
2nd Reading

October 8, 2013 11:10 1350029

International Journal of Neural Systems, Vol. 23, No. 6 (2013) 1350029 (14 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129065713500299

EVOLVING RBF NEURAL NETWORKS FOR ADAPTIVE
SOFT-SENSOR DESIGN

ALEX ALEXANDRIDIS
Department of Electronics

Technological Educational Institute of Athens
Agiou Spiridonos Aigaleo 12210, Greece

alexx@teiath.gr

Accepted 20 August 2013
Published Online 10 October 2013

This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF)
neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF
network, which approximates the unknown system based on input–output data from it. The methodology
gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the
structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the
synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm.
The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and
a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to
model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely
a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online
backpropagation, highlights the advantages of the proposed methodology.
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1. Introduction

Soft-sensors are virtual sensors, with the ability
to estimate the values of physical quantities, with-
out actually measuring them. Soft-sensors usually
employ input variables that are associated with
the physical quantity to be estimated, but can be
measured with less effort and/or cost. Based on
the approach used for producing the correlation,
soft-sensors can be categorized as model-driven or
data-driven.1 Model-driven soft-sensors rely on first
principle models in order to describe the mechanisms
that correlate the measured variables with the vari-
able to be estimated. The development of such mod-
els can be rather cumbersome and time consuming,
as quite often the physicochemical phenomena that
lie in the background are poorly understood. Fur-
thermore, such models are process-specific, so their
applicability is rather limited. Data-driven sensors on

the other hand, do not require explicit knowledge of
first-principle equations describing the system, but
are based on historical data derived from it. The
recorded data are usually correlated using compu-
tational techniques including computational intelli-
gence tools, multivariate statistical methods, etc.

Among computational intelligence tools, neural
networks (NNs) have become very popular for the
development of soft-sensors, due to their ability to
identify and learn highly complex and nonlinear
relationships by employing a black-box approach,
i.e. without requiring any a priori knowledge about
the process, but based on input–output data only.
A soft-sensor based on feedforward NNs has been
employed for real-time prediction of the moisture
and fat content in olive pomace.2 Fortuna et al.3

present a number of strategies for improving the
generalization capabilities of NN-based soft-sensors
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when small data sets are available. An NN-based
predictive tool for estimating toxicity levels to Vib-
rio fischeri4 has also been proposed. Singh et al.5

present an artificial NN-based soft estimator of
transducer static nonlinearity. An artificial nose was
developed,6 based on hybrid neural systems. The
use of NNs in building soft-sensors has been thor-
oughly exploited in medicine, mainly as diagnostic
tools,7–10 and in civil engineering as tools for damage
detection and integrity monitoring in buildings and
infrastructures.11–20 Other applications include fail-
ure and fault detection,21–23 traffic modeling,24–27

remote sensing,28–31 and face recognition.32 Fuzzy
logic33 and principal component analysis34 have also
been used for building data-driven soft-sensors.

Though such tools have been proven able to
provide accurate predictions in static environments,
they fail to take into account data retrieved from new
experiments. However, an important concern in mod-
eling dynamical systems is that often their dynamics
vary with time. Therefore, a static data-driven model
may not be adequate for providing accurate pre-
dictions, especially throughout a long time horizon.
To this end, a number of adaptive modeling tech-
niques have been proposed in the literature, updating
online the model’s structure and/or parameters. An
adaptive conjugate gradient learning algorithm was
introduced for effective training of multilayer NNs.35

Wang et al.36 introduced an online self-organizing
scheme for parsimonious and accurate fuzzy neu-
ral networks (PAFNN), and a novel structure learn-
ing algorithm incorporating a pruning strategy into
novel growth criteria. An online fuzzy NN is pre-
sented by Liu and Er37 and the proposed algorithm
is tested in a wide range of applications ranging
from function approximation and nonlinear system
identification to chaotic time-series prediction and
real-world fuel consumption prediction problems. A
biologically motivated architecture for object recog-
nition that is capable of online learning of several
objects based on interaction with a human teacher
has also been proposed.38 Beyer and Cimiano39

present a novel online semi-supervised classification
approach based on growing neural gas. Competi-
tive, temporally asymmetric Hebbian learning has
been used for training an adaptive visual neuronal
model.40 A resource allocating network for function
interpolation has been introduced by Platt.41 Tolu
et al.42 present an automatic incremental learning

model, which learns the forward model of a robot
arm. An adaptive version of the k-means algorithm
applied for overlapped graph clustering has been
presented by Bello-Orgaz et al.43 The adaptation
capabilities of fuzzy-based systems have also been
thoroughly exploited.44–47

Not surprisingly, evolving modeling techniques
have been incorporated in soft-sensor schemes, lead-
ing to the development of adaptive soft-sensors.
An adaptive soft-sensor which can be deployed in
real-life environments is presented by Kadlec and
Gabrys.1 Bo et al.48 report a successful application of
an adaptive soft-sensor based on NNs to an advanced
control system. An adaptive data-driven soft-sensor
based on systematic key variable selection of a pro-
cess system, where the key variables are captured
using stepwise linear regression is derived by Ma
et al.49 A critical mechanical property of cement-
based materials was predicted in a nondestructive
manner based on an adaptive soft-sensor.50 Frequent
sequential pattern mining (FSPM) methods for dis-
covering significant evolution patterns from satellite
images have also been used.51 Two interesting publi-
cations present the application of NN-based adaptive
soft-sensors in robotics.52,53 A review of adaptation
mechanisms for data-driven soft-sensors is given by
Kadlec et al.54 Undoubtedly there is a large field for
adaptive soft-sensor-based applications, a fact which
dictates the need for the development of adaptive
modeling techniques with greater accuracy and low
computational load.

Radial basis function (RBF) networks55 consti-
tute a popular NN architecture that has recently
attracted attention from many researchers56–67 due
to the inherent simplicity of its structure and the
fast training algorithms it employs. The fuzzy means
(FM) algorithm is a powerful RBF training technique
based on fuzzy clustering,68 that has been intro-
duced a decade ago69 in order to replace the k-means
algorithm in the selection of the RBF hidden layer
nodes. The FM algorithm presents several advan-
tages over the typical approach, including faster com-
putational times and automatic determination of
the size of the network, and has found many suc-
cessful applications for modeling70 and control71 of
nonlinear systems. Recently a nonsymmetric vari-
ant of the algorithm with improved prediction
capabilities has been introduced.72 The aforemen-
tioned work is based on evolutionary computation
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techniques,19,73–78 in order to optimize the RBF net-
work in offline mode.

As far as online training of RBF networks is
concerned though, a relatively small number of
algorithms has been proposed in the literature;
Fung et al.79 employed a procedure that combines
an online candidate regressor selection with the
given QR recursive parameter estimator for adap-
tive supervised network training. The algorithm may
need to reinitiate the clustering procedure, in case
the structure of the system changes. Liu et al.80

used Volterra polynomial basis functions (VPBFs)
to develop a growing network technique for online
structure selection. The algorithm needs an initial
offline structure selection procedure and does not
have the ability to eliminate basis functions when
they become redundant. A sequential growing and
pruning algorithm for RBF networks was proposed
by Huang et al.81 The algorithm uses the concept
of significance of a neuron and links it to learn-
ing accuracy. The significance is calculated using
a piecewise-linear approximation for the Gaussian
function, which, however, is efficient only for uni-
formly distributed input data.

In this work, we adopt the online variant of
the FM algorithm82 for the development of evolving
RBF network models. This approach presents sev-
eral advantages: (a) it exploits the improved accu-
racy and faster computational times of the original
FM algorithm, in time-varying environments, (b) the
method starts with an empty hidden layer and incre-
mentally builds the RBF network by adding and
deleting nodes as new data become available, (c) its
performance is not affected by the distribution of
the input data and (d) it does not use an iterative
procedure to update the network at each time step
and does not depend on an initial random selection
of parameters. The adaptive FM algorithm is incor-
porated into a novel framework for building adap-
tive soft-sensors, able to evolve their structure and
parameters online, taking into account new infor-
mation coming from the system under identifica-
tion. The methodology is evaluated on the online
identification of two different nonlinear systems,
namely a simulated DC motor and a real digester
reactor.

The rest of this paper is organized as follows:
In the next section, a brief overview of the con-
cept of fuzzy partition and the FM algorithm are

given. Section 3 presents the adaptive RBF network
training methodology, and its incorporation to the
soft-sensor framework. Section 4 illustrates the adap-
tive soft-sensor development, and provides results
from its application on two cases. The paper con-
cludes by outlining the advantages of the proposed
approach.

2. The FM Algorithm

Consider a system with N normalized input variables
xi, where i = 1, . . . , N . The domain of each input
variable is partitioned into an equal number c of one-
dimensional triangular fuzzy sets. Each fuzzy set can
be written as:

Ai,j = {ai,j , δα}, i = 1, . . . , N, j = 1, . . . , c,

(1)

where ai,j is the center element of fuzzy set Ai,j

and δα is half of the respective width (due to the
symmetric partition all the widths are equal). This
partitioning technique creates a total of cN multi-
dimensional fuzzy subspaces Al, where l = 1, . . . , cN .
Each multi-dimensional fuzzy subspace is generated
by combining N one-dimensional fuzzy sets, one
for each input dimension. One can define the cen-
ter vector αl and the side vector δα of each fuzzy
subspace:

Al = {αl, δα}

=


[al

1,j , a
l
2,j, . . . , a

l
N,j],


δα, δα, . . . , δα︸ ︷︷ ︸

N




 ,

l = 1, . . . , cN

(2)

where al
i,ji

is the center element of the one-
dimensional fuzzy set Ai,ji that has been assigned
to input i. Each one of the produced fuzzy subspaces
is a candidate for becoming an RBF center but only
a few of those will be finally selected. The selection
is based on the idea of the multi-dimensional mem-
bership function µAl(x(k)) of an input vector x(k)
to a fuzzy subspace Al, given by Nie83:

µAl(x(k)) =

{
1 − rdl(x(k)), if rdl(x(k)) ≤ 1

0 otherwise
,

(3)
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where rd l(x(k)) is the Euclidean relative distance
between Al and the input data vector x(k):

rdl(x(k)) =

√√√√ N∑
i=1

(al
i,ji

− xi(k))2
/√

Nδa. (4)

Equation (4) defines a hyper-sphere on the input
space with radius equal to

√
Nδa. The objective of

the training algorithm is to select a subset of fuzzy
subspaces as RBF centers, so that all the train-
ing data are covered by at least one hypersphere.
Expressing this requirement in terms of Eq. (3), the
subset of fuzzy subspaces is selected so that there is
at least one fuzzy subspace that assigns a nonzero
multi-dimensional degree to each input training vec-
tor. The algorithm responsible for the selection of
this subset is described in Ref. 69 followed by an
analysis of its low computational complexity. As this
is a one-pass algorithm, it has been found to handle
successfully large databases, as well as datasets of
reasonably high input dimensionality.72

3. Adaptive RBF-Based Soft-Sensor
Development

3.1. Adaptive RBF network training

An online version of the FM algorithm has been
introduced,82 allowing the RBF network to adapt its
parameters online to new data received from the sys-
tem under identification. The adaptive version does
not need an initial NN model. It starts with zero
hidden nodes and progressively builds the model as
new data become available. Obviously, the predic-
tions of the model are not very successful in the first
steps, but as soon as more data are fed into the net-
work, the prediction ability of the network is gradu-
ally improved.

The adaptive technique which will be described
briefly in this subsection, relies on the fuzzy parti-
tion of the input space, described in the previous
section. The method considers all the centers of the
fuzzy subspaces as candidates for locating the hidden
nodes of the network. However, among all the can-
didate centers, the algorithm dynamically identifies
and selects only the subset of fuzzy subspaces that
are close to the input examples. As will be shown
subsequently, this is accomplished by employing the
spherical-shaped membership function of Eq. (4).
At each time instant the number of selected fuzzy

subspaces is equal to the number of nodes in the hid-
den layer and the centers of the selected subspaces
coincide with the centers of the hidden nodes. There-
fore, at any time point a complete RBF model is
available, which is first used for predicting the future
behavior of the output variables and then is updated
based on the proposed algorithm.

The adaptive FM algorithm evolves the RBF net-
work based on two levels of adaptation, namely:

(a) Adaptation of the connection weights between
the hidden layer and the output layer.

(b) Adaptation of the structure of the hidden layer
based on a fuzzy partition of the input space.

An overview of the algorithm is given in Fig. 1.
As far as the first level of adaptation is concerned,

the connection weights w of the hidden layer are
updated using the Recursive Least Squares (RLS)
with exponential forgetting algorithm,84 according to
the following equations:

w(k) = w(k − 1) + q(k)(y(k) − zT (k)w(k − 1))

q(k) = P(k − 1)z(k)(λ + zT (k)P(k − 1)z(k))−1

P(k) = (I − q(k)zT (k))P(k − 1)/λ

,

(5)

where k stands for the current sample number, y

stands for the output variable, z are the responses of
the hidden layer nodes, P is the inverse of the covari-
ance matrix, and λ is the forgetting factor. Applying
the forgetting factor implies that a data point that
is n times old, will be weighted by λn.

However, due to the local approximation
approach of RBF networks, this type of adaptation
may not be adequate when a new data point arrives,
which is not sufficiently covered by the existing cen-
ters. In order to address this situation, the algorithm
introduces the second level of adaptation, where new
hidden nodes are added in order to describe data
points that lie outside of the area covered by exist-
ing centers. As the continuous addition of hidden
nodes could lead to large network configurations
and increased computational complexity, the algo-
rithm also provides suitable means for deleting hid-
den nodes when they become redundant.

As soon as the first input example arrives from
the system, the algorithm determines the fuzzy sub-
space that is closer to that data point in the relative
Euclidean distance sense (Eq. (4)). The center of this
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First data [x(1),y(1)]

Determine the location of the 
first center

Update AHVCheck if a new 
hidden node is 

needed

Check if a hidden 
node should be 

deleted

Structure adaptation

Connection weight 
adaptation

New data [x(k),y(k)]

NO

YES

NO

YES

Fig. 1. Overview of the adaptive FM algorithm.

subspace becomes the center of the first hidden node
and the respective fuzzy subspace initializes the list
of the selected subspaces. As soon as the first hid-
den node is determined, the algorithm initiates two
dynamic matrices, which are used to store impor-
tant information. These are the Center Location
Matrix (CLM) G and the Activation History Vector
(AHV) h. The CLM contains at each time instant the
centers of the hidden layer nodes and its dimension is
L×N where L is the number of the selected RBF cen-
ters and N is the dimensionality of the input space.
The structure of CLM is depicted in Fig. 2. The size
of the AHV is equal to the number of the selected
RBF centers L and contains the last time instant
that an input example was assigned to each fuzzy
subspace.

When a new input example becomes available,
the algorithm first checks whether the input vector
can be assigned to an already selected fuzzy subspace
using Eq. (4). If the answer is negative, a new node
should be added to the hidden layer. This is achieved
by selecting the fuzzy subspace which is closer to the
input vector in the Euclidean relative distance sense
and locating the center of the new hidden node, at

Fig. 2. Structure of the dynamically changing Center
Location Matrix.

the center of the selected subspace. In this case, the
new center is added to the CLM and the information
in the AHV is updated.

If the algorithm decides that no new hidden node
is needed, it checks whether an existing hidden node
has not been assigned during the last Nd time steps
to an input vector. If this is true, the hidden node is
deleted and the respective fuzzy subspace is removed
from the list of selected subspaces. In this way, the
algorithm manages to sustain a number of hidden
nodes that is sufficient enough to describe the sys-
tem, but at the same time the structure of the net-
work is kept within a reasonable size.
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In case a center is added or deleted, the con-
nection weights between the hidden layer and the
output layer need to be recalculated. This is achieved
by using a moving time window, where the last Ns

past input–output data are stored. The connection
weights are obtained by regressing the outputs of the
hidden layer (formulated after the addition or dele-
tion of a node) on the real outputs of the system. It
should be noted that the regression is based only on
the contents of the moving time window.

If the structure of the hidden layer remains unal-
tered, the method does not change the locations of
the hidden node centers and updates only the con-
nection weights between the hidden layer and the
output layer using the RLS with exponential forget-
ting algorithm.

More details regarding the online RBF train-
ing methodology can be found in the original
publication.82

3.2. Incorporation of the adaptive RBF
model to the soft-sensor

In order to incorporate the adaptive training algo-
rithm in a soft-sensor framework, an RBF network
is initialized with an empty hidden layer. As soon
as the first training example becomes available, the
first hidden node is added and the soft-sensor is ready
to provide predictions. Following the emergence of a
new input data point, the algorithm makes first a
prediction for the current value of the output vari-
able without the need to measure it. At the next
time step, the previous real output value is measured
offline, adaptation is performed, and then the algo-
rithm uses the updated model to predict the next

Adaptive Soft-Sensor

RBF Adaptation 
Mechanism

RBF Model

RBF Network 
Parameters

Previous input-
output example
[x(k-1) y(k-1)]

Current input 
Vector x(k)

Online output
prediction y(k)

Fig. 3. Adaptive soft-sensor operational scheme.

value of the output variable. The soft-sensor opera-
tion is visually depicted in Fig. 3.

4. Application: Design of Adaptive
Soft-Sensors for Modeling Nonlinear
Systems

The proposed methodology for building adaptive
soft-sensors was applied for online identification of
two different nonlinear systems, namely a simulated
DC Motor and a real chemical reactor known as
digester, commonly used in the pulp and paper
industry. For comparison purposes, two additional
adaptive models based on online learning state-of-
the-art techniques were applied, namely a dynamic
evolving neural-fuzzy inference system (DENFIS)85

and a model based on Multi-Layer Perceptron
(MLP) networks trained with an online backprop-
agation algorithm.86

Tuning of the proposed approach requires the
selection of the parameters affecting the adaptation
capabilities of the algorithm. To be more specific,
the size Ns of the moving time window used for stor-
ing past input–output data was set to 90, the num-
ber of time steps Nd that a center is not assigned
to an input example, before it is removed from the
hidden layer was set to 100, and the forgetting fac-
tor λ was set to a value of 0.85. These values were
common for both case studies. It was found that
the results are relatively insensitive to this selection,
when values close to the reported ones were applied.
Significantly decreasing these values could result to
instability, while the utilization of excessively larger
values results to very slow adaptation. The size devel-
opment of the evolving RBF network is controlled
by the number of fuzzy sets used for partitioning
the input dimensions. This parameter, together with
the corresponding parameter for the DENFIS model,
which is the distance threshold, and the number of
hidden nodes for the MLP networks, were optimized
separately for each case, based on a trial and error
procedure.

4.1. Case Study I: Online identification
of a simulated DC motor

The DC motor depicted in Fig. 4, can be
described by the following nonlinear state equations,
derived using fundamental electrical and mechanical
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Fig. 4. A nonlinear DC motor.

Table 1. Parameters for the nonlinear DC Motor.

Parameter Symbol Value

Rotor speed ωr State variable
Armature current ia State variable
Field current if State variable
Armature voltage Va Input
Field voltage Vf Input
Armature resistance Ra 10.5479 Ω
Field resistance Rf 320.6955 Ω

Armature inductance LAA 3.0948 × 10−6 H
Field inductance LFF 20.5245 H
Mutual inductance LAF 2.6116 H

Inertia J 0.015 kg ·m2

Coefficient of load torque BL 0.0021 N ·m · s

laws87:

dif
dt

=
Vf − Rf if

LFF
,

dia
dt

=
Va − Raia − LAF ifωr

LAA
(6)

dωr

dt
=

LAF if ia − BLωr

J
.

The notation is given in Table 1, together with
values for each one of the DC motor parameters. The
objective in this case is to build a soft-sensor based
on the adaptive FM algorithm in order to estimate
the rotor speed of the DC motor, without actually
having to measure it online, but using only offline
data for performing the adaptation task. The soft-
sensor is based on a discrete dynamic RBF model
comprising a total of 12 input variables:

wr(k) = RBF

(
Va(k − 1), . . . , Va(k − 6),

Vf (k − 1), . . . , Vf (k − 6)

)
. (7)

The particular input variables to the model were
chosen taking into account the sampling time, which
was equal to 1 s in this case, in conjunction with the

time lag needed for the DC motor to reach a steady
state after a change occurs to the input.

The RBF network is initialized with an empty
hidden layer. Following every discrete time step, the
soft-sensor adaptation mechanism is presented with
a new input–output data point. Based on the adap-
tive FM algorithm, the structure and the synaptic
weights of the RBF network are evolved in order to
describe the information contained in the new exam-
ples. Meanwhile the soft-sensor is available for pro-
viding predictions for the current value of the rotor
speed.
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Fig. 5. Case I: Evolution of the ARE% for the RBF-
based soft-sensor.
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Fig. 6. Case I: Evolution of the number of RBF centers.
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Fig. 7. Case I: Evolution of the Q statistic for the pairs
RBF/DENFIS and RBF/MLP; a negative sign for Q
implies an advantage for the RBF soft-sensor, whereas
a positive sign implies an advantage for its rivals.
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In order to test the soft-sensor, the DC Motor is
simulated by changing the values for the two input
voltages Va and Vf every 5 time steps. The values for
the two variables are drawn randomly, initially from
a uniform distribution within the range [20 40].
After 250 time steps, the range for variable selection
changes to [50 70]. The three adaptive soft-sensors,
namely the adaptive RBF, DENFIS and adaptive
MLP ones, are asked to predict the value of the cur-
rent rotor speed at each time step.

Figures 5 and 6 show the evolution of the abso-
lute relative error % (ARE%) and the number of
RBF centers, respectively, as far as the adaptive
RBF model is concerned, whereas Fig. 7 depicts
the Q statistic88 for the pairs RBF–DENFIS and
RBF–MLP. In order to properly evaluate the online
learning method proposed in this work, we use
a technique known as “Predictive Sequential” or
“Prequential”,88 where the error of a model is com-
puted from the sequence of examples. For each new
example in the stream, the actual model makes a pre-
diction and the prequential error is computed based
on an accumulated sum of a loss function between
the prediction and observed values. The Q statistic
is based on the prequential approach, and can further
be used to compare two evolving algorithms A and
B, by assessing their relative performance. It can be
calculated as follows:

Qi(A, B) = log
(

sA
i

sB
i

)
, (8)

where sA
i is the accumulated sum of a loss func-

tion between the predictions of algorithm A and the
observed values. In this work, the sum of squared
errors (SSE) is employed as the loss function; there-
fore sA

i is calculated as follows:

sA
i =

i∑
j=1

(yj − ŷA
j )2, (9)

where ŷA
j stands for the prediction of algorithm A

for the jth time instant. For this particular example,

Table 2. Case I: Error-based metrics for the three soft-
sensors.

Adaptive soft-sensor maxARE% MARE% stdARE%

RBF 7.98 0.68 0.61
DENFIS 14.1 0.98 0.88
MLP 32.64 1.84 1.69

the DENFIS algorithm was unable to provide a pre-
diction for the first 20 data-points, therefore the Q

statistic for the pair RBF/DENFIS is displayed from
time instant 20 onwards. Table 2 depicts values for
error-based metrics calculated over the entire time
span 20–450, namely the maximum absolute rela-
tive error %, (maxARE%), the mean absolute rel-
ative error % (MARE%) and the standard deviation
of the absolute relative error % (stdARE%), for the
three models.

As it can be seen in Fig. 5, the very first predic-
tions attempted by the RBF soft-sensor are rather
inaccurate. This is expected, as the number of exam-
ples presented to the network up to that point is
low, not allowing for the creation of an adequate
number of RBF centers. Based on the Q statistic,
as depicted in Fig. 7, the MLP-based adaptive soft-
sensor is ahead during the first 20 time instants,
whereas the DENFIS soft-sensor is unable to provide
any predictions at all during this time period. From
this point onwards, the RBF soft-sensor gains a clear
advantage over its MLP counterpart, and keeps it for
the rest of the simulation. As far as the comparison
with DENFIS is concerned, it takes 45 time instants
for the RBF soft-sensor to become better in terms of
the Q statistic, although it obviously has become bet-
ter earlier in terms of the prediction error. Though
DENFIS adapts itself more efficiently during the first
steps after time instant 20, the adaptive RBF model
clearly outperforms it later on, as soon as enough
RBF centers are added to the hidden layer.

As the simulation approaches time instant 250,
the number of RBF centers is approximately stabi-
lized to the value of 23. The change of input range
occurring at that time reflects a change in the operat-
ing region of the system, testing the adaptation capa-
bilities of the algorithms; only an adaptive model
could successfully track the change, as a station-
ary model would essentially be asked to perform
extrapolation. Following the change, the predictions
of the three adaptive models initially deteriorate, as
expected.

The adaptive FM algorithm adds centers to the
RBF network in order to cover the new region in
the input space and manages to quickly decrease the
modeling error caused by extrapolation. After the
change occurs, some of the previously selected RBF
centers become obsolete and thus are deleted from
the hidden layer. It can be seen that at the end of
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the simulation, the number of RBF nodes approx-
imately converges to 22; this value is close to the
number of RBF centers before the change occurred,
but also to 23 which was the number of fuzzy rules
produced by DENFIS at the end of the corresponding
simulation. Notice that immediately after the change
occurs, the Q statistic for the pair RBF/DENFIS
becomes more negative, which means that the RBF
soft-sensor adapts itself quicker to the new range of
inputs. A few time steps later, DENFIS manages to
compensate for the change and the Q statistic for
both pairs converges to steady values.

The superiority of the adaptive RBF-based soft-
sensor in this case is also confirmed by the metrics
of Table 2.

4.2. Case Study II: Online identification
of a real digester reactor

The continuous digester89 is a chemical reactor where
a very important process in a pulp and paper plant
takes place. Its role is to convert wood chips to pulp
by removing a wood component called lignin. The
removal of lignin is achieved through combined chem-
ical and thermal treatment, by means of adding a
special mixture called the white liquor. The residual
amount of lignin in the pulp exciting the digester
is the kappa number, which is a critical parameter,
affecting the quality of the produced paper. A typical
continuous digester is depicted in Fig. 8.

In many digesters, the kappa number is measured
offline, since online analyzers are expensive and often
unreliable. On the other hand, the complexity and
the high nonlinearity of the reactor makes it diffi-
cult to build soft-sensors for estimating the kappa
number in real time, using first principles or simple
stochastic methods. The use of black box identifica-
tion techniques is more successful, but there are still
some problems imposed by the fact that the reactor
exhibits frequent changes in its dynamic behavior.
Moreover, it is very often desirable to produce pulp
of different quality, which means changing the oper-
ating region of the digester. Due to these reasons,
an adaptive model would be very desirable, since
it could serve either as an inferential sensor for the
kappa number online estimation, or as the basis for
an advanced model-based control scheme. In fact, the
frequent changes in the dynamic behavior and oper-
ating region of the reactor pose serious challenges
even for adaptive algorithms.

Wood chips /

white liquor

Circulation 1

Circulation 2

Circulation 3
Produced

pulp

Fig. 8. A continuous digester.

For the particular application, a set of noisy
dynamical data from an industrial continuous
digester was available, consisting of 400 data points.
The proposed methodology was used to build a dis-
crete dynamic model that can predict the value of
kappa number on an hourly basis. The large sam-
pling time between predictions leaves enough time
for the previous value of kappa number to be mea-
sured offline and then used to adapt the model. The
input variables to the model were selected based on
a previous offline modeling study.90 To be more spe-
cific, the input vector consisted of hourly measured
temperatures in three circulation zones around the
reactor. Because of the very large retention times in
the digester, past values of up to 12 h for each vari-
able were used, summing up to a total of 36 input
variables.

Similarly to the previous case, the three adaptive
soft-sensors were employed for predicting the current
value of the kappa number at each time step. Fig-
ures 9 and 10 show the evolution of the ARE% and
the number of centers for the RBF model, respec-
tively, whereas the Q statistic for the pairs RBF–
DENFIS and RBF–MLP is displayed in Fig. 11.
Table 3 depicts values for the maxARE%, MARE%

1350029-9



2nd Reading

October 8, 2013 11:10 1350029

A. Alexandridis

0

20

40

60

80

0 100 200 300 400

A
R

E
%

Time (h)

Fig. 9. Case II: Evolution of the ARE% for the RBF-
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Fig. 10. Case II: Evolution of the number of RBF
centers.
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Fig. 11. Case II: Evolution of the Q statistic for the
pairs RBF/DENFIS and RBF/MLP.

and stdARE% metrics, calculated over the time span
13–400 for the three models.

Once more, the RBF-based soft-sensor falls
behind the other two schemes only for the first time
steps, until a sufficient number of centers has been
added to the hidden layer. Based on the Q statistic,
the RBF model takes the lead over the MLP model
at time instant 25, whereas it takes more time to
outperform the DENFIS model, a fact that occurs
at time instant 42 (it should be noted though that
DENFIS was not able to provide predictions during
the first 12 time steps). The RBF-based soft-sensor
maintains its advantage for the rest of the simula-
tion. From a certain point onwards, the Q statistic

Table 3. Case II: Error-based metrics for the three soft-
sensors.

Adaptive soft-sensor maxARE% MARE% stdARE%

RBF 48.3 8.92 8.1
DENFIS 48.9 10.52 9.0
MLP 53.5 12.44 11.7

for both pairs has almost converged to steady values.
As far as the number of RBF centers selected by the
adaptive FM algorithm is concerned, it progressively
increases until reaching a value of 34 at time instant
120, and then continues with small variations around
this number. This value was slightly higher compared
to the number of fuzzy rules produced by DENFIS at
the end of the corresponding simulation, which was
equal to 29, though it is questionable whether the
two values can be directly compared. The metrics
presented in Table 3, also attest to the superiority of
the adaptive RBF scheme over the remaining soft-
sensors.

5. Conclusion

The FM algorithm offers an alternative to the stan-
dard method for training RBF networks, increasing
the model accuracy and decreasing the computa-
tional load. In this work, the adaptive variant of the
FM algorithm is exploited in order to produce a new
methodology for building soft-sensors. At the heart
of the soft-sensor lies an RBF network model, which
starts with an empty hidden layer and evolves grad-
ually with time. As new data become available from
the system under identification, the RBF network is
adapted on two levels: On the first level, the hidden
layer is adjusted by adding RBF centers to cover suf-
ficiently the input space and by deleting the redun-
dant ones. On the second one, the synaptic weights
are adapted using the RLS with exponential forget-
ting algorithm.

The resulting soft-sensor is validated through its
application to the online identification of two differ-
ent systems, namely a simulated nonlinear DC Motor
and a real digester reactor. The results highlight the
efficiency of the proposed approach, which manages
to evolve the RBF network model in order to approx-
imate the unknown systems. The method was com-
pared to two different adaptive soft-sensor imple-
mentations, namely DENFIS and an MLP network
trained with online backpropagation. It was shown
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that the proposed approach initially falls behind the
other two methods in terms of accuracy; however, as
it takes only a few time steps to accumulate a suffi-
cient number of RBF nodes in the hidden layer, the
adaptive RBF scheme soon takes the lead and offers
increased accuracy and faster adaptation compared
to its two rivals.

Future research plans include the extension of
the proposed approach in order to include the non-
symmetric variant of the FM algorithm for increased
soft-sensor prediction accuracy, as well as applica-
tion to other domains like robotics, fault detection
and biometrics.

References

1. P. Kadlec and B. Gabrys, Adaptive local learning
soft sensor for inferential control support, IEEE Int.
Conf. Computational Intelligence for Modelling Con-
trol & Automation, Vienna, Austria (2008).
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