
Απαλοιφή Gauss



Μέθοδος λύσης γραμμικών συστημάτων

Όταν το πλήθος των εξισώσεων είναι μεγάλο (χιλιάδες άγνωστοι) πρέπει να λαμβάνονται υπόψη 

ζητήματα όπως ο χρόνος επίλυσης, το μέγεθος της μνήμης, τα λάθη στρογγυλοποίησης. Η βάση των 
τεχνικών είναι η μέθοδος που θα αναλύσουμε για μικρά συστήματα.


Συμβολίζω τις γραμμές με Γn και εκτελώ τις επιτρεπτές στοιχιώδεις γραμμοπράξεις στον επαυξημένο 
πίνακα του συστήματος.
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Οι λύσεις του συστήματος (1,2,3) είναι προφανείς από τον τελευταίο πίνακα, ο οποίος είναι σε ανηγμένη κλιμακωτή μορφή.



Κλιμακωτή μορφή πίνακα 
• Όταν μια σειρά δεν είναι μηδενική, το πρώτο μη μηδενικό νούμερο σε αυτή είναι το 1 (οδηγό στοιχείο).

• Οι μηδενικές σειρές βρίσκονται στο τέλος του πίνακα.

• Σε δύο διαδοχικές μη μηδενικές σειρές το οδηγό στοιχείο 1 στη χαμηλότερη σειρά είναι πιο δεξιά από 
το οδηγό στοιχείο 1 στην ψηλότερη σειρά 


Ανηγμένη κλιμακωτή μορφή πίνακα 
• Κλιμακωτή μορφή

• Κάθε στήλη που περιέχει οδηγό στοιχείο 1, έχει όλα τα άλλα στοιχεία της ίσα με το μηδέν. 

Στην κλιμακωτή μορφή κάτω από τα στοιχεία οδηγούς 1 υπάρχουν μηδενικά ενώ στην 
ανηγμένη κλιμακωτή μορφή υπάρχουν μηδενικά και πάνω και κάτω από τους οδηγούς 1.
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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear
equations. The procedure is based on the idea of performing certain operations on the rows
of the augmented matrix that simplify it to a form from which the solution of the system
can be ascertained by inspection.

Considerations in Solving
Linear Systems

When considering methods for solving systems of linear equations, it is important to
distinguish between large systems that must be solved by computer and small systems
that can be solved by hand. For example, there are many applications that lead to
linear systems in thousands or even millions of unknowns. Large systems require special
techniques to deal with issues of memory size, roundoff errors, solution time, and so
forth. Such techniques are studied in the field of numerical analysis and will only be
touched on in this text. However, almost all of the methods that are used for large
systems are based on the ideas that we will develop in this section.

Echelon Forms In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z

by reducing the augmented matrix to the form



1 0 0 1
0 1 0 2
0 0 1 3





from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.




1 0 0 4
0 1 0 7
0 0 1 −1



 ,




1 0 0
0 1 0
0 0 1



 ,





0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0




,

[
0 0
0 0

]

The following matrices are in row echelon form but not reduced row echelon form.



1 4 −3 7
0 1 6 2
0 0 1 5



 ,




1 1 0
0 1 0
0 0 0



 ,




0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1




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Κλιμακωτή μορφή 

Ανηγμένη κλιμακωτή μορφή

Εάν ο επαυξημένος πίνακας ενός συστήματος μετατραπεί στον ισοδύναμο ανηγμένο 
κλιμακωτό, είναι προφανής η λύση του συστήματος.



Από τον επαυξημένο πίνακα ενός συστήματος γραμμικών εξισώσεων,  προέκυψε ο παρακάτω 
ισοδύναμος πίνακας μετά από στοιχειώδεις πράξεις γραμμών.
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EXAMPLE 2 More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading
1. Thus, with any real numbers substituted for the ∗’s, all matrices of the following types
are in row echelon form:





1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1




,





1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0




,





1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0




,





0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗





All matrices of the following types are in reduced row echelon form:





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




,





1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0




,





1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0




,





0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗





If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and
x4 has been reduced by elementary row operations to





1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5





This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5.

In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
(3, −1, 0, 5).

EXAMPLE 4 Linear Systems inThree Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, y, and z has been reduced by elementary row operations to the given reduced row
echelon form. Solve the system.

(a)




1 0 0 0
0 1 2 0
0 0 0 1



 (b)




1 0 3 −1
0 1 −4 2
0 0 0 0



 (c)




1 −5 1 4
0 0 0 0
0 0 0 0





Η λύση του συστήματος είναι (3, -1, 0, 5)
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Κρίνοντας από την τελευταία σειρά το σύστημα είναι ασύμβατο. 
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
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If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and
x4 has been reduced by elementary row operations to





1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5





This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5.

In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
(3, −1, 0, 5).

EXAMPLE 4 Linear Systems inThree Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, y, and z has been reduced by elementary row operations to the given reduced row
echelon form. Solve the system.

(a)




1 0 0 0
0 1 2 0
0 0 0 1



 (b)




1 0 3 −1
0 1 −4 2
0 0 0 0



 (c)




1 −5 1 4
0 0 0 0
0 0 0 0





Οι οδηγοί των δύο πρώτων σειρών αντιστοιχούν στους δύο πρώτους αγνώστους (έστω x,y). 
Ο τρίτος άγνωστος (z) θα θεωρηθεί ελεύθερη μεταβλητή και οι άλλες δύο (x,y) θα 

εκφραστούν σε συνάρτηση με αυτή. 

Παραμετρική μορφή λύσης (-1-3t,  2+4t, t)
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In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
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 (c)




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Δύο ελεύθερες μεταβλητές (y,z).


Παραμετρική μορφή λύσης (4+5s-t, s, t)  : Γενική λύση



Η διαδικασία της απαλοιφής Gauss - Jordan είναι η προσπάθεα μετατροπής του 
επαυξημένου πίνακα του συστήματος σε ανηγμένη κλιμακωτή μορφή, με επιτρεπτές 

πράξεις σειρών.

Εντοπίζουμε την πρώτη (πιο αριστερά) μη μηδενική στήλη
Αλλάζουμε αμοιβαία σειρές ώστε το πρώτο στοιχείο της παραπάνω μη μηδενικής στήλης να μην είναι μηδέν.
Με επιτρεπτές πράξεις μετατρέπουμε το παραπάνω στοιχείο σε 1 (πρώτος οδηγός).
Με επιτρεπτές πράξεις μετατρέπουμε όλα τα στοιχεία κάτω από τον πρώτο οδηγό σε μηδέν.
Καλύπτουμε την πρώτη σειρά κι επαναλαμβάνουμε την ίδια διαδικασία ώστε να φτάσουμε τον πίνακα σε κλιμακωτή μορφή.

Ξεκινώντας από την τελευταία μη μηδενική σειρά κάνουμε επιτρεπτές πράξεις προς τα πάνω ώστε να μηδενιστούν και 
τα στοιχεία πάνω από τους οδηγούς σε κάθε στήλη μέχρι να φτάσουμε στην ανηγμένη κλιμακωτή μορφή.
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x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5.

In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
(3, −1, 0, 5).
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Elimination Methods We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row echelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.




0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1





Step 1. Locate the leftmost column that does not consist entirely of zeros.




0 0 2 0 7 12
2 4 10 6 12 28
2 4 5 6 5 1





Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.




2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 −1



 The first and second rows in the preceding
matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply
the first row by 1/a in order to introduce a leading 1.




1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 −1



 The first row of the preceding matrix was
multiplied by 1

2 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.




1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −29



 −2 times the first row of the preceding
matrix was added to the third row.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 5 0 17 29



 The !rst row in the submatrix was
multiplied by 1

2
                              to introduce a
leading 1.




1 2 5 3 6 14
0 0 2 0 7 12
0 0 5 0 17 29





Leftmost nonzero column
in the submatrix

Εντοπίζουμε την πρώτη (πιο αριστερά) μη μηδενική στήλη.
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Αλλάζουμε αμοιβαία σειρές ώστε το πρώτο στοιχείο της παραπάνω μη μηδενικής στήλης να μην είναι 
μηδέν.
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Με επιτρεπτές πράξεις μετατρέπουμε το παραπάνω στοιχείο σε 1 (πρώτος οδηγός).
(1/2)Γ1
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0 0 5 0 −17 −29



 −2 times the first row of the preceding
matrix was added to the third row.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 5 0 17 29



 The !rst row in the submatrix was
multiplied by 1

2
                              to introduce a
leading 1.




1 2 5 3 6 14
0 0 2 0 7 12
0 0 5 0 17 29





Leftmost nonzero column
in the submatrix

Με επιτρεπτές πράξεις μετατρέπουμε όλα τα στοιχεία κάτω από τον πρώτο οδηγό σε μηδέν.
Γ3-2Γ1
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Elimination Methods We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row echelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.




0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1





Step 1. Locate the leftmost column that does not consist entirely of zeros.




0 0 2 0 7 12
2 4 10 6 12 28
2 4 5 6 5 1





Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.




2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 −1



 The first and second rows in the preceding
matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply
the first row by 1/a in order to introduce a leading 1.




1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 −1



 The first row of the preceding matrix was
multiplied by 1

2 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.




1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −29



 −2 times the first row of the preceding
matrix was added to the third row.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 5 0 17 29



 The !rst row in the submatrix was
multiplied by 1

2
                              to introduce a
leading 1.




1 2 5 3 6 14
0 0 2 0 7 12
0 0 5 0 17 29





Leftmost nonzero column
in the submatrix

Καλύπτουμε την πρώτη σειρά κι επαναλαμβάνουμε την ίδια διαδικασία ώστε να 
φτάσουμε τον πίνακα σε κλιμακωτή μορφή.
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


1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1
2 1



 The top row in the submatrix was
covered, and we returned again to
Step 1.

Leftmost nonzero column
in the new submatrix




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1
2 1



 –5 times the !rst row of the submatrix
was added to the second row of the
submatrix to introduce a zero below
the leading 1.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1 2



 The !rst (and only) row in the new
submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we
need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.




1 2 −5 3 6 14
0 0 1 0 0 1
0 0 0 0 1 2



 7
2 times the third row of the preceding
matrix was added to the second row.




1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2



 −6 times the third row was added to the
first row.




1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2



 5 times the second row was added to the
first row.

The last matrix is in reduced row echelon form.
The procedure (or algorithm) we have just described for reducing a matrix to reduced

row echelon form is called Gauss–Jordan elimination. This algorithm consists of two
parts, a forward phase in which zeros are introduced below the leading 1’s and a backward
phase in which zeros are introduced above the leading 1’s. If only theforward phase is

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Historical Note Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear when the great
German mathematician Carl Friedrich Gauss used it to help compute the orbit
of the asteroid Ceres from limited data. What happened was this: On January 1,
1801 the Sicilian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations
but then lost the object as it neared the Sun. Gauss, then only 24 years old,
undertook the problem of computing the orbit of Ceres from the limited data
using a technique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work of Gauss cre-
ated a sensation when Ceres reappeared a year later in the constellation Virgo
at almost the precise position that he predicted! The basic idea of the method
was further popularized by the German engineer Wilhelm Jordan in his book
on geodesy (the science of measuring Earth shapes) entitled Handbuch derVer-
messungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
Leemage/Universal Images Group/Getty Images (Jordan)]

Ξεκινώντας από την τελευταία μη μηδενική σειρά κάνουμε επιτρεπτές πράξεις προς τα πάνω ώστε να μηδενιστούν και 
τα στοιχεία πάνω από τους οδηγούς σε κάθε στήλη μέχρι να φτάσουμε στην ανηγμένη κλιμακωτή μορφή.
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


1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1
2 1



 The top row in the submatrix was
covered, and we returned again to
Step 1.

Leftmost nonzero column
in the new submatrix




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1
2 1



 –5 times the !rst row of the submatrix
was added to the second row of the
submatrix to introduce a zero below
the leading 1.




1 2 5 3 6 14

0 0 1 0 7
2 6

0 0 0 0 1 2



 The !rst (and only) row in the new
submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we
need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.




1 2 −5 3 6 14
0 0 1 0 0 1
0 0 0 0 1 2



 7
2 times the third row of the preceding
matrix was added to the second row.




1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2



 −6 times the third row was added to the
first row.




1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2



 5 times the second row was added to the
first row.

The last matrix is in reduced row echelon form.
The procedure (or algorithm) we have just described for reducing a matrix to reduced

row echelon form is called Gauss–Jordan elimination. This algorithm consists of two
parts, a forward phase in which zeros are introduced below the leading 1’s and a backward
phase in which zeros are introduced above the leading 1’s. If only theforward phase is

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Historical Note Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear when the great
German mathematician Carl Friedrich Gauss used it to help compute the orbit
of the asteroid Ceres from limited data. What happened was this: On January 1,
1801 the Sicilian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations
but then lost the object as it neared the Sun. Gauss, then only 24 years old,
undertook the problem of computing the orbit of Ceres from the limited data
using a technique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work of Gauss cre-
ated a sensation when Ceres reappeared a year later in the constellation Virgo
at almost the precise position that he predicted! The basic idea of the method
was further popularized by the German engineer Wilhelm Jordan in his book
on geodesy (the science of measuring Earth shapes) entitled Handbuch derVer-
messungskunde and published in 1888.
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