect of an attribute value on a given class
is independent of the values of the other attributes. This assumption is called class-
conditional independence. It is made to simplify the computations involved and, in this
sense, is considered “naive.”

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Section 8.3.2
you will learn how to do naive Bayesian classification.

Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who
did early work in probability and decision theory during the 18th century. Let X be a
data tuple. In Bayesian terms, X is considered “evidence.” As usual, it is described by
measurements made on a set of n attributes. Let H be some hypothesis such as that
the data tuple X belongs to a specified class C. For classification problems, we want to
determine P(H|X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X
belongs to class C, given that we know the attribute description of X.

83.2

8.3 Bayes Classification Methods 351

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned
on X. For example, suppose our world of data tuples is confined to customers described
by the attributes age and income, respectively, and that X is a 35-year-old customer with
an income of $40,000. Suppose that H is the hypothesis that our customer will buy a
computer. Then P(H|X) reflects the probability that customer X will buy a computer
given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For our exam-
ple, this is the probability that any given customer will buy a computer, regardless of age,
income, or any other information, for that matter. The posterior probability, P(H|X),
is based on more information (e.g., customer information) than the prior probability,
P(H), which is independent of X.

Similarly, P(X|H) is the posterior probability of X conditioned on H. That is, it is the
probability that a customer, X, is 35 years old and earns $40,000, given that we know the
customer will buy a computer.

P(X) is the prior probability of X. Using our example, it is the probability that a
person from our set of customers is 35 years old and earns $40,000.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be estimated
from the given data, as we shall see next. Bayes’ theorem is useful in that it provides
a way of calculating the posterior probability, P(H|X), from P(H), P(X|H), and P(X).
Bayes’ theorem is

p(|x) = ZAIDEED (5.10)
P(X)

Now that we have that out of the way, in the next section, we will look at how Bayes’

theorem is used in the naive Bayesian classifier.

Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

I. Let D be a training set of tuples and their associated class labels. As usual, each tuple
is represented by an n-dimensional attribute vector, X = (x1, x2,. .., X,), depicting n
measurements made on the tuple from # attributes, respectively, A;, Az,..., Aj.

2. Suppose that there are m classes, Ci, C,,..., Cy,. Given a tuple, X, the classifier will
predict that X belongs to the class having the highest posterior probability, condi-
tioned on X. That is, the naive Bayesian classifier predicts that tuple X belongs to the
class C; if and only if

P(Ci|X) > P(Cj|X) for 1 <j<m,j#i.
Thus, we maximize P(C;|X). The class C; for which P(C;|X) is maximized is called
the maximum posteriori hypothesis. By Bayes’ theorem (Eq. 8.10),
PX|C)P(C)

352

Chapter 8 Classification: Basic Concepts

3. As P(X) is constant for all classes, only P(X|C;) P(C;) needs to be maximized. If the

class prior probabilities are not known, then it is commonly assumed that the classes
are equally likely, that is, P(C)) = P(C,) = --- = P(Cy,), and we would therefore
maximize P(X|C;). Otherwise, we maximize P(X|C;) P(C;). Note that the class prior
probabilities may be estimated by P(C;) = |C; p|/|D|, where |C; p| is the number of
training tuples of class C; in D.

. Given data sets with many attributes, it would be extremely computationally

expensive to compute P(X|C;). To reduce computation in evaluating P(X|C;), the
naive assumption of class-conditional independence is made. This presumes that
the attributes’ values are conditionally independent of one another, given the class
label of the tuple (i.e., that there are no dependence relationships among the
attributes). Thus,

PX|C) = [[P(xlC) (8.12)
k=1

= P(x1]C) X P(x2]) X -+ X P(x| C)).

We can easily estimate the probabilities P(x;|C;), P(x2|C)), ..., P(x,4|C;) from the
training tuples. Recall that here x; refers to the value of attribute Ay for tuple X. For
each attribute, we look at whether the attribute is categorical or continuous-valued.
For instance, to compute P(X|C;), we consider the following:

(a) If A is categorical, then P(xx|C;) is the number of tuples of class C; in D having
the value xy for Ay, divided by | C; p|, the number of tuples of class C; in D.

(b) If Ay is continuous-valued, then we need to do a bit more work, but the cal-
culation is pretty straightforward. A continuous-valued attribute is typically
assumed to have a Gaussian distribution with a mean u and standard deviation
0, defined by

(oL H (8.13)
X W, 0) = e 20° .
& V2o
so that
P(xr|C) = g(xk ;> 0¢,)- (8.14)

These equations may appear daunting, but hold on! We need to compute pic;
and oc;, which are the mean (i.e., average) and standard deviation, respectively,
of the values of attribute Ay for training tuples of class C;. We then plug these two
quantities into Eq. (8.13), together with xy, to estimate P(xy|C;).

For example, let X = (35,$40,000), where A; and A; are the attributes age and
income, respectively. Let the class label attribute be buys_computer. The associated
class label for X is yes (i.e., buys_computer = yes). Let’s suppose that age has not
been discretized and therefore exists as a continuous-valued attribute. Suppose
that from the training set, we find that customers in D who buy a computer are

Example 8.4

8.3 Bayes Classification Methods 353

38 £ 12 years of age. In other words, for attribute age and this class, we have
=38 years and o = 12. We can plug these quantities, along with x; = 35 for
our tuple X, into Eq. (8.13) to estimate P(age = 35|buys_computer = yes). For a
quick review of mean and standard deviation calculations, please see Section 2.2.

5. To predict the class label of X, P(X|C;)P(C;) is evaluated for each class C;. The
classifier predicts that the class label of tuple X is the class C; if and only if

PX|C)P(C) > PXICHP(Cy) for 1 <j<m,j#i. (8.15)

In other words, the predicted class label is the class C; for which P(X|C;) P(C;) is the
maximum.

“How effective are Bayesian classifiers?” Various empirical studies of this classifier in
comparison to decision tree and neural network classifiers have found it to be com-
parable in some domains. In theory, Bayesian classifiers have the minimum error rate
in comparison to all other classifiers. However, in practice this is not always the case,
owing to inaccuracies in the assumptions made for its use, such as class-conditional
independence, and the lack of available probability data.

Bayesian classifiers are also useful in that they provide a theoretical justification for
other classifiers that do not explicitly use Bayes’ theorem. For example, under certain
assumptions, it can be shown that many neural network and curve-fitting algorithms
output the maximum posteriori hypothesis, as does the naive Bayesian classifier.

Predicting a class label using naive Bayesian classification. We wish to predict the
class label of a tuple using naive Bayesian classification, given the same training data
as in Example 8.3 for decision tree induction. The training data were shown earlier
in Table 8.1. The data tuples are described by the attributes age, income, student, and
credit_rating. The class label attribute, buys_computer, has two distinct values (namely,
{yes, no}). Let C; correspond to the class buys_computer = yes and C, correspond to
buys_computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit_rating = fair)

We need to maximize P(X|C;)P(C;), for i = 1, 2. P(C;), the prior probability of each
class, can be computed based on the training tuples:

P(buys_computer = yes) = 9/14 = 0.643
P(buys_computer = no) =5/14 = 0.357

To compute P(X|C;), for i = 1, 2, we compute the following conditional probabilities:

P(age = youth | buys_computer = yes) =2/9=0.222
P(age = youth | buys_computer = no) =3/5=0.600
P(income = medium | buys_computer = yes) = 4/9 = 0.444
P(income = medium | buys_computer = no) = 2/5 = 0.400
P(student = yes | buys_computer = yes) =6/9 = 0.667

354 Chapter 8 Classification: Basic Concepts

P(student = yes | buys_computer = no) =1/5=0.200
P(credit_rating = fair | buys_computer = yes) = 6/9 = 0.667
P(credit_rating = fair | buys_computer = no) = 2/5 = 0.400

Using these probabilities, we obtain

P(X|buys_computer = yes) = P(age = youth | buys_computer = yes)
x P(income = medium | buys_computer = yes)
x P(student = yes | buys_computer = yes)
x P(credit_rating = fair | buys_computer = yes)
=0.222 x 0.444 x 0.667 x 0.667 = 0.044.

Similarly,
P(X|buys_computer = no) = 0.600 x 0.400 x 0.200 x 0.400 = 0.019.
To find the class, C;, that maximizes P(X|C;) P(C;), we compute

P(X|buys_computer = yes) P(buys_computer = yes) = 0.044 x 0.643 = 0.028
P(X|buys_computer = no) P(buys_computer = no) = 0.019 x 0.357 = 0.007

Therefore, the naive Bayesian classifier predicts buys_computer = yes for tuple X. (]

“What if I encounter probability values of zero?” Recall that in Eq. (8.12), we esti-
mate P(X|C;) as the product of the probabilities P(x;|C;), P(x2|C)),..., P(x,|C;), based
on the assumption of class-conditional independence. These probabilities can be esti-
mated from the training tuples (step 4). We need to compute P(X|C;) for each class (i =
1,2,...,m) to find the class C; for which P(X|C;) P(C;) is the maximum (step 5). Let’s

consider this calculation. For each attribute—value pair (i.e., Ay = x¢, for k=1,2,...,n)
in tuple X, we need to count the number of tuples having that attribute—value pair, per
class (i.e., per C;, for i=1,..., m). In Example 8.4, we have two classes (1 = 2), namely

buys_computer = yes and buys_computer = no. Therefore, for the attribute—value pair
student = yes of X, say, we need two counts—the number of customers who are students
and for which buys_computer = yes (which contributes to P(X|buys_computer = yes))
and the number of customers who are students and for which buys_computer = no
(which contributes to P(X|buys_computer = no)).

But what if, say, there are no training tuples representing students for the class
buys_computer = no, resulting in P(student = yes|buys_computer = no) = 0? In other
words, what happens if we should end up with a probability value of zero for some
P(xx| C;)? Plugging this zero value into Eq. (8.12) would return a zero probability for
P(X|C;), even though, without the zero probability, we may have ended up with a high
probability, suggesting that X belonged to class C;! A zero probability cancels the effects
of all the other (posteriori) probabilities (on C;) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training data-
base, D, is so large that adding one to each count that we need would only make a
negligible difference in the estimated probability value, yet would conveniently avoid the

Example 8.5

8.4.1

8.4 Rule-Based Classification 355

case of probability values of zero. This technique for probability estimation is known as
the Laplacian correction or Laplace estimator, named after Pierre Laplace, a French
mathematician who lived from 1749 to 1827. If we have, say, q counts to which we each
add one, then we must remember to add g to the corresponding denominator used in
the probability calculation. We illustrate this technique in Example 8.5.

Using the Laplacian correction to avoid computing probability values of zero. Sup-
pose that for the class buys_computer = yes in some training database, D, containing
1000 tuples, we have 0 tuples with income = low, 990 tuples with income = medium, and
10 tuples with income = high. The probabilities of these events, without the Laplacian
correction, are 0, 0.990 (from 990/1000), and 0.010 (from 10/1000), respectively. Using
the Laplacian correction for the three quantities, we pretend that we have 1 more tuple
for each income-value pair. In this way, we instead obtain the following probabilities
(rounded up to three decimal places):

1 991 11
—— =0.001, —— =0.988, and —— = 0.011,
1003

1003 1003
respectively. The “corrected” probability estimates are close to their “uncorrected”
counterparts, yet the zero probability value is avoided. (]

Rule-Based Classification

In this section, we look at rule-based classifiers, where the learned model is represented
as a set of [F-THEN rules. We first examine how such rules are used for classification
(Section 8.4.1). We then study ways in which they can be generated, either from a deci-
sion tree (Section 8.4.2) or directly from the training data using a sequential covering
algorithm (Section 8.4.3).

Using IF-THEN Rules for Classification

Rules are a good way of representing information or bits of knowledge. A rule-based
classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an expres-
sion of the form

IF condition THEN conclusion.

An example is rule R1,
R1: IF age = youth AND student = yes THEN buys_computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition.
The “THEN” part (or right side) is the rule consequent. In the rule antecedent, the
condition consists of one or more attribute tests (e.g., age = youth and student = yes)

356 Chapter8

Example 8.6

Classification: Basic Concepts

that are logically ANDed. The rule’s consequent contains a class prediction (in this case,
we are predicting whether a customer will buy a computer). R1 can also be written as

R1: (age = youth) A (student = yes) = (buys_computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given
tuple, we say that the rule antecedent is satisfied (or simply, that the rule is satisfied)
and that the rule covers the tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-
labeled data set, D, let 1.y,rs be the number of tuples covered by R; #1¢orrec: be the number
of tuples correctly classified by R; and |D| be the number of tuples in D. We can define
the coverage and accuracy of R as

Neovers

coverage(R) = (8.16)
g D]
Neorrect
accuracy(R) = . (8.17)
Neovers

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their
attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the
tuples that it covers and see what percentage of them the rule can correctly classify.

Rule accuracy and coverage. Let’s go back to our data in Table 8.1. These are class-
labeled tuples from the AllElectronics customer database. Our task is to predict whether
a customer will buy a computer. Consider rule R1, which covers 2 of the 14 tuples.
It can correctly classify both tuples. Therefore, coverage(R1) =2/14 = 14.28% and
accuracy(R1) =2/2 = 100%.]

Let’s see how we can use rule-based classification to predict the class label of a given
tuple, X. If a rule is satisfied by X, the rule is said to be triggered. For example, suppose
we have

X= (age = youth, income = medium, student = yes, credit_rating = fair).

We would like to classify X according to buys_computer. X satisfies R1, which triggers
the rule.

If R1 is the only rule satisfied, then the rule fires by returning the class prediction
for X. Note that triggering does not always mean firing because there may be more than
one rule that is satisfied! If more than one rule is triggered, we have a potential problem.
What if they each specify a different class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict
resolution strategy to figure out which rule gets to fire and assign its class prediction
to X. There are many possible strategies. We look at two, namely size ordering and rule
ordering.

84.2

8.4 Rule-Based Classification 357

The size ordering scheme assigns the highest priority to the triggering rule that has
the “toughest” requirements, where toughness is measured by the rule antecedent size.
That is, the triggering rule with the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be
class-based or rule-based. With class-based ordering, the classes are sorted in order of
decreasing “importance” such as by decreasing order of prevalence. That is, all the rules
for the most prevalent (or most frequent) class come first, the rules for the next prevalent
class come next, and so on. Alternatively, they may be sorted based on the misclassifica-
tion cost per class. Within each class, the rules are not ordered—they don’t have to be
because they all predict the same class (and so there can be no class conflict!).

With rule-based ordering, the rules are organized into one long priority list, accord-
ing to some measure of rule quality, such as accuracy, coverage, or size (number of
attribute tests in the rule antecedent), or based on advice from domain experts. When
rule ordering is used, the rule set is known as a decision list. With rule ordering, the trig-
gering rule that appears earliest in the list has the highest priority, and so it gets to fire its
class prediction. Any other rule that satisfies X is ignored. Most rule-based classification
systems use a class-based rule-ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in
any order when classifying a tuple. That is, a disjunction (logical OR) is implied between
each of the rules. Each rule represents a standalone nugget or piece of knowledge. This
is in contrast to the rule ordering (decision list) scheme for which rules must be applied
in the prescribed order so as to avoid conflicts. Each rule in a decision list implies the
negation of the rules that come before it in the list. Hence, rules in a decision list are
more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario
where there is no rule satisfied by X. How, then, can we determine the class label of X?
In this case, a fallback or default rule can be set up to specify a default class, based on
a training set. This may be the class in majority or the majority class of the tuples that
were not covered by any rule. The default rule is evaluated at the end, if and only if no
other rule covers X. The condition in the default rule is empty. In this way, the rule fires
when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

Rule Extraction from a Decision Tree

In Section 8.2, we learned how to build a decision tree classifier from a set of training
data. Decision tree classifiers are a popular method of classification—it is easy to under-
stand how decision trees work and they are known for their accuracy. Decision trees can
become large and difficult to interpret. In this subsection, we look at how to build a rule-
based classifier by extracting [F-THEN rules from a decision tree. In comparison with a
decision tree, the IF-THEN rules may be easier for humans to understand, particularly
if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root
to a leaf node. Each splitting criterion along a given path is logically ANDed to form the

358 Chapter8

Example 8.7

Classification: Basic Concepts

rule antecedent (“IF” part). The leaf node holds the class prediction, forming the rule
consequent (“THEN” part).

Extracting classification rules from a decision tree. The decision tree of Figure 8.2 can
be converted to classification IF-THEN rules by tracing the path from the root node to
each leaf node in the tree. The rules extracted from Figure 8.2 are as follows:

R1:IF age = youth AND student = no THEN buys_computer = no
R2: TF age = youth AND student = yes THEN buys_computer = yes
R3: IF age = middle_aged THEN buys_computer = yes
RA4: TF age = senior AND credit_rating = excellent THEN buys_computer = yes
R5: TF age = senior AND credit_rating = fair THEN buys_computer = no

]

A disjunction (logical OR) is implied between each of the extracted rules. Because the
rules are extracted directly from the tree, they are mutually exclusive and exhaustive.
Mutually exclusive means that we cannot have rule conflicts here because no two rules
will be triggered for the same tuple. (We have one rule per leaf, and any tuple can map
to only one leaf.) Exhaustive means there is one rule for each possible attribute-value
combination, so that this set of rules does not require a default rule. Therefore, the order
of the rules does not matter—they are unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much simpler
than the corresponding decision tree! The extracted rules may be even more difficult
to interpret than the original trees in some cases. As an example, Figure 8.7 showed
decision trees that suffer from subtree repetition and replication. The resulting set of
rules extracted can be large and difficult to follow, because some of the attribute tests
may be irrelevant or redundant. So, the plot thickens. Although it is easy to extract rules
from a decision tree, we may need to do some more work by pruning the resulting
rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition that does
not improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby
generalizing the rule. C4.5 extracts rules from an unpruned tree, and then prunes the
rules using a pessimistic approach similar to its tree pruning method. The training tuples
and their associated class labels are used to estimate rule accuracy. However, because this
would result in an optimistic estimate, alternatively, the estimate is adjusted to compen-
sate for the bias, resulting in a pessimistic estimate. In addition, any rule that does not
contribute to the overall accuracy of the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be
mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based
ordering scheme. It groups together all rules for a single class, and then determines a
ranking of these class rule sets. Within a rule set, the rules are not ordered. C4.5 orders
the class rule sets so as to minimize the number of false-positive errors (i.e., where a
rule predicts a class, C, but the actual class is not C). The class rule set with the least
number of false positives is examined first. Once pruning is complete, a final check is

8.4 Rule-Based Classification 359

done to remove any duplicates. When choosing a default class, C4.5 does not choose
the majority class, because this class will likely have many rules for its tuples. Instead, it
selects the class that contains the most training tuples that were not covered by any rule.

8.4.3 Rule Induction Using a Sequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without having to
generate a decision tree first) using a sequential covering algorithm. The name comes
from the notion that the rules are learned sequentially (one at a time), where each rule
for a given class will ideally cover many of the class’s tuples (and hopefully none of
the tuples of other classes). Sequential covering algorithms are the most widely used
approach to mining disjunctive sets of classification rules, and form the topic of this
subsection.

There are many sequential covering algorithms. Popular variations include AQ, CN2,
and the more recent RIPPER. The general strategy is as follows. Rules are learned one at
a time. Each time a rule is learned, the tuples covered by the rule are removed, and the
process repeats on the remaining tuples. This sequential learning of rules is in contrast
to decision tree induction. Because the path to each leaf in a decision tree corresponds to
a rule, we can consider decision tree induction as learning a set of rules simultaneously.

A basic sequential covering algorithm is shown in Figure 8.10. Here, rules are learned
for one class at a time. Ideally, when learning a rule for a class, C, we would like the rule
to cover all (or many) of the training tuples of class C and none (or few) of the tuples

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.
Input:
D, a data set of class-labeled tuples;
Att_vals, the set of all attributes and their possible values.
Output: A set of [F-THEN rules.
Method:

(1) Rule_set = {}; // initial set of rules learned is empty
(2) for each class c do

(3) repeat

(4) Rule = Learn_One_Rule(D, Att_vals, c);

(5) remove tuples covered by Rule from D;

(6) Rule_set = Rule_set + Rule; // add new rule to rule set
(7) until terminating condition;

(8) endfor

(9) return Rule_Set;

Figure 8.10 Basic sequential covering algorithm.

360 Chapter 8 Classification: Basic Concepts

from other classes. In this way, the rules learned should be of high accuracy. The rules
need not necessarily be of high coverage. This is because we can have more than one rule
for a class, so that different rules may cover different tuples within the same class. The
process continues until the terminating condition is met, such as when there are no more
training tuples or the quality of a rule returned is below a user-specified threshold. The
Learn_One_Rule procedure finds the “best” rule for the current class, given the current
set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner
(Figure 8.11). We can think of this as a beam search, where we start off with an empty
rule and then gradually keep appending attribute tests to it. We append by adding the
attribute test as a logical conjunct to the existing condition of the rule antecedent. Sup-
pose our training set, D, consists of loan application data. Attributes regarding each
applicant include their age, income, education level, residence, credit rating, and the
term of the loan. The classifying attribute is loan_decision, which indicates whether a
loan is accepted (considered safe) or rejected (considered risky). To learn a rule for the
class “accept,” we start off with the most general rule possible, that is, the condition of
the rule antecedent is empty. The rule is

IF THEN loan_decision = accept.

We then consider each possible attribute test that may be added to the rule. These
can be derived from the parameter Att_vals, which contains a list of attributes with their
associated values. For example, for an attribute—value pair (att, val), we can consider
attribute tests such as att = val, att < val, att > val, and so on. Typically, the training
data will contain many attributes, each of which may have several possible values. Find-
ing an optimal rule set becomes computationally explosive. Instead, Learn_One_Rule

IF
THEN loan_decision = accept

s

IF loan_term = short IF loan_term = long IF income = high IF income =medium
THEN loan_decision THEN loan_decision THEN loan_decision = accept | THEN loan_decision
= accept =accept = accept

NS

IF income = high AND IF incom.e = high AND IF income = high AND IF inf?ome = high {\ND
age = youth age = middle_age . X) credit_rating = fair
- . credit_rating = excellent o
THEN loan_decision THEN loan_decision .. THEN loan_decision
THEN loan_decision = accept
= accept = accept = accept

Figure 8.11 A general-to-specific search through rule space.

Example 8.8

8.4 Rule-Based Classification 361

adopts a greedy depth-first strategy. Each time it is faced with adding a new attribute
test (conjunct) to the current rule, it picks the one that most improves the rule qual-
ity, based on the training samples. We will say more about rule quality measures in a
minute. For the moment, let’s say we use rule accuracy as our quality measure. Getting
back to our example with Figure 8.11, suppose Learn_One_Rule finds that the attribute
test income = high best improves the accuracy of our current (empty) rule. We append
it to the condition, so that the current rule becomes

IF income = high THEN loan_decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover relatively
more of the “accept” tuples. During the next iteration, we again consider the possible
attribute tests and end up selecting credit_rating = excellent. Our current rule grows to
become

IF income = high AND credit_rating = excellent THEN loan_decision = accept.

The process repeats, where at each step we continue to greedily grow rules until the
resulting rule meets an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what
appears to be the best choice at the moment. What if we unknowingly made a poor
choice along the way? To lessen the chance of this happening, instead of selecting the best
attribute test to append to the current rule, we can select the best k attribute tests. In this
way, we perform a beam search of width k, wherein we maintain the k best candidates
overall at each step, rather than a single best candidate.

Rule Quality Measures

Learn_One_Rule needs a measure of rule quality. Every time it considers an attribute test,
it must check to see if appending such a test to the current rule’s condition will result
in an improved rule. Accuracy may seem like an obvious choice at first, but consider
Example 8.8.

Choosing between two rules based on accuracy. Consider the two rules as illustrated

« _»

in Figure 8.12. Both are for the class loan_decision = accept. We use “a” to represent the
tuples of class “accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies
38 of the 40 tuples it covers. Rule R2 covers only two tuples, which it correctly classifies.
Their respective accuracies are 95% and 100%. Thus, R2 has greater accuracy than R1,

but it is not the better rule because of its small coverage. (]

From this example, we see that accuracy on its own is not a reliable estimate of rule
quality. Coverage on its own is not useful either—for a given class we could have a rule
that covers many tuples, most of which belong to other classes! Thus, we seek other mea-
sures for evaluating rule quality, which may integrate aspects of accuracy and coverage.
Here we will look at a few, namely entropy, another based on information gain, and a
statistical test that considers coverage. For our discussion, suppose we are learning rules

362

Chapter 8 Classification: Basic Concepts

A
’
R1 r r
T T TT T T T |
| a a a |
| a a a | r
| a4 a |
,a a r a
| a a | r r
| a a a a !
I a !
| a a |
| a @ a a ! 132, ,,,,, r
r a a | I I

|

a a a a a | | a |
I | . a]
! a a a a a | TT T
. a & e o

r
o=

Figure 8.12 Rules for the class loan_decision = accept, showing accept (a) and reject (r) tuples.

for the class c. Our current rule is R: IF condition THEN class = c. We want to see if
logically ANDing a given attribute test to condition would result in a better rule. We call
the new condition, conditior’, where R': IF condition’ THEN class = c is our potential
new rule. In other words, we want to see if R’ is any better than R.

We have already seen entropy in our discussion of the information gain measure used
for attribute selection in decision tree induction (Section 8.2.2, Eq. 8.1). It is also known
as the expected information needed to classify a tuple in data set, D. Here, D is the set
of tuples covered by condition’ and p; is the probability of class C; in D. The lower the
entropy, the better condition’ is. Entropy prefers conditions that cover a large number of
tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First
Order Inductive Learner), a sequential covering algorithm that learns first-order logic
rules. Learning first-order rules is more complex because such rules contain variables,
whereas the rules we are concerned with in this section are propositional (i.e., variable-
free).” In machine learning, the tuples of the class for which we are learning rules are
called positive tuples, while the remaining tuples are negative. Let pos (neg) be the num-
ber of positive (negative) tuples covered by R. Let pos’ (neg’) be the number of positive
(negative) tuples covered by R. FOIL assesses the information gained by extending
condition’ as

) , pos’ pos
FOIL_Gain = 1 —1 . 8.18
an = pos x (082 pos' + neg 8 pos+ neg) (8.18)

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent effect of
a rule is not attributed to chance but instead indicates a genuine correlation between

>Incidentally, FOIL was also proposed by Quinlan, the father of ID3.

8.4 Rule-Based Classification 363

attribute values and classes. The test compares the observed distribution among classes
of tuples covered by a rule with the expected distribution that would result if the
rule made predictions at random. We want to assess whether any observed differences
between these two distributions may be attributed to chance. We can use the likelihood
ratio statistic,

m
Likelihood_Ratio=2) " filog (’i) , (8.19)
. €;

=1

where m is the number of classes.

For tuples satisfying the rule, f; is the observed frequency of each class i among the
tuples. e; is what we would expect the frequency of each class i to be if the rule made
random predictions. The statistic has a x? distribution with 7 — 1 degrees of freedom.
The higher the likelihood ratio, the more likely that there is a significant difference in the
number of correct predictions made by our rule in comparison with a “random guessor.”
That is, the performance of our rule is not due to chance. The ratio helps identify rules
with insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information
gain is used by RIPPER.

Rule Pruning

Learn_One_Rule does not employ a test set when evaluating rules. Assessments of rule
quality as described previously are made with tuples from the original training data.
These assessments are optimistic because the rules will likely overfit the data. That is,
the rules may perform well on the training data, but less well on subsequent data. To
compensate for this, we can prune the rules. A rule is pruned by removing a conjunct
(attribute test). We choose to prune a rule, R, if the pruned version of R has greater
quality, as assessed on an independent set of tuples. As in decision tree pruning, we refer
to this set as a pruning set. Various pruning strategies can be used such as the pessimistic
pruning approach described in the previous section.
FOIL uses a simple yet effective method. Given a rule, R,

pos — neg
FOIL_Prune(R) = ———=,
pos—+ neg

(8.20)
where pos and neg are the number of positive and negative tuples covered by R, respec-
tively. This value will increase with the accuracy of R on a pruning set. Therefore, if the
FOIL_Prune value is higher for the pruned version of R, then we prune R.

By convention, RIPPER starts with the most recently added conjunct when con-
sidering pruning. Conjuncts are pruned one at a time as long as this results in an
improvement.

364 Chapter 8 Classification: Basic Concepts

8.5.1

Model Evaluation and Selection

Now that you may have built a classification model, there may be many questions going
through your mind. For example, suppose you used data from previous sales to build
a classifier to predict customer purchasing behavior. You would like an estimate of how
accurately the classifier can predict the purchasing behavior of future customers, that
is, future customer data on which the classifier has not been trained. You may even
have tried different methods to build more than one classifier and now wish to compare
their accuracy. But what is accuracy? How can we estimate it? Are some measures of a
classifier’s accuracy more appropriate than others? How can we obtain a reliable accuracy
estimate? These questions are addressed in this section.

Section 8.5.1 describes various evaluation metrics for the predictive accuracy
of a classifier. Holdout and random subsampling (Section 8.5.2), cross-validation
(Section 8.5.3), and bootstrap methods (Section 8.5.4) are common techniques for
assessing accuracy, based on randomly sampled partitions of the given data. What if
we have more than one classifier and want to choose the “best” one? This is referred
to as model selection (i.e., choosing one classifier over another). The last two sections
address this issue. Section 8.5.5 discusses how to use tests of statistical significance
to assess whether the difference in accuracy between two classifiers is due to chance.
Section 8.5.6 presents how to compare classifiers based on cost-benefit and receiver
operating characteristic (ROC) curves.

Metrics for Evaluating Classifier Performance

This section presents measures for assessing how good or how “accurate” your classifier
is at predicting the class label of tuples. We will consider the case of where the class tuples
are more or less evenly distributed, as well as the case where classes are unbalanced (e.g.,
where an important class of interest is rare such as in medical tests). The classifier eval-
uation measures presented in this section are summarized in Figure 8.13. They include
accuracy (also known as recognition rate), sensitivity (or recall), specificity, precision,
Fi, and Fg. Note that although accuracy is a specific measure, the word “accuracy” is
also used as a general term to refer to a classifier’s predictive abilities.

Using training data to derive a classifier and then estimate the accuracy of the
resulting learned model can result in misleading overoptimistic estimates due to over-
specialization of the learning algorithm to the data. (We will say more on this in a
moment!) Instead, it is better to measure the classifier’s accuracy on a test set consisting
of class-labeled tuples that were not used to train the model.

Before we discuss the various measures, we need to become comfortable with
some terminology. Recall that we can talk in terms of positive tuples (tuples of the
main class of interest) and negative tuples (all other tuples).® Given two classes, for
example, the positive tuples may be buys_computer = yes while the negative tuples are

®In the machine learning and pattern recognition literature, these are referred to as positive samples and
negative samples, respectively.

8.5 Model Evaluation and Selection 365

Measure Formula

s TP+ TN
accuracy, recognition rate PN
error rate, misclassification rate FP+FN

P+N
sensitivity, true positive rate, P
recall 2
specificity, true negative rate T—I\I]\T
precision %
F, Fy, F-score, 2 x precision X recall
harmonic mean of precision and recall precision recall
. . 1+8%) x precision X recall

Fg, where f is a non-negative real number 7 precision-+ recall

Figure 8.13 Evaluation measures. Note that some measures are known by more than one name.
TP, TN, FP, P, N refer to the number of true positive, true negative, false positive, positive,
and negative samples, respectively (see text).

buys_computer = no. Suppose we use our classifier on a test set of labeled tuples. P is the
number of positive tuples and N is the number of negative tuples. For each tuple, we
compare the classifier’s class label prediction with the tuple’s known class label.

There are four additional terms we need to know that are the “building blocks” used
in computing many evaluation measures. Understanding them will make it easy to grasp
the meaning of the various measures.

True positives (TP): These refer to the positive tuples that were correctly labeled by
the classifier. Let TP be the number of true positives.

True negatives (TN): These are the negative tuples that were correctly labeled by the
classifier. Let TN be the number of true negatives.

False positives (FP): These are the negative tuples that were incorrectly labeled as
positive (e.g., tuples of class buys_computer = no for which the classifier predicted
buys_computer = yes). Let FP be the number of false positives.

False negatives (FN): These are the positive tuples that were mislabeled as neg-
ative (e.g., tuples of class buys_computer = yes for which the classifier predicted
buys_computer = no). Let EN be the number of false negatives.

These terms are summarized in the confusion matrix of Figure 8.14.

The confusion matrix is a useful tool for analyzing how well your classifier can
recognize tuples of different classes. TP and TN tell us when the classifier is getting
things right, while FP and EN tell us when the classifier is getting things wrong (i.e.,

366 Chapter 8 Classification: Basic Concepts

Predicted class

yes | no | Total
Actual class | yes P | FN | P

no FP | TN | N
Total || P | N | P+ N

Figure 8.14 Confusion matrix, shown with totals for positive and negative tuples.

Classes buys_computer = yes | buys_computer = no || Total | Recognition (%)
buys_computer = yes 6954 46 7000 99.34
buys_computer = no 412 2588 3000 86.27
Total 7366 2634 10,000 95.42

Figure 8.15 Confusion matrix for the classes buys_computer = yes and buys_computer = no, where an
entry in row i and column j shows the number of tuples of class i that were labeled by the
classifier as class j. Ideally, the nondiagonal entries should be zero or close to zero.

mislabeling). Given m classes (where m > 2), a confusion matrix is a table of at least
size m by m. An entry, CM;; in the first m rows and m columns indicates the number
of tuples of class i that were labeled by the classifier as class j. For a classifier to have
good accuracy, ideally most of the tuples would be represented along the diagonal of the
confusion matrix, from entry CM;; to entry CM,,,,, with the rest of the entries being
zero or close to zero. That is, ideally, FP and FN are around zero.

The table may have additional rows or columns to provide totals. For example, in
the confusion matrix of Figure 8.14, P and N are shown. In addition, P’ is the number
of tuples that were labeled as positive (TP + FP) and N’ is the number of tuples that
were labeled as negative (TN + FN). The total number of tuplesis TP + TN + FP+ TN,
or P+ N, or P+ N’. Note that although the confusion matrix shown is for a binary
classification problem, confusion matrices can be easily drawn for multiple classes in a
similar manner.

Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a
classifier on a given test set is the percentage of test set tuples that are correctly classified
by the classifier. That is,

TP+ TN

—_ 8.21
P+N ()

accuracy =

In the pattern recognition literature, this is also referred to as the overall recognition
rate of the classifier, that is, it reflects how well the classifier recognizes tuples of the var-
ious classes. An example of a confusion matrix for the two classes buys_computer = yes
(positive) and buys_computer = no (negative) is given in Figure 8.15. Totals are shown,

Example 8.9

8.5 Model Evaluation and Selection 367

as well as the recognition rates per class and overall. By glancing at a confusion matrix,
it is easy to see if the corresponding classifier is confusing two classes.

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most
effective when the class distribution is relatively balanced.

We can also speak of the error rate or misclassification rate of a classifier, M, which
is simply 1 — accuracy(M), where accuracy(M) is the accuracy of M. This also can be
computed as

error rate = M (8.22)
P+ N
If we were to use the training set (instead of a test set) to estimate the error rate of
a model, this quantity is known as the resubstitution error. This error estimate is
optimistic of the true error rate (and similarly, the corresponding accuracy estimate is
optimistic) because the model is not tested on any samples that it has not already seen.

We now consider the class imbalance problem, where the main class of interest is
rare. That is, the data set distribution reflects a significant majority of the negative class
and a minority positive class. For example, in fraud detection applications, the class of
interest (or positive class) is “fraud,” which occurs much less frequently than the negative
“nonfraudulant” class. In medical data, there may be a rare class, such as “cancer.” Sup-
pose that you have trained a classifier to classify medical data tuples, where the class
label attribute is “cancer” and the possible class values are “yes” and “no.” An accu-
racy rate of, say, 97% may make the classifier seem quite accurate, but what if only,
say, 3% of the training tuples are actually cancer? Clearly, an accuracy rate of 97% may
not be acceptable—the classifier could be correctly labeling only the noncancer tuples,
for instance, and misclassifying all the cancer tuples. Instead, we need other measures,
which assess how well the classifier can recognize the positive tuples (cancer = yes) and
how well it can recognize the negative tuples (cancer = no).

The sensitivity and specificity measures can be used, respectively, for this purpose.
Sensitivity is also referred to as the true positive (recognition) rate (i.e., the proportion
of positive tuples that are correctly identified), while specificity is the true negative rate
(i.e., the proportion of negative tuples that are correctly identified). These measures are
defined as

L TP
sensitivity = - (8.23)
N
specificity = —. (8.24)
N
It can be shown that accuracy is a function of sensitivity and specificity:
itivit P + ificit N (8.25)
accuracy = sensitivity———— 4+ specificity————. .
Y Ve Ny TP N

Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical data
where the class values are yes and no for a class label attribute, cancer. The sensitivity

368 Chapter8

Figure 8.16

Example 8.10

Classification: Basic Concepts

Classes || yes | no Total | Recognition (%)
yes 90 210 300 30.00
no 140 [9560 9700 98.56
Total 230 9770 || 10,000 96.40

Confusion matrix for the classes cancer = yes and cancer = no.

of the classifier is % = 30.00%. The specificity is % = 98.56%. The classifier’s over-

all accuracy is 1%6580 = 96.50%. Thus, we note that although the classifier has a high
accuracy, it’s ability to correctly label the positive (rare) class is poor given its low sen-
sitivity. It has high specificity, meaning that it can accurately recognize negative tuples.

Techniques for handling class-imbalanced data are given in Section 8.6.5. (]

The precision and recall measures are also widely used in classification. Precision
can be thought of as a measure of exactness (i.e., what percentage of tuples labeled as
positive are actually such), whereas recall is a measure of completeness (what percentage
of positive tuples are labeled as such). If recall seems familiar, that’s because it is the same
as sensitivity (or the true positive rate). These measures can be computed as

.. TP
precision = TP P 7P (8.26)
TP TP
recall = —— = —. (8.27)
TP+ FN P

Precision and recall. The precision of the classifier in Figure 8.16 for the yes class is

% = 39.13%. The recall is % = 30.00%, which is the same calculation for sensitivity

in Example 8.9. [

A perfect precision score of 1.0 for a class C means that every tuple that the classifier
labeled as belonging to class C does indeed belong to class C. However, it does not tell
us anything about the number of class C tuples that the classifier mislabeled. A perfect
recall score of 1.0 for C means that every item from class C was labeled as such, but it
does not tell us how many other tuples were incorrectly labeled as belonging to class C.
There tends to be an inverse relationship between precision and recall, where it is possi-
ble to increase one at the cost of reducing the other. For example, our medical classifier
may achieve high precision by labeling all cancer tuples that present a certain way as
cancer, but may have low recall if it mislabels many other instances of cancer tuples. Pre-
cision and recall scores are typically used together, where precision values are compared
for a fixed value of recall, or vice versa. For example, we may compare precision values
at a recall value of, say, 0.75.

An alternative way to use precision and recall is to combine them into a single mea-
sure. This is the approach of the F measure (also known as the F; score or F-score) and

8.5 Model Evaluation and Selection 369

the Fg measure. They are defined as

2 x precision X recall
F= — (8.28)
precision + recall

(14 B2) x precision x recall

Fg = (8.29)

B2 x precision + recall

where B is a non-negative real number. The F measure is the harmonic mean of precision
and recall (the proof of which is left as an exercise). It gives equal weight to precision and
recall. The Fg measure is a weighted measure of precision and recall. It assigns 8 times
as much weight to recall as to precision. Commonly used Fg measures are F, (which
weights recall twice as much as precision) and Fy5 (which weights precision twice as
much as recall).

“Are there other cases where accuracy may not be appropriate?” In classification prob-
lems, it is commonly assumed that all tuples are uniquely classifiable, that is, that each
training tuple can belong to only one class. Yet, owing to the wide diversity of data in
large databases, it is not always reasonable to assume that all tuples are uniquely classi-
fiable. Rather, it is more probable to assume that each tuple may belong to more than
one class. How then can the accuracy of classifiers on large databases be measured? The
accuracy measure is not appropriate, because it does not take into account the possibility
of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distri-
bution. Accuracy measures may then use a second guess heuristic, whereby a class
prediction is judged as correct if it agrees with the first or second most probable class.
Although this does take into consideration, to some degree, the nonunique classification
of tuples, it is not a complete solution.

In addition to accuracy-based measures, classifiers can also be compared with respect
to the following additional aspects:

Speed: This refers to the computational costs involved in generating and using the
given classifier.

Robustness: This is the ability of the classifier to make correct predictions given noisy
data or data with missing values. Robustness is typically assessed with a series of
synthetic data sets representing increasing degrees of noise and missing values.

Scalability: This refers to the ability to construct the classifier efficiently given large
amounts of data. Scalability is typically assessed with a series of data sets of increasing
size.

Interpretability: This refers to the level of understanding and insight that is provided
by the classifier or predictor. Interpretability is subjective and therefore more difficult
to assess. Decision trees and classification rules can be easy to interpret, yet their
interpretability may diminish the more they become complex. We discuss some work
in this area, such as the extraction of classification rules from a “black box” neural
network classifier called backpropagation, in Chapter 9.

370

Chapter 8 Classification: Basic Concepts

Derive Estimate
4>
model accuracy

A

4
Test set

Figure 8.17 Estimating accuracy with the holdout method.

8.5.2

8.53

In summary, we have presented several evaluation measures. The accuracy measure
works best when the data classes are fairly evenly distributed. Other measures, such as
sensitivity (or recall), specificity, precision, F, and Fg, are better suited to the class imbal-
ance problem, where the main class of interest is rare. The remaining subsections focus
on obtaining reliable classifier accuracy estimates.

Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about accuracy.
In this method, the given data are randomly partitioned into two independent sets, a
training set and a fest set. Typically, two-thirds of the data are allocated to the training
set, and the remaining one-third is allocated to the test set. The training set is used to
derive the model. The model’s accuracy is then estimated with the test set (Figure 8.17).
The estimate is pessimistic because only a portion of the initial data is used to derive
the model.

Random subsampling is a variation of the holdout method in which the holdout
method is repeated k times. The overall accuracy estimate is taken as the average of the
accuracies obtained from each iteration.

Cross-Validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually
exclusive subsets or “folds,” Dy, D,..., Dy, each of approximately equal size. Training
and testing is performed k times. In iteration i, partition D; is reserved as the test set,
and the remaining partitions are collectively used to train the model. That is, in the
first iteration, subsets D,,..., Dy collectively serve as the training set to obtain a first
model, which is tested on Dj; the second iteration is trained on subsets Dy, Ds,..., Di
and tested on Ds; and so on. Unlike the holdout and random subsampling methods,
here each sample is used the same number of times for training and once for testing. For
classification, the accuracy estimate is the overall number of correct classifications from
the k iterations, divided by the total number of tuples in the initial data.

8.54

8.5 Model Evaluation and Selection 371

Leave-one-out is a special case of k-fold cross-validation where k is set to the number
of initial tuples. That is, only one sample is “left out” at a time for the test set. In strat-
ified cross-validation, the folds are stratified so that the class distribution of the tuples
in each fold is approximately the same as that in the initial data.

In general, stratified 10-fold cross-validation is recommended for estimating accu-
racy (even if computation power allows using more folds) due to its relatively low bias
and variance.

Bootstrap

Unlike the accuracy estimation methods just mentioned, the bootstrap method sam-
ples the given training tuples uniformly with replacement. That is, each time a tuple is
selected, it is equally likely to be selected again and re-added to the training set. For
instance, imagine a machine that randomly selects tuples for our training set. In sam-
pling with replacement, the machine is allowed to select the same tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap,
which works as follows. Suppose we are given a data set of d tuples. The data set is
sampled d times, with replacement, resulting in a bootstrap sample or training set of d
samples. It is very likely that some of the original data tuples will occur more than once
in this sample. The data tuples that did not make it into the training set end up forming
the test set. Suppose we were to try this out several times. As it turns out, on average,
63.2% of the original data tuples will end up in the bootstrap sample, and the remaining
36.8% will form the test set (hence, the name, .632 bootstrap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of
being selected, so the probability of not being chosen is (1 — 1/d). We have to select
d times, so the probability that a tuple will not be chosen during this whole time is
(1—1/d)“.1f d is large, the probability approaches e~! = 0.368.” Thus, 36.8% of tuples
will not be selected for training and thereby end up in the test set, and the remaining
63.2% will form the training set.

We can repeat the sampling procedure k times, where in each iteration, we use the
current test set to obtain an accuracy estimate of the model obtained from the current
bootstrap sample. The overall accuracy of the model, M, is then estimated as

k
1
Ace(M) = ¢ > (0.632 x Acc(M;) est_ser + 0.368 x Acc(M;) train.ser) (8.30)

i=1

where Acc(M;) est_ser 1S the accuracy of the model obtained with bootstrap sample i when
it is applied to test set i. Acc(M;) rain_ser is the accuracy of the model obtained with boot-
strap sample i when it is applied to the original set of data tuples. Bootstrapping tends
to be overly optimistic. It works best with small data sets.

7¢ is the base of natural logarithms, that is, e = 2.718.

372

Chapter 8 Classification: Basic Concepts

8.5.5 Model Selection Using Statistical Tests of Significance

Suppose that we have generated two classification models, M; and M,, from our data.
We have performed 10-fold cross-validation to obtain a mean error rate® for each. How
can we determine which model is best? It may seem intuitive to select the model with
the lowest error rate; however, the mean error rates are just estimates of error on the true
population of future data cases. There can be considerable variance between error rates
within any given 10-fold cross-validation experiment. Although the mean error rates
obtained for M; and M, may appear different, that difference may not be statistically
significant. What if any difference between the two may just be attributed to chance?
This section addresses these questions.

To determine if there is any “real” difference in the mean error rates of two models,
we need to employ a test of statistical significance. In addition, we want to obtain some
confidence limits for our mean error rates so that we can make statements like, “Any
observed mean will not vary by & two standard errors 95% of the time for future samples”
or “One model is better than the other by a margin of error of + 4%.”

What do we need to perform the statistical test? Suppose that for each model, we
did 10-fold cross-validation, say, 10 times, each time using a different 10-fold data par-
titioning. Each partitioning is independently drawn. We can average the 10 error rates
obtained each for M) and M, respectively, to obtain the mean error rate for each model.
For a given model, the individual error rates calculated in the cross-validations may be
considered as different, independent samples from a probability distribution. In gen-
eral, they follow a t-distribution with k — 1 degrees of freedom where, here, k = 10. (This
distribution looks very similar to a normal, or Gaussian, distribution even though the
functions defining the two are quite different. Both are unimodal, symmetric, and bell-
shaped.) This allows us to do hypothesis testing where the significance test used is the
t-test, or Student’s £-test. Our hypothesis is that the two models are the same, or in other
words, that the difference in mean error rate between the two is zero. If we can reject this
hypothesis (referred to as the null hypothesis), then we can conclude that the difference
between the two models is statistically significant, in which case we can select the model
with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same
test set can be used for both M) and M,. In such cases, we do a pairwise compari-
son of the two models for each 10-fold cross-validation round. That is, for the ith round
of 10-fold cross-validation, the same cross-validation partitioning is used to obtain an
error rate for My and for M. Let err(M;); (or err(M;);) be the error rate of model M;
(or M) on round i. The error rates for M, are averaged to obtain a mean error rate for
M,, denoted err(M;). Similarly, we can obtain err(M,). The variance of the difference
between the two models is denoted var(M; — M>). The t-test computes the t-statistic
with k — 1 degrees of freedom for k samples. In our example we have k = 10 since, here,
the k samples are our error rates obtained from ten 10-fold cross-validations for each

8Recall that the error rate of a model, M, is 1 — accuracy(M).

8.5.6

8.5 Model Evaluation and Selection 373

model. The t-statistic for pairwise comparison is computed as follows:
err(My) —err(M;)

- V/ var(M, —Mz)/k’

(8.31)

where
1 k
var(My — M) = P Z lerr(My); — err(My); — (err(My) — err(Mp))]*. (8.32)
i=1

To determine whether M; and M, are significantly different, we compute ¢ and select
a significance level, sig. In practice, a significance level of 5% or 1% is typically used. We
then consult a table for the t-distribution, available in standard textbooks on statistics.
This table is usually shown arranged by degrees of freedom as rows and significance
levels as columns. Suppose we want to ascertain whether the difference between M; and
M, is significantly different for 95% of the population, that is, sig = 5% or 0.05. We
need to find the ¢-distribution value corresponding to k — 1 degrees of freedom (or 9
degrees of freedom for our example) from the table. However, because the ¢-distribution
is symmetric, typically only the upper percentage points of the distribution are shown.
Therefore, we look up the table value for z = sig/2, which in this case is 0.025, where
z is also referred to as a confidence limit. If ¢ > z or t < —z, then our value of ¢ lies
in the rejection region, within the distribution’s tails. This means that we can reject the
null hypothesis that the means of M; and M, are the same and conclude that there is
a statistically significant difference between the two models. Otherwise, if we cannot
reject the null hypothesis, we conclude that any difference between M; and M, can be
attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of the
t-test is used, where the variance between the means of the two models is estimated as

var(M;) n var(My) ’

8.33
0 5 (8.33)

var(M; — M) = \/

and k; and k; are the number of cross-validation samples (in our case, 10-fold cross-
validation rounds) used for M; and M, respectively. This is also known as the two
sample ¢-test.” When consulting the table of ¢-distribution, the number of degrees of
freedom used is taken as the minimum number of degrees of the two models.

Comparing Classifiers Based on Cost-Benefit
and ROC Curves

The true positives, true negatives, false positives, and false negatives are also useful in
assessing the costs and benefits (or risks and gains) associated with a classification

9This test was used in sampling cubes for OLAP-based mining in Chapter 5.

374 Chapter 8 Classification: Basic Concepts

model. The cost associated with a false negative (such as incorrectly predicting that a
cancerous patient is not cancerous) is far greater than those of a false positive
(incorrectly yet conservatively labeling a noncancerous patient as cancerous). In such
cases, we can outweigh one type of error over another by assigning a different cost to
each. These costs may consider the danger to the patient, financial costs of resulting
therapies, and other hospital costs. Similarly, the benefits associated with a true positive
decision may be different than those of a true negative. Up to now, to compute classifier
accuracy, we have assumed equal costs and essentially divided the sum of true positives
and true negatives by the total number of test tuples.

Alternatively, we can incorporate costs and benefits by instead computing the average
cost (or benefit) per decision. Other applications involving cost-benefit analysis include
loan application decisions and target marketing mailouts. For example, the cost of loan-
ing to a defaulter greatly exceeds that of the lost business incurred by denying a loan to a
nondefaulter. Similarly, in an application that tries to identify households that are likely
to respond to mailouts of certain promotional material, the cost of mailouts to numer-
ous households that do not respond may outweigh the cost of lost business from not
mailing to households that would have responded. Other costs to consider in the overall
analysis include the costs to collect the data and to develop the classification tool.

Receiver operating characteristic curves are a useful visual tool for comparing two
classification models. ROC curves come from signal detection theory that was deve-
loped during World War II for the analysis of radar images. An ROC curve for a given
model shows the trade-off between the true positive rate (TPR) and the false positive rate
(FPR).'” Given a test set and a model, TPR is the proportion of positive (or “yes”) tuples
that are correctly labeled by the model; FPR is the proportion of negative (or “no”)
tuples that are mislabeled as positive. Given that TP, FP, P, and N are the number of
true positive, false positive, positive, and negative tuples, respectively, from Section 8.5.1
we know that TPR= %, which is sensitivity. Furthermore, FPR= %, which is
1 — specificity.

For a two-class problem, an ROC curve allows us to visualize the trade-off between
the rate at which the model can accurately recognize positive cases versus the rate at
which it mistakenly identifies negative cases as positive for different portions of the test
set. Any increase in TPR occurs at the cost of an increase in FPR. The area under the
ROC curve is a measure of the accuracy of the model.

To plot an ROC curve for a given classification model, M, the model must be able to
return a probability of the predicted class for each test tuple. With this information, we
rank and sort the tuples so that the tuple that is most likely to belong to the positive or
“yes” class appears at the top of the list, and the tuple that is least likely to belong to the
positive class lands at the bottom of the list. Naive Bayesian (Section 8.3) and backpropa-
gation (Section 9.2) classifiers return a class probability distribution for each prediction
and, therefore, are appropriate, although other classifiers, such as decision tree classifiers
(Section 8.2), can easily be modified to return class probability predictions. Let the value

10TPR and FPR are the two operating characteristics being compared.

Example 8.11

8.5 Model Evaluation and Selection 375

that a probabilistic classifier returns for a given tuple X be f(X) — [0, 1]. For a binary
problem, a threshold £ is typically selected so that tuples where f(X) > ¢ are considered
positive and all the other tuples are considered negative. Note that the number of true
positives and the number of false positives are both functions of ¢, so that we could write
TP(t) and FP(¢). Both are monotonic descending functions.

We first describe the general idea behind plotting an ROC curve, and then follow up
with an example. The vertical axis of an ROC curve represents TPR. The horizontal axis
represents FPR. To plot an ROC curve for M, we begin as follows. Starting at the bottom
left corner (where TPR = FPR = 0), we check the tuple’s actual class label at the top of
the list. If we have a true positive (i.e., a positive tuple that was correctly classified), then
TP and thus TPR increase. On the graph, we move up and plot a point. If, instead, the
model classifies a negative tuple as positive, we have a false positive, and so both FP and
FPR increase. On the graph, we move right and plot a point. This process is repeated
for each of the test tuples in ranked order, each time moving up on the graph for a true
positive or toward the right for a false positive.

Plotting an ROC curve. Figure 8.18 shows the probability value (column 3) returned
by a probabilistic classifier for each of the 10 tuples in a test set, sorted by decreasing
probability order. Column 1 is merely a tuple identification number, which aids in our
explanation. Column 2 is the actual class label of the tuple. There are five positive tuples
and five negative tuples, thus P =5 and N = 5. As we examine the known class label
of each tuple, we can determine the values of the remaining columns, TP, FP, TN, FN,
TPR, and FPR. We start with tuple 1, which has the highest probability score, and take
that score as our threshold, that is, t = 0.9. Thus, the classifier considers tuple 1 to be
positive, and all the other tuples are considered negative. Since the actual class label
of tuple 1 is positive, we have a true positive, hence TP =1 and FP = 0. Among the

| Tuple# | Class | Prob. || TP | FP | TN [FN || TPR | FPR |

1 P 0.90 1 0 5 4 0.2 0
2 P 0.80 2 0 5 3 0.4 0
3 N 0.70 2 1 4 3 0.4 0.2
4 P 0.60 3 1 4 2 0.6 0.2
5 P 0.55 4 1 4 1 0.8 0.2
6 N 0.54 4 2 3 1 0.8 0.4
7 N 0.53 4 3 2 1 0.8 0.6
8 N 0.51 4 4 1 1 0.8 0.8
9 p 0.50 5 4 1 0 1.0 0.8
10 N 0.40 5 5 0 0 1.0 1.0

Figure 8.18 Tuples sorted by decreasing score, where the score is the value returned by a probabilistic

classifier.

376

Chapter 8

Classification: Basic Concepts

True positive rate (TPR)

0.2 4

0.0 T T T T T T T T
0 0.2 0.4 0.6 0.8 1.0

False positive rate (FPR)

Figure 8.19 ROC curve for the data in Figure 8.18.

remaining nine tuples, which are all classified as negative, five actually are negative (thus,
TN =5). The remaining four are all actually positive, thus, FN = 4. We can therefore
compute TPR = %) = % = 0.2, while FPR = 0. Thus, we have the point (0.2,0) for the
ROC curve.

Next, threshold is set to 0.8, the probability value for tuple 2, so this tuple is now
also considered positive, while tuples 3 through 10 are considered negative. The actual
class label of tuple 2 is positive, thus now TP = 2. The rest of the row can easily be
computed, resulting in the point (0.4,0). Next, we examine the class label of tuple 3 and
let ¢ be 0.7, the probability value returned by the classifier for that tuple. Thus, tuple 3 is
considered positive, yet its actual label is negative, and so it is a false positive. Thus, TP
stays the same and FP increments so that FP = 1. The rest of the values in the row can
also be easily computed, yielding the point (0.4,0.2). The resulting ROC graph, from
examining each tuple, is the jagged line shown in Figure 8.19.

There are many methods to obtain a curve out of these points, the most common
of which is to use a convex hull. The plot also shows a diagonal line where for every
true positive of such a model, we are just as likely to encounter a false positive. For
comparison, this line represents random guessing. (]

Figure 8.20 shows the ROC curves of two classification models. The diagonal line
representing random guessing is also shown. Thus, the closer the ROC curve of a model
is to the diagonal line, the less accurate the model. If the model is really good, initially
we are more likely to encounter true positives as we move down the ranked list. Thus,

Figure 8.20

8.6 Techniques to Improve Classification Accuracy 377

0.8

=}
=)
1

<
~
1

True positive rate

0.2 +

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

ROC curves of two classification models, M) and M,. The diagonal shows where, for every
true positive, we are equally likely to encounter a false positive. The closer an ROC curve is
to the diagonal line, the less accurate the model is. Thus, M1 is more accurate here.

the curve moves steeply up from zero. Later, as we start to encounter fewer and fewer
true positives, and more and more false positives, the curve eases off and becomes more
horizontal.

To assess the accuracy of a model, we can measure the area under the curve. Several
software packages are able to perform such calculation. The closer the area is to 0.5, the
less accurate the corresponding model is. A model with perfect accuracy will have an
area of 1.0.

Techniques to Improve Classification Accuracy

In this section, you will learn some tricks for increasing classification accuracy. We focus
on ensemble methods. An ensemble for classification is a composite model, made up of
a combination of classifiers. The individual classifiers vote, and a class label prediction
is returned by the ensemble based on the collection of votes. Ensembles tend to be more
accurate than their component classifiers. We start off in Section 8.6.1 by introducing
ensemble methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and
random forests (Section 8.6.4) are popular ensemble methods.

Traditional learning models assume that the data classes are well distributed. In
many real-world data domains, however, the data are class-imbalanced, where the
main class of interest is represented by only a few tuples. This is known as the class

378

Chapter 8 Classification: Basic Concepts

8.6.1

Figure 8.21

imbalance problem. We also study techniques for improving the classification accuracy
of class-imbalanced data. These are presented in Section 8.6.5.

Introducing Ensemble Methods

Bagging, boosting, and random forests are examples of ensemble methods (Figure 8.21).
An ensemble combines a series of k learned models (or base classifiers), My, Mo, ..., My,
with the aim of creating an improved composite classification model, M. A given data
set, D, is used to create k training sets, D1, D,..., D, where D; (1 <i < k— 1) is used
to generate classifier M;. Given a new data tuple to classify, the base classifiers each vote
by returning a class prediction. The ensemble returns a class prediction based on the
votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, con-
sider an ensemble that performs majority voting. That is, given a tuple X to classify, it
collects the class label predictions returned from the base classifiers and outputs the class
in majority. The base classifiers may make mistakes, but the ensemble will misclassify X
only if over half of the base classifiers are in error. Ensembles yield better results when
there is significant diversity among the models. That is, ideally, there is little correla-
tion among classifiers. The classifiers should also perform better than random guessing.
Each base classifier can be allocated to a different CPU and so ensemble methods are
parallelizable.

To help illustrate the power of an ensemble, consider a simple two-class problem
described by two attributes, x; and x,. The problem has a linear decision boundary.
Figure 8.22(a) shows the decision boundary of a decision tree classifier on the problem.
Figure 8.22(b) shows the decision boundary of an ensemble of decision tree classifiers
on the same problem. Although the ensemble’s decision boundary is still piecewise
constant, it has a finer resolution and is better than that of a single tree.

M
New data
Dy tuple
b,
Y
) L
’ Combine —> Prediction
votes
Dk

Increasing classifier accuracy: Ensemble methods generate a set of classification models,
M, My, ..., M. Given a new data tuple to classify, each classifier “votes” for the class label
of that tuple. The ensemble combines the votes to return a class prediction.

8.6 Techniques to Improve Classification Accuracy 379

1.0 1

0.8 1

0.6 1

<
0.4 1

0.2 1

0.0 1

T T T
0.0 0.2 0.4 0.6 0.8 1.0
X1 X1

(a) (b)

Figure 8.22 Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a

8.6.2

linearly separable problem (i.e., where the actual decision boundary is a straight line). The
decision tree struggles with approximating a linear boundary. The decision boundary of the
ensemble is closer to the true boundary. Source: From Seni and Elder [SE10]. (©) 2010 Morgan
& Claypool Publishers; used with permission.

Bagging
We now take an intuitive look at how bagging works as a method of increasing accuracy.
Suppose that you are a patient and would like to have a diagnosis made based on your
symptoms. Instead of asking one doctor, you may choose to ask several. If a certain
diagnosis occurs more than any other, you may choose this as the final or best diagnosis.
That is, the final diagnosis is made based on a majority vote, where each doctor gets an
equal vote. Now replace each doctor by a classifier, and you have the basic idea behind
bagging. Intuitively, a majority vote made by a large group of doctors may be more
reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i(i =1, 2,..., k),
a training set, D;, of d tuples is sampled with replacement from the original set of
tuples, D. Note that the term bagging stands for bootstrap aggregation. Each training
set is a bootstrap sample, as described in Section 8.5.4. Because sampling with replace-
ment is used, some of the original tuples of D may not be included in D;, whereas others
may occur more than once. A classifier model, M;, is learned for each training set, D;.
To classify an unknown tuple, X, each classifier, M;, returns its class prediction, which
counts as one vote. The bagged classifier, Mx*, counts the votes and assigns the class
with the most votes to X. Bagging can be applied to the prediction of continuous values
by taking the average value of each prediction for a given test tuple. The algorithm is
summarized in Figure 8.23.

The bagged classifier often has significantly greater accuracy than a single classifier
derived from D, the original training data. It will not be considerably worse and is more

380

Chapter 8 Classification: Basic Concepts

Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models
for a learning scheme where each model gives an equally weighted prediction.

Input:

D, a set of d training tuples;

k, the number of models in the ensemble;

a classification learning scheme (decision tree algorithm, naive Bayesian, etc.).
Output: The ensemble—a composite model, M.
Method:

(1) fori=1to kdo// create k models:

(2) create bootstrap sample, D;, by sampling D with replacement;
(3) use D; and the learning scheme to derive a model, M;;

(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

Figure 8.23 Bagging.

8.6.3

robust to the effects of noisy data and overfitting. The increased accuracy occurs because
the composite model reduces the variance of the individual classifiers.

Boosting and AdaBoost

We now look at the ensemble method of boosting. As in the previous section, suppose
that as a patient, you have certain symptoms. Instead of consulting one doctor, you
choose to consult several. Suppose you assign weights to the value or worth of each doc-
tor’s diagnosis, based on the accuracies of previous diagnoses they have made. The final
diagnosis is then a combination of the weighted diagnoses. This is the essence behind
boosting.

In boosting, weights are also assigned to each training tuple. A series of k classifiers is
iteratively learned. After a classifier, M;, is learned, the weights are updated to allow the
subsequent classifier, M1, to “pay more attention” to the training tuples that were mis-
classified by M;. The final boosted classifier, M, combines the votes of each individual
classifier, where the weight of each classifier’s vote is a function of its accuracy.

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose
we want to boost the accuracy of a learning method. We are given D, a data set of
d class-labeled tuples, (X1,%1),(X2,%2),...,(Xa,¥4), where y; is the class label of tuple
X;. Initially, AdaBoost assigns each training tuple an equal weight of 1/d. Genera-
ting k classifiers for the ensemble requires k rounds through the rest of the algorithm.
We can sample to form any sized training set, not necessarily of size d. Sampling

8.6 Techniques to Improve Classification Accuracy 381

with replacement is used—the same tuple may be selected more than once. Each tuple’s
chance of being selected is based on its weight. A classifier model, M;, is derived from
the training tuples of D;. Its error is then calculated using D; as a test set. The weights of
the training tuples are then adjusted according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly
classified, its weight is decreased. A tuple’s weight reflects how difficult it is to classify—
the higher the weight, the more often it has been misclassified. These weights will be
used to generate the training samples for the classifier of the next round. The basic idea
is that when we build a classifier, we want it to focus more on the misclassified tuples of
the previous round. Some classifiers may be better at classifying some “difficult” tuples
than others. In this way, we build a series of classifiers that complement each other. The
algorithm is summarized in Figure 8.24.

Now, let’s look at some of the math that’s involved in the algorithm. To compute
the error rate of model M;, we sum the weights of each of the tuples in D; that M;
misclassified. That is,

d
error(M;) = Z w; X err(Xj), (8.34)
j=1

where err(Xj) is the misclassification error of tuple X;: If the tuple was misclassified, then
err(X;) is 1; otherwise, it is 0. If the performance of classifier M; is so poor that its error
exceeds 0.5, then we abandon it. Instead, we try again by generating a new D; training
set, from which we derive a new M;.

The error rate of M; affects how the weights of the training tuples are updated.
If a tuple in round i was correctly classified, its weight is multiplied by error(M;)/
(1 — error(M;)). Once the weights of all the correctly classified tuples are updated, the
weights for all tuples (including the misclassified ones) are normalized so that their sum
remains the same as it was before. To normalize a weight, we multiply it by the sum of
the old weights, divided by the sum of the new weights. As a result, the weights of mis-
classified tuples are increased and the weights of correctly classified tuples are decreased,
as described before.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label
of a tuple, X?” Unlike bagging, where each classifier was assigned an equal vote, boosting
assigns a weight to each classifier’s vote, based on how well the classifier performed. The
lower a classifier’s error rate, the more accurate it is, and therefore, the higher its weight
for voting should be. The weight of classifier M;’s vote is

1 — error(M;)

error(M;) (8.35)

For each class, ¢, we sum the weights of each classifier that assigned class ¢ to X. The class
with the highest sum is the “winner” and is returned as the class prediction for tuple X.

“How does boosting compare with bagging?” Because of the way boosting focuses on
the misclassified tuples, it risks overfitting the resulting composite model to such data.

382

Chapter 8 Classification: Basic Concepts

Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one
gives a weighted vote.

Input:
D, a set of d class-labeled training tuples;
k, the number of rounds (one classifier is generated per round);
a classification learning scheme.

Output: A composite model.

Method:

(1) initialize the weight of each tuple in D to 1/d;
(2) fori=1to kdo// for each round:

(3) sample D with replacement according to the tuple weights to obtain Dj;

(4) use training set D; to derive a model, M;;

(5) compute error(M;), the error rate of M; (Eq. 8.34)

(6) if error(M;) > 0.5 then

(7) go back to step 3 and try again;

(8) endif

9) for each tuple in D; that was correctly classified do

(10) multiply the weight of the tuple by error(M;)/(1 — error(M;)); // update weights

(11) normalize the weight of each tuple;
(12) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;
(2) fori=1to kdo// for each classifier:

(3) w; = lag%‘m; /1 weight of the classifier’s vote
(4) ¢ = M;(X); // get class prediction for X from M;
(5) add w; to weight for class ¢

(6) endfor

(7) return the class with the largest weight;

Figure 8.24 AdaBoost, a boosting algorithm.

8.6.4

Therefore, sometimes the resulting “boosted” model may be less accurate than a single
model derived from the same data. Bagging is less susceptible to model overfitting. While
both can significantly improve accuracy in comparison to a single model, boosting tends
to achieve greater accuracy.

Random Forests

We now present another ensemble method called random forests. Imagine that each of
the classifiers in the ensemble is a decision tree classifier so that the collection of classifiers

8.6.5

8.6 Techniques to Improve Classification Accuracy 383

is a “forest.” The individual decision trees are generated using a random selection of
attributes at each node to determine the split. More formally, each tree depends on the
values of a random vector sampled independently and with the same distribution for
all trees in the forest. During classification, each tree votes and the most popular class is
returned.

Random forests can be built using bagging (Section 8.6.2) in tandem with random
attribute selection. A training set, D, of d tuples is given. The general procedure to gen-
erate k decision trees for the ensemble is as follows. For each iteration, i(i=1, 2,..., k),
a training set, D;, of d tuples is sampled with replacement from D. That is, each D; is a
bootstrap sample of D (Section 8.5.4), so that some tuples may occur more than once
in Dj, while others may be excluded. Let F be the number of attributes to be used to
determine the split at each node, where F is much smaller than the number of avail-
able attributes. To construct a decision tree classifier, M;, randomly select, at each node,
F attributes as candidates for the split at the node. The CART methodology is used to
grow the trees. The trees are grown to maximum size and are not pruned. Random
forests formed this way, with random input selection, are called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combinations
of the input attributes. Instead of randomly selecting a subset of the attributes, it cre-
ates new attributes (or features) that are a linear combination of the existing attributes.
That is, an attribute is generated by specifying L, the number of original attributes to be
combined. At a given node, L attributes are randomly selected and added together with
coefficients that are uniform random numbers on [—1,1]. F linear combinations are
generated, and a search is made over these for the best split. This form of random forest
is useful when there are only a few attributes available, so as to reduce the correlation
between individual classifiers.

Random forests are comparable in accuracy to AdaBoost, yet are more robust to
errors and outliers. The generalization error for a forest converges as long as the num-
ber of trees in the forest is large. Thus, overfitting is not a problem. The accuracy of a
random forest depends on the strength of the individual classifiers and a measure of the
dependence between them. The ideal is to maintain the strength of individual classifiers
without increasing their correlation. Random forests are insensitive to the number of
attributes selected for consideration at each split. Typically, up to logzd + 1 are chosen.
(An interesting empirical observation was that using a single random input attribute
may result in good accuracy that is often higher than when using several attributes.)
Because random forests consider many fewer attributes for each split, they are efficient
on very large databases. They can be faster than either bagging or boosting. Random
forests give internal estimates of variable importance.

Improving Classification Accuracy of Class-Imbalanced Data

In this section, we revisit the class imbalance problem. In particular, we study approaches
to improving the classification accuracy of class-imbalanced data.

Given two-class data, the data are class-imbalanced if the main class of interest (the
positive class) is represented by only a few tuples, while the majority of tuples represent
the negative class. For multiclass-imbalanced data, the data distribution of each class

384 Chapter8

Example 8.12

Classification: Basic Concepts

differs substantially where, again, the main class or classes of interest are rare. The
class imbalance problem is closely related to cost-sensitive learning, wherein the costs of
errors, per class, are not equal. In medical diagnosis, for example, it is much more costly
to falsely diagnose a cancerous patient as healthy (a false negative) than to misdiagnose
a healthy patient as having cancer (a false positive). A false negative error could lead to
the loss of life and therefore is much more expensive than a false positive error. Other
applications involving class-imbalanced data include fraud detection, the detection of
oil spills from satellite radar images, and fault monitoring.

Traditional classification algorithms aim to minimize the number of errors made dur-
ing classification. They assume that the costs of false positive and false negative errors
are equal. By assuming a balanced distribution of classes and equal error costs, they
are therefore not suitable for class-imbalanced data. Earlier parts of this chapter pre-
sented ways of addressing the class imbalance problem. Although the accuracy measure
assumes that the cost of classes are equal, alternative evaluation metrics can be used that
consider the different types of classifications. Section 8.5.1, for example, presented sersi-
tivity or recall (the true positive rate) and specificity (the true negative rate), which help
to assess how well a classifier can predict the class label of imbalanced data. Additional
relevant measures discussed include F; and Fg. Section 8.5.6 showed how ROC curves
plot sensitivity versus 1 — specificity (i.e., the false positive rate). Such curves can provide
insight when studying the performance of classifiers on class-imbalanced data.

In this section, we look at general approaches for improving the classification accu-
racy of class-imbalanced data. These approaches include (1) oversampling, (2) under-
sampling, (3) threshold moving, and (4) ensemble techniques. The first three do not
involve any changes to the construction of the classification model. That is, oversam-
pling and undersampling change the distribution of tuples in the training set; threshold
moving affects how the model makes decisions when classifying new data. Ensemble
methods follow the techniques described in Sections 8.6.2 through 8.6.4. For ease of
explanation, we describe these general approaches with respect to the two-class imbal-
ance data problem, where the higher-cost classes are rarer than the lower-cost classes.

Both oversampling and undersampling change the training data distribution so that
the rare (positive) class is well represented. Oversampling works by resampling the pos-
itive tuples so that the resulting training set contains an equal number of positive and
negative tuples. Undersampling works by decreasing the number of negative tuples. It
randomly eliminates tuples from the majority (negative) class until there are an equal
number of positive and negative tuples.

Oversampling and undersampling. Suppose the original training set contains 100 pos-
itive and 1000 negative tuples. In oversampling, we replicate tuples of the rarer class
to form a new training set containing 1000 positive tuples and 1000 negative tuples.
In undersampling, we randomly eliminate negative tuples so that the new training set
contains 100 positive tuples and 100 negative tuples. (]

Several variations to oversampling and undersampling exist. They may vary, for
instance, in how tuples are added or eliminated. For example, the SMOTE algorithm

8.7 Summary 385

uses oversampling where synthetic tuples are added, which are “close to” the given
positive tuples in tuple space.

The threshold-moving approach to the class imbalance problem does not involve
any sampling. It applies to classifiers that, given an input tuple, return a continuous
output value (just like in Section 8.5.6, where we discussed how to construct ROC
curves). That is, for an input tuple, X, such a classifier returns as output a mapping,
f(X) — [0,1]. Rather than manipulating the training tuples, this method returns a clas-
sification decision based on the output values. In the simplest approach, tuples for which
f(X) > t, for some threshold, ¢, are considered positive, while all other tuples are con-
sidered negative. Other approaches may involve manipulating the outputs by weighting.
In general, threshold moving moves the threshold, ¢, so that the rare class tuples are eas-
ier to classify (and hence, there is less chance of costly false negative errors). Examples of
such classifiers include naive Bayesian classifiers (Section 8.3) and neural network clas-
sifiers like backpropagation (Section 9.2). The threshold-moving method, although not
as popular as over- and undersampling, is simple and has shown some success for the
two-class-imbalanced data.

Ensemble methods (Sections 8.6.2 through 8.6.4) have also been applied to the class
imbalance problem. The individual classifiers making up the ensemble may include
versions of the approaches described here such as oversampling and threshold moving.

These methods work relatively well for the class imbalance problem on two-class
tasks. Threshold-moving and ensemble methods were empirically observed to outper-
form oversampling and undersampling. Threshold moving works well even on data
sets that are extremely imbalanced. The class imbalance problem on multiclass tasks
is much more difficult, where oversampling and threshold moving are less effective.
Although threshold-moving and ensemble methods show promise, finding a solution
for the multiclass imbalance problem remains an area of future work.

Summary

Classification is a form of data analysis that extracts models describing data classes.
A classifier, or classification model, predicts categorical labels (classes). Numeric pre-
diction models continuous-valued functions. Classification and numeric prediction
are the two major types of prediction problems.

Decision tree induction is a top-down recursive tree induction algorithm, which
uses an attribute selection measure to select the attribute tested for each nonleaf node
in the tree. ID3, C4.5, and CART are examples of such algorithms using different
attribute selection measures. Tree pruning algorithms attempt to improve accuracy
by removing tree branches reflecting noise in the data. Early decision tree algorithms
typically assume that the data are memory resident. Several scalable algorithms, such
as RainForest, have been proposed for scalable tree induction.

Naive Bayesian classification is based on Bayes’ theorem of posterior probability. It
assumes class-conditional independence—that the effect of an attribute value on a
given class is independent of the values of the other attributes.

386

Chapter 8

8.1
8.2

8.3

8.4

8.5

Classification: Basic Concepts

A rule-based classifier uses a set of IF-THEN rules for classification. Rules can be
extracted from a decision tree. Rules may also be generated directly from training
data using sequential covering algorithms.

A confusion matrix can be used to evaluate a classifier’s quality. For a two-class
problem, it shows the true positives, true negatives, false positives, and false negatives.
Measures that assess a classifier’s predictive ability include accuracy, sensitivity (also
known as recall), specificity, precision, F, and Fg. Reliance on the accuracy measure
can be deceiving when the main class of interest is in the minority.

Construction and evaluation of a classifier require partitioning labeled data into
a training set and a test set. Holdout, random sampling, cross-validation, and
bootstrapping are typical methods used for such partitioning.

Significance tests and ROC curves are useful tools for model selection. Significance
tests can be used to assess whether the difference in accuracy between two classifiers
is due to chance. ROC curves plot the true positive rate (or sensitivity) versus the
false positive rate (or 1 — specificity) of one or more classifiers.

Ensemble methods can be used to increase overall accuracy by learning and combin-
ing a series of individual (base) classifier models. Bagging, boosting, and random
forests are popular ensemble methods.

The class imbalance problem occurs when the main class of interest is represented
by only a few tuples. Strategies to address this problem include oversampling,
undersampling, threshold moving, and ensemble techniques.

Exercises

Briefly outline the major steps of decision tree classification.

Why is tree pruning useful in decision tree induction? What is a drawback of using a
separate set of tuples to evaluate pruning?

Given a decision tree, you have the option of (a) converting the decision tree to rules and
then pruning the resulting rules, or (b) pruning the decision tree and then converting
the pruned tree to rules. What advantage does (a) have over (b)?

It is important to calculate the worst-case computational complexity of the decision tree
algorithm. Given data set, D, the number of attributes, #, and the number of training
tuples, |D|, show that the computational cost of growing a tree is at most n x |D| x
log(1D).

Given a 5-GB data set with 50 attributes (each containing 100 distinct values) and 512
MB of main memory in your laptop, outline an efficient method that constructs deci-
sion trees in such large data sets. Justify your answer by rough calculation of your main
memory usage.

8.8 Exercises 387

8.6 Why is naive Bayesian classification called “naive”? Briefly outline the major ideas of
naive Bayesian classification.

8.7 The following table consists of training data from an employee database. The data have
been generalized. For example, “31 ... 35” for age represents the age range of 31 to 35.
For a given row entry, count represents the number of data tuples having the values for
department, status, age, and salary given in that row.

department status age salary count
sales senior 31...35 46K...50K 30
sales junior 26...30 26K...30K 40
sales junior 31...35 31K...35K 40
systems junior 21...25 46K...50K 20
systems senior 31...35 66K...70K 5
systems junior 26...30 46K...50K

systems senior 41...45 66K...70K

marketing senior 36...40 46K...50K 10
marketing junior 31...35 41K...45K
secretary senior 46...50 36K...40K
secretary junior 26...30 26K...30K

Let status be the class label attribute.

(a) How would you modify the basic decision tree algorithm to take into consideration
the count of each generalized data tuple (i.e., of each row entry)?

(b) Use your algorithm to construct a decision tree from the given data.

(c) Given a data tuple having the values “systems,” “26...30,” and “46-50K” for the
attributes department, age, and salary, respectively, what would a naive Bayesian
classification of the status for the tuple be?

8.8 RainForest is a scalable algorithm for decision tree induction. Develop a scalable naive
Bayesian classification algorithm that requires just a single scan of the entire data set
for most databases. Discuss whether such an algorithm can be refined to incorporate
boosting to further enhance its classification accuracy.

8.9 Design an efficient method that performs effective naive Bayesian classification over
an infinite data stream (i.e., you can scan the data stream only once). If we wanted
to discover the evolution of such classification schemes (e.g., comparing the classifica-
tion scheme at this moment with earlier schemes such as one from a week ago), what
modified design would you suggest?

8.10 Show that accuracy is a function of sensitivity and specificity, that is, prove Eq. (8.25).

8.11 The harmonic mean is one of several kinds of averages. Chapter 2 discussed how to
compute the arithmetic mean, which is what most people typically think of when they
compute an average. The harmonic mean, H, of the positive real numbers, x1,x2,. . ., Xy,

388

Chapter 8

8.12

8.13

8.14

8.15

Classification: Basic Concepts

is defined as

Xiix

The F measure is the harmonic mean of precision and recall. Use this fact to derive
Eq. (8.28) for F. In addition, write Fg as a function of true positives, false negatives, and
false positives.

The data tuples of Figure 8.25 are sorted by decreasing probability value, as returned by
a classifier. For each tuple, compute the values for the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN). Compute the true
positive rate (TPR) and false positive rate (FPR). Plot the ROC curve for the data.

It is difficult to assess classification accuracy when individual data objects may belong to
more than one class at a time. In such cases, comment on what criteria you would use
to compare different classifiers modeled after the same data.

Suppose that we want to select between two prediction models, M) and M,. We have
performed 10 rounds of 10-fold cross-validation on each model, where the same data
partitioning in round i is used for both M; and M. The error rates obtained for M; are
30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0, 21.5, 26.0. The error rates for M, are 22.4,
14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4, 16.2, 35.0. Comment on whether one model is
significantly better than the other considering a significance level of 1%.

What is boosting? State why it may improve the accuracy of decision tree induction.

| Tuple # | Class | Probability
1 p 0.95
2 N 0.85
3 P 0.78
4 P 0.66
5 N 0.60
6 p 0.55
7 N 0.53
8 N 0.52
9 N 0.51
10 P 0.40

Figure 8.25 Tuples sorted by decreasing score, where the score is the value returned by a
probabilistic classifier.

8.9 Bibliographic Notes 389

8.16 Outline methods for addressing the class imbalance problem. Suppose a bank wants to
develop a classifier that guards against fraudulent credit card transactions. Illustrate how
you can induce a quality classifier based on a large set of nonfraudulent examples and a
very small set of fraudulent cases.

Bibliographic Notes

Classification is a fundamental topic in machine learning, statistics, and pattern recog-
nition. Many textbooks from these fields highlight classification methods such as
Mitchell [Mit97]; Bishop [Bis06]; Duda, Hart, and Stork [DHSO01]; Theodoridis and
Koutroumbas [TK08]; Hastie, Tibshirani, and Friedman [HTF09]; Alpaydin [Alpl11];
and Marsland [Mar09].

For decision tree induction, the C4.5 algorithm is described in a book by Quinlan
[Qui93]. The CART system is detailed in Classification and Regression Trees by Breiman,
Friedman, Olshen, and Stone [BFOS84]. Both books give an excellent presentation of
many of the issues regarding decision tree induction. C4.5 has a commercial succes-
sor, known as C5.0, which can be found at www.rulequest.com. ID3, a predecessor of
C4.5, is detailed in Quinlan [Qui86]. It expands on pioneering work on concept learning
systems, described by Hunt, Marin, and Stone [HMS66].

Other algorithms for decision tree induction include FACT (Loh and Vanichsetakul
[LV88]), QUEST (Loh and Shih [LS97]), PUBLIC (Rastogi and Shim [RS98]), and
CHAID (Kass [Kas80] and Magidson [Mag94]). INFERULE (Uthurusamy, Fayyad, and
Spangler [UFS91]) learns decision trees from inconclusive data, where probabilistic
rather than categorical classification rules are obtained. KATE (Manago and Kodratoft
[MK91]) learns decision trees from complex structured data. Incremental versions of
ID3 include ID4 (Schlimmer and Fisher [SF86]) and ID5 (Utgoff [Utg88]), the latter
of which is extended in Utgoff, Berkman, and Clouse [UBC97]. An incremental ver-
sion of CART is described in Crawford [Cra89]. BOAT (Gehrke, Ganti, Ramakrishnan,
and Loh [GGRL99]), a decision tree algorithm that addresses the scalability issue in
data mining, is also incremental. Other decision tree algorithms that address scalability
include SLIQ (Mehta, Agrawal, and Rissanen [MAR96]), SPRINT (Shafer, Agrawal, and
Mehta [SAM96]), RainForest (Gehrke, Ramakrishnan, and Ganti [GRG98]), and earlier
approaches such as Catlet [Cat91] and Chan and Stolfo [CS93a, CS93b].

For a comprehensive survey of many salient issues relating to decision tree induc-
tion, such as attribute selection and pruning, see Murthy [Mur98]. Perception-based
classification (PBC), a visual and interactive approach to decision tree construction, is
presented in Ankerst, Elsen, Ester, and Kriegel [AEEK99].

For a detailed discussion on attribute selection measures, see Kononenko and Hong
[KH97]. Information gain was proposed by Quinlan [Qui86] and is based on pio-
neering work on information theory by Shannon and Weaver [SW49]. The gain ratio,
proposed as an extension to information gain, is described as part of C4.5 (Quinlan
[Qui93]). The Gini index was proposed for CART in Breiman, Friedman, Olshen, and

www.rulequest.com

390 Chapter 8 Classification: Basic Concepts

Stone [BFOS84]. The G-statistic, based on information theory, is given in Sokal and
Rohlf [SR81]. Comparisons of attribute selection measures include Buntine and Niblett
[BN92], Fayyad and Irani [F192], Kononenko [Kon95], Loh and Shih [LS97], and Shih
[Shi99]. Fayyad and Irani [FI92] show limitations of impurity-based measures such as
information gain and the Gini index. They propose a class of attribute selection mea-
sures called C-SEP (Class SEParation), which outperform impurity-based measures in
certain cases.

Kononenko [Kon95] notes that attribute selection measures based on the minimum
description length principle have the least bias toward multivalued attributes. Martin
and Hirschberg [MH95] proved that the time complexity of decision tree induction
increases exponentially with respect to tree height in the worst case, and under fairly
general conditions in the average case. Fayad and Irani [FI90] found that shallow deci-
sion trees tend to have many leaves and higher error rates for a large variety of domains.
Attribute (or feature) construction is described in Liu and Motoda [LM98a, LM98b].

There are numerous algorithms for decision tree pruning, including cost complex-
ity pruning (Breiman, Friedman, Olshen, and Stone [BFOS84]), reduced error pruning
(Quinlan [Qui87]), and pessimistic pruning (Quinlan [Qui86]). PUBLIC (Rastogi and
Shim [RS98]) integrates decision tree construction with tree pruning. MDL-based prun-
ing methods can be found in Quinlan and Rivest [QR89]; Mehta, Agrawal, and Rissanen
[MAR96]; and Rastogi and Shim [RS98]. Other methods include Niblett and Bratko
[NB86] and Hosking, Pednault, and Sudan [HPS97]. For an empirical comparison of
pruning methods, see Mingers [Min89] and Malerba, Floriana, and Semeraro [MFS95].
For a survey on simplifying decision trees, see Breslow and Aha [BA97].

Thorough presentations of Bayesian classification can be found in Duda, Hart, and
Stork [DHS01], Weiss and Kulikowski [WK91], and Mitchell [Mit97]. For an anal-
ysis of the predictive power of naive Bayesian classifiers when the class-conditional
independence assumption is violated, see Domingos and Pazzani [DP96]. Experiments
with kernel density estimation for continuous-valued attributes, rather than Gaussian
estimation, have been reported for naive Bayesian classifiers in John [Joh97].

There are several examples of rule-based classifiers. These include AQ15 (Hong,
Mozetic, and Michalski [HMMS86]), CN2 (Clark and Niblett [CN89]), ITRULE (Smyth
and Goodman [SG92]), RISE (Domingos [Dom94]), IREP (Furnkranz and Widmer
[FW94]), RIPPER (Cohen [Coh95]), FOIL (Quinlan and Cameron-Jones [Qui90,
QC-J93]), and Swap-1 (Weiss and Indurkhya [WI98]). Rule-based classifiers that are
based on frequent-pattern mining are described in Chapter 9. For the extraction of
rules from decision trees, see Quinlan [Qui87, Qui93]. Rule refinement strategies that
identify the most interesting rules among a given rule set can be found in Major and
Mangano [MM95].

Issues involved in estimating classifier accuracy are described in Weiss and Kulikowski
[WK91] and Witten and Frank [WF05]. Sensitivity, specificity, and precision are dis-
cussed in most information retrieval textbooks. For the F and Fg measures, see van
Rijsbergen [vR90]. The use of stratified 10-fold cross-validation for estimating classi-
fier accuracy is recommended over the holdout, cross-validation, leave-one-out (Stone
[Sto74]), and bootstrapping (Efron and Tibshirani [ET93]) methods, based on a

8.9 Bibliographic Notes 391

theoretical and empirical study by Kohavi [Koh95]. See Freedman, Pisani, and Purves
[FPP07] for the confidence limits and statistical tests of significance.

For ROC analysis, see Egan [Ega75], Swets [Swe88], and Vuk and Curk [VCO06]. Bag-
ging is proposed in Breiman [Bre96]. Freund and Schapire [FS97] proposed AdaBoost.
This boosting technique has been applied to several different classifiers, including deci-
sion tree induction (Quinlan [Qui96]) and naive Bayesian classification (Elkan [Elk97]).
Friedman [Fri01] proposed the gradient boosting machine for regression. The ensem-
ble technique of random forests is described by Breiman [Bre01]. Seni and Elder [SE10]
proposed the Importance Sampling Learning Ensembles (ISLE) framework, which views
bagging, AdaBoost, random forests, and gradient boosting as special cases of a generic
ensemble generation procedure.

Friedman and Popescu [FB08, FP05] present Rule Ensembles, an ISLE-based model
where the classifiers combined are composed of simple readable rules. Such ensembles
were observed to have comparable or greater accuracy and greater interpretability. There
are many online software packages for ensemble routines, including bagging, AdaBoost,
gradient boosting, and random forests. Studies on the class imbalance problem and/or
cost-sensitive learning include Weiss [Wei04], Zhou and Liu [ZL06], Zapkowicz and
Stephen [ZS02], Elkan [Elk01], and Domingos [Dom99].

The University of California at Irvine (UCI) maintains a Machine Learning Repos-
itory of data sets for the development and testing of classification algorithms. It also
maintains a Knowledge Discovery in Databases (KDD) Archive, an online repository of
large data sets that encompasses a wide variety of data types, analysis tasks, and appli-
cation areas. For information on these two repositories, see www.ics.uci.edu/~mlearn/
MLRepository.html and http://kdd.ics.uci.edu.

No classification method is superior to all others for all data types and domains.
Empirical comparisons of classification methods include Quinlan [Qui88]; Shavlik,
Mooney, and Towell [SMT91]; Brown, Corruble, and Pittard [BCP93]; Curram and
Mingers [CM94]; Michie, Spiegelhalter, and Taylor [MST94]; Brodley and Utgoff
[BU95]; and Lim, Loh, and Shih [LLS00].

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://kdd.ics.uci.edu

	Classification: Basic Concepts
	Basic Concepts
	What Is Classification?
	General Approach to Classification

	Decision Tree Induction
	Decision Tree Induction
	Attribute Selection Measures
	Information Gain
	Gain Ratio
	Gini Index
	Other Attribute Selection Measures

	Tree Pruning
	Scalability and Decision Tree Induction
	Visual Mining for Decision Tree Induction

	Bayes Classification Methods
	Bayes' Theorem
	Naïve Bayesian Classification

	Rule-Based Classification
	Using IF-THEN Rules for Classification
	Rule Extraction from a Decision Tree
	Rule Induction Using a Sequential Covering Algorithm
	Rule Quality Measures
	Rule Pruning

	Model Evaluation and Selection
	Metrics for Evaluating Classifier Performance
	Holdout Method and Random Subsampling
	Cross-Validation
	Bootstrap
	Model Selection Using Statistical Tests of Significance
	Comparing Classifiers Based on Cost–Benefit and ROC Curves

	Techniques to Improve Classification Accuracy
	Introducing Ensemble Methods
	Bagging
	Boosting and AdaBoost
	Random Forests
	Improving Classification Accuracy of Class-Imbalanced Data

	Summary
	Exercises
	Bibliographic Notes

	ctip Field 1:
	ctip Field 3:
	ctip Field 4:
	ctip Field 5:
	ctip Field 6:
	ctip Field 7:
	ctip Field 8:
	ctip Field 9:
	ctip Field 10:
	ctip Field 11:
	ctip Field 12:
	ctip Field 13:
	ctip Field 14:
	ctip Field 15:

