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Abstract—This paper presents a novel scheme for the esti-
mation of large earthquake event occurrence based on radial
basis function (RBF) neural network (NN) models. The input
vector to the network is composed of different seismicity rates
between main events, which are easy to calculate in a reliable
manner. Training of the NNs is performed using the powerful
fuzzy means training algorithm, which, in this case, is modified
to incorporate a leave-one-out training procedure. This helps the
algorithm to account for the limited number of training data,
which is a common problem when trying to model earthquakes
with data-driven techniques. Additionally, the proposed training
algorithm is combined with the Reasenberg clustering technique,
which is used to remove aftershock events from the catalog prior
to processing the data with the NN. In order to evaluate the
performance of the resulting framework, the method is applied
on the California earthquake catalog. The results show that the
produced RBF model can successfully estimate interevent times
between significant seismic events, thus resulting to a predictive
tool for earthquake occurrence. A comparison with a different NN
architecture, namely, multilayer perceptron networks, highlights
the superiority of the proposed approach.

Index Terms—Clustering methods, earthquakes, interevent
times, neural networks (NNs), radial basis function (RBF).

I. INTRODUCTION

HE LONG-TERM prediction of natural disaster occur-

rence is one of the most sought-after goals in geoscience.
Succeeding in such a goal involves obviating a multitude of
difficulties; not only should the proper variables that will act as
precursors be recognized and measured, but more importantly,
the correlations between those variables and disaster occurrence
should be identified. In spite of the significant progress over the
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last 20 years [1], the determination of such correlations remains
a difficult endeavor as the governing relationships are usually
rather complex and nonlinear [2]-[4], and the mechanisms cre-
ating the respective correlations are only recently coming to be
understood [5], [6]. Although the use of methods based on first
principle equations is a promising direction toward predicting
natural disaster occurrence, the aforementioned facts, together
with the large number of unknown involved parameters, im-
pede the practical implementation of such methods in civil
protection [1], [7].

On the other hand, neural networks (NNs) are powerful
mathematical tools [8] that simulate the way that the human
brain deals with information and the procedure of learning.
NNs have the ability to identify and learn highly complex and
nonlinear relationships from input—output data only, without the
use of first principle equations describing the system. Due to
these properties, NNs have been thoroughly exploited by many
researchers for developing predictive models in geoscience: In
[9], an NN-based approach is applied to predict rainfall, using
radar reflectivity and tipping-bucket data as inputs. A method
for aerosol optical depth retrieval in the Earth’s atmosphere
based on NNs is presented in [10], together with a method for
estimating retrieval uncertainty. Three different NN modeling
techniques are applied in [11] for the prediction of species-
specific forest attributes, yielding high prediction accuracy lev-
els. In [12], an adaptive neuro-fuzzy inference system is utilized
for improving the accuracy of atmospheric profiles of temper-
ature and humidity, which are retrieved from infrared sounder
observations. In [13], a multiple NN model approach is applied
to construct a predictive model for sea clutter, based on radial
basis function (RBF) networks. The development of NN-based
models for estimating the error variances of individual infrared
and microwave atmospheric temperature and humidity profile
retrievals and, thus, potentially improving their assimilation
into numerical weather prediction models is presented in [14].
In [15], leaf area index is estimated from time-series remote
sensing data using general regression NNs. NNs are used in
[16] for estimating passive microwave brightness temperatures
over snow-covered land in North America. In [17], a partial
least squares NN model is applied to the remote estimation
of chlorophyll-a concentration for turbid inland waters. NN
algorithms have been also successfully used in conjunction with
synthetic aperture radar images for predicting soil moisture
content [18], [19], classifying sea ice types [20], and automati-
cally detecting changes in suburban areas [21].

In a similar context, NN techniques have been also used for
predicting and assessing the risk of natural disaster occurrence.
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An NN model is developed in [22], in order to derive the trop-
ical cyclone heat potential in the Indian Ocean using satellite
images, sea surface temperature, and climatological depth of
26 °C isotherm. In [23], recurrent NNs are used in the predic-
tion of severe meteorological events and, more specifically, to
the rainfall field nowcasting.

Earthquake prediction is a subject of primary interest for the
geophysical community, and many efforts have been made in
this direction [1], [24]. Most of these approaches are based
upon earthquake recurrence times [25], as changes in seismic
activity reflect stress changes and the preparation stages of
large earthquakes [26]-[29]. However, the uncertainty of the
physics describing the earthquake generation and the lack of
causal relationships between seismicity patterns and related
crustal environments are limiting factors for the development
of similar methods. Not surprisingly, the NN data-driven ap-
proach has been used as an alternative to classical approaches
for the prediction of earthquake occurrence, with the number
of relative papers increasing during the last few years: In
[30], feedforward NNs are used to predict the magnitude of
earthquakes, using as inputs the concentration of the soil-
sourced radon gas emergence, together with other variables,
including the earthquake’s location and depth. In [31], seismic
electric signals are used as inputs in a feedforward NN in
order to predict the magnitude of impeding seismic events.
In [32], feedforward NN models are constructed to analyze
earthquake occurrence and predict the origin times of large
earthquakes. Two recent publications have presented a method
based on NNs for estimating the probabilities that an earthquake
of magnitude larger than a threshold value happens and the
probability that an earthquake of a limited magnitude interval
might occur; the method is evaluated in Chile [33] and in
seismogenic areas of the Iberian Peninsula [34]. Various NN
architectures, including feedforward, recurrent, and probabilis-
tic networks, have been used for predicting the magnitude
and/or location of the largest earthquake in a predefined fu-
ture time period using several seismicity indicators as inputs
[35]-[37].

A common problem in the attempts for building NN-based
earthquake predictive models involves the proper validation of
the NN predictions; due to the very limited number of available
training data, usually the same earthquake events that have been
used during the training stage for calculating the NN model
parameters are afterward employed for evaluating the model’s
performance. In some cases, a single earthquake event may be
omitted from the training data set in an attempt to validate
the prediction; however, this is not enough as an indicator of
the model’s success. As pointed out in [38], one of the main
problems when using NN techniques on earthquake data is the
small size of the training set compared with the number of
parameters needed for determining the NN model.

In this paper, we present a novel NN-based methodology for
estimating the occurrence of significant earthquake events, with
the ability to cope with the small size of the available data.
The method employs the RBF NN architecture, which presents
several advantages, including higher estimation accuracy levels.
Training of the networks is performed using the powerful fuzzy
means (FM) algorithm, which, in this case, has been modified
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Schematic overview of an RBF network.

Fig. 1.

to incorporate a leave-one-out cross-validation procedure. This
modification enables us to effectively use a small data set,
allowing for an adequate number of data points for model train-
ing, while still evaluating the model on training-independent
data. Furthermore, the Reasenberg clustering method [39] is
utilized in order to decluster the available data and remove the
aftershocks, as the inclusion of these events would significantly
deteriorate the network performance.

The rest of this paper is structured as follows. In the next
section, the RBF NN architecture is presented, followed by
a description of the FM algorithm and an elaboration on the
modification of the algorithm for performing leave-one-out
cross-validation (LOO-CV). Section III briefly describes the
Reasenberg technique for declustering earthquake catalogs.
Section IV presents the application of the proposed framework
to the California earthquake catalog, including a short descrip-
tion of the catalog, the selection of input and output variables
for the RBF model, the aftershock removal procedure and,
finally, the results on the estimation of earthquake occurrence.
The paper concludes by outlining the advantages of the pro-
posed approach.

II. RBF NETWORKS

RBF NNs form a class of NNs, which presents certain
advantages, including better approximation capabilities, simple
network structures, and faster learning algorithms. On the other
hand, RBF networks suffer from the curse of dimensionality,
which refers to the fact that there is an exponential increase in
the number of parameters to be identified with the dimension of
the input space.

An RBF network can be considered as a special three-layer
NN, which is linear with respect to the output parameters, after
fixing all the RBF centers and nonlinearities in the hidden layer.
The typical structure of an RBF network is shown in Fig. 1. The
input layer distributes the /V input variables to the L nodes of
the hidden layer. Each node in the hidden layer is associated
with a center, which is equal in dimension with the number of
input variables. Thus, the hidden layer performs a nonlinear
transformation and maps the input space onto a new higher
dimensional space. The activity u;(ug) of the Ith node is the
Euclidean norm of the difference between input vector uy and
the respective node center 1;. The output function of the node
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is a radially symmetric function; in this paper, the thin-plate
spline function is employed.

The final output g, of the RBF network for the kth data
point is produced by a linear combination of the hidden
node responses, after adjusting the weights of the network
appropriately.

A. FM Algorithm

The FM algorithm was introduced a decade ago, as an im-
provement over the standard k-means algorithm in the selection
of the hidden layer nodes [40], [41]. The FM algorithm presents
several advantages compared with the typical approach, includ-
ing faster computational times and automatic determination of
the size of the network, and has been successfully used in a
number of applications [42], [43]. Recently, a nonsymmetric
version of the algorithm with improved prediction abilities has
been introduced [44]. A brief discussion about the FM algo-
rithm is given below, whereas the interested reader is referred
to the original publications.

Consider a system with N normalized input variables u;,
where ¢ = 1,..., N. The domain of each input variable is
partitioned into an equal number of 1-D triangular fuzzy sets,
i.e., c. Each fuzzy set can be written as

Ai’j:{ai’j,éa}, izl,...,N,j:].,...,C (l)
where a; ; is the center element of fuzzy set A; ;, and do is
half of the respective width (due to the symmetric partition,
all the widths are equal). This partitioning technique creates
a total of ¢V multidimensional fuzzy subspaces A!, where
I=1,...,c". The multidimensional fuzzy subspaces are gen-
erated by combining N 1-D fuzzy sets, one for each input
direction.

Each one of the produced fuzzy subspaces is a candidate for
becoming an RBF center, but only a subset of them will be
finally selected, depending on the distribution of data within
the input space. The selection is based on the idea of the
multidimensional membership function pa:(uy) of an input
vector uy, to a fuzzy subspace A!, which is given by Nie [45],
ie.,

pat(ug) = { L= r(ug), if ri(uy) <1

0, otherwise k=12,...

K
2

where K is the total number of data, and r;(u) is the
Euclidean relative distance between A! and the input data
vector uy, 1.€.,

N
ri(ug) = Z (aéyji - uiyk)Z/éax/N‘ 3)

i=1

Equation (3) defines a hypersphere on the input space with a
radius equal to dory/N. The objective of the training algorithm
is to select a subset of fuzzy subspaces as RBF centers, so that
all the training data are covered by at least one hypersphere.
Expressing this requirement in terms of (2), the subset of fuzzy
subspaces is selected so that there is at least one fuzzy subspace
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that assigns a nonzero multidimensional degree to each input
training vector. The maximum possible number of selected
RBF centers is equal to the number of training data, although,
depending on the distribution of data in the input space, a
smaller number of centers is usually produced.

Algorithm 1 presents an overview of the FM algorithm.

Algorithm 1—FM Algorithm

Input:  {Utain, Yirain b+ Training Data set,
s: Number of fuzzy sets for partitioning each input
dimension

Output: L,: Number of selected RBF centers,
U= [y, G2, ..., 07]7: Selected RBF center
locations

1: Take the first data point: k <— 1

2: Begin calculations for the first RBF center: L < 1

3:Fori=1: N Do:

4: Calculate the fuzzy set with maximum membership in each

dimension i: A} = {a},da} < max [, , (ui(1))]
)5S

: End For

: Generate the first RBF center i1: (7 = [a}, a3, ...
:For k =2 : K Do:

If data point k lies outside the hyperspheres defined by the
already selected centers: 1r<nli<nL [ri(u(k))] > 1, where

» an]

® oW

r; is calculated by (3)
9: Add anew RBF center: L < L + 1
10: For:=1: N Do:
11: Calculate the fuzzy set with maximum member-
ship in each dimension i: AF={al da} «
max [:uAi,j (u7(k))]

1<j<s;

12: End For

13: Generate the Lth RBF center up: up =
[al, ak, ..., ak]

14: EndIf

15: End for

16: Finalize the number of selected RBF centers: L, < L

Following the determination of centers by the FM algorithm,
the synaptic weights are calculated using linear regression of
the hidden layer outputs to the real measured outputs (target
values). The regression problem can be trivially solved using
linear least squares in matrix form.

B. Applying the FM Algorithm for Small Data Sets

Normally, in order to apply the FM algorithm for training the
network, the available data should be split into, at least, two
data sets, as dictated by a family of methods known as cross-
validation, the two most popular variants being holdout and
k-fold (or multifold) cross-validations [8]. Cross-validation is
necessary in order to avoid a phenomenon known as overfitting,
where the model is excessively fitted to the training data. In
the case of RBF networks, overfitting can occur by increasing
the number of RBF centers; such an increase in the model
degrees of freedom makes the surface produced by the RBF
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network more flexible, which results in minimizing, or even
eliminating, the modeling error as far as training data are
concerned. Unfortunately, this comes at the expense of losing
generality, as the network ends up in learning the noise that is
present in the training data and its ability to model new different
data points is severely impaired.

In the holdout variant, data are split in two subsets, where
the first one is used for the training phase of the network,
i.e., for calculating the network parameters, whereas the second
one is used for model selection and evaluation of the network
performance after it has been trained. However, in cases where
training data are scarce, it may be difficult to produce two data
sets with adequate size in order to apply the holdout method.
The k-fold cross-validation variant, on the other hand, divides
the available data into k£ mutually exclusive subsets and fully
trains the network using all subsets, except for one, whereas
the resulting model is evaluated on the subset left out. This
procedure is repeated & times, each time using a different subset
for evaluation.

The most extreme form of k-fold cross-validation, which is
known as LOO-CV, emerges when the number of subsets k is
selected to be equal to the number K of training data. During
this procedure, one data point [x; y;] at a time is excluded from
the set, and the remaining data are employed for fully training
an RBF network. The trained RBF network is then used to
predict the output y;, i.e., the ¢th output, which corresponds to
the data point being left out. This procedure is recommended
when dealing with very small data sets [8], as it employs
the maximum amount of training data, which still allows for
evaluating the model on training-independent examples, i.e.,
K — 1 training data. When this procedure is completed for all
data points, the leave-one-out cross-validated root-mean-square
error, i.e., RMSE(v, is calculated by

“4)

The network prediction for the ith data point while it has been
removed from the training data is denoted by ;. In the same
manner, one could calculate the cross-validated coefficient of
determination RZ., for the entire data set using the following
formulas:

SSEIT
R%v =1- SSeot
K
SSere = > _(yi — 0:)°
1=1
K
SSiot = Z(yz - 17)2~ @)

i=1

In the preceding equation, y stands for the mean value of
the output variable. Both RMSEcy and RZ%y, can be used as
indicators for selecting the most appropriate model, which, in
this case, means selecting the appropriate network size, and for
evaluating the network performance. Algorithm 2 presents the
incorporation of the LOO-CV procedure to the FM algorithm.
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Algorithm 2—L.OO Algorithm

Input: {U,Y}: Entire data set,
Smin, Smax. Minimum and maximum number of
fuzzy sets

Output: RMSEcy: Cross-validated RMSE,
R%: Cross-validated R?
1: For s = Sin: Smax DO:
For k = 1: K Do:
3: Assign data point k to the validation data set:
{Uvala Yval} — {U(k)v Y(k)}
Assign all data points, except from data point k,
to the training data set:
{Utraiantrain} A {U(l)vY(l)HlK:lz;ék
5: Pass the training data set {Utrain, Ytrain} and s
to algorithm 1, in order to calculate the total number
of RBF centers L, (k) and their locations U (k)

»

=

6: Calculate the synaptic weights w(k) using linear
regression.

7: Calculate the prediction §(k) of the produced
network for data point k&

8: End for

9: Calculate RMSE(s) and R?(s) using (4) and (5),

respectively
10: End for

11: Calculate the best values for RMSEcy and REy:

RMSEcy < min  [RMSE(s)),
R%y «+  max B TRQ(s)]

Smin SS<Smax

In the case of earthquake modeling, the very limited number
of large events in the catalog dictates the application of the
LOO-CV procedure, which allows for performing the training
task with a small number of data and independently evaluating
the network’s performance at the same time.

III. DECLUSTERING

There is a general consideration on seismicity studies with
regard to the earthquake events as independent or dependent on
each other, such as aftershocks and foreshocks [46]. Indepen-
dent earthquakes are also known as background earthquakes,
main shocks, or parent earthquakes and are assumed to be
mostly caused by the tectonic loading. Dependent earthquakes
correspond to earthquakes triggered by mechanical processes
that are controlled by previous earthquakes. It has been esti-
mated that aftershocks account for about 30%—40% of the total
number of earthquakes in word catalogs [47].

Seismicity declustering is the process of separating an earth-
quake catalog into foreshocks, mainshocks, and aftershocks.
The identification of background earthquakes is important for
many applications in seismology with regard to seismic haz-
ard assessment, development of clustered seismicity models,
earthquake prediction research, and seismicity rate change
estimation [46].

The most applied declustering algorithms are those of
Gardner and Knopoff [48] and of Reasenberg [39]. All
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declustering methods identify the aftershocks based on their
spatiotemporal proximity to previous earthquakes and on the
fact that they occur at rates greater than the average seismicity
rate.

In this paper, we use the cluster method introduced by
Reasenberg [39]. This method identifies the aftershocks by link-
ing earthquakes to clusters according to spatial and temporal
interaction zones. Moreover, Reasenberg’s procedure is free
from assumptions with regard to the spatial aftershock distri-
bution and describes their migration given that the background
seismicity is low.

The spatial extent of the interaction zone is chosen according
to stress distribution near the mainshock area. Reasenberg’s
local nearness of events is described by the spatial threshold
d, depending on magnitude according to

log(d) = 0.4My — 1.943 + k (6)

where M is the magnitude, k is equal to 1 for the distance to
the largest earthquake and equal to O for the distance to the last
event, and d is expressed in kilometers. The model describing
this relationship is a simple circular fault model of radius d. The
Keilis—Borok formula defines the seismic moment for static
cracks as follows: 16/7 Ao d?, where Ao is the stress drop. Its
temporal extension is based on Omori’s law. Each subsequent
event is linked with the largest event or with the last one in
each cluster, which has formed until current time. It should be
also mentioned that overlapping clusters are joined [47]. The
waiting interval 7 in order to obtain a confidence of p; for
observing the next event in the sequence is

7= —In(1 — py)t/102AM-1/3 (7)

where AM = Mpuainshock — M, and M, is the magnitude of
completeness.

It has become common practice in seismological studies
to use standard parameter values provided by seismological
software packages (e.g., ZMAP); however, it is recommended
to analyze a declustered catalog based on the results of the
applied method and the effect of varying the parameter values.
Moreover, the advantages and disadvantages of any method and
the parameter selection for them depend on the final goals of
research.

IV. CASE STUDY: CALIFORNIA EARTHQUAKE CATALOG
A. Catalog

The catalog used in this study is known as the Southern
California Seismic Network catalog, and it is archived by
the Southern California Earthquake Data Center. It contains
historic seismological data dating from 1932 to present. The
magnitude of completeness for this catalog is estimated from
3.25 in the early years to 1.8 or better at present [49]. The full
catalog is available for download through the center’s website
(www.data.scec.org).

As reported by Gardner and Knopoff [48], the residual
California catalog following aftershock removal is mainly influ-
enced by an apparent Poissonian character, as far as the smallest
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Fig.2. Geographical locations for events with magnitude greater than or equal
to 3 within the study area.

shocks are concerned. The larger shocks, however, were found
to have only a small influence on the statistical character of
the ensemble, whereas there are, as yet, insufficient events with
M > 5.8 to draw any conclusions. In fact, it is generally hard
to prove or disprove the time independence (Poisson) hypoth-
esis because of the scarce number of large earthquakes for
seismotectonic areas. Recently, alternative methodologies have
been proposed, suggesting that the stationary epidemic-type
aftershock sequence (ETAS) model is better than the Poisson
model to describe the time distribution of worldwide large
earthquakes, highlighting that the background of the ETAS
model is not always a stationary Poisson model, but it can
present time variations [50]. The latter is supported by a recent
independent approach based on the application of nonextensive
statistical physics for the time evolution of global seismicity in
relation to mega events [2].

The space window used in this study contains the area
between geographic coordinates 114°-122° W longitude and
32°-37° N latitude, whereas the time window contains all
events occurring between January 1935 and June 2012. This
corresponds to a total of 313068 seismic events ranging in
magnitude from 1.5 to 7.5. This window includes four events
with magnitude greater than or equal to 7 and 21 events with
magnitude greater than or equal to 6. Geographical locations for
all events with magnitude greater than or equal to 3 are visually
depicted in Fig. 2.

B. Input—Output Variable Selection

As the objective in this paper is to estimate the occurrence
of large earthquakes, the output (target) variable of the RBF
network was selected to be the interevent time between two
consecutive main events. Thus, a threshold M was defined, and
every event exceeding M in magnitude was considered to be a
main event. We define the interevent time T, as follows:

Ty =t* — ! (8)

where ¢* denotes the time of occurrence of the kth event in the
catalog, which is greater in magnitude than the value M.
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Fig. 3. Visual example for the definition of the seismicity rate Rﬁ/;ll My in relation with main events numbered k — land k — 2.

Selecting the proper input variables is of paramount impor-
tance for the prediction abilities of the resulting NN model.
In this work, the inputs to the model were selected as the
seismicity rates between main events. There are many reasons
for justifying this selection: 1) Seismicity rates can characterize
the strain accumulation and release process on the average,
2) they are very easy to calculate, and 3) their calculation
is reliable [32]. The latter is rather important in data-driven
techniques such as NNs since the only source of information
lies in the training examples.

We define the seismicity rate Rﬁﬁ, 1, as the rate of earth-
quake occurrence in the time interval between the main events
numbered k and £ — 1, i.e.,

k NJ]\€4 1,M>
R1v11,1v12 = T7’“ 9
M
where N ]’\“417 M, 18 the number of earthquake events that are
larger in magnitude than the value M; and smaller than the
value M5 and have occurred between main events numbered
kand k — 1.

Previous studies [32] showed that estimation accuracy in-
creases when more than one seismicity rate is given as input,
attributing the fact to the existence of clear differences in the
variations of seismic rates with the size of events. As the results
of our experiments were consistent with this hypothesis, we
allowed the input vector to the network to contain several values
of different seismicity rates, which were calculated for different
values of M, Mo, and k. The exact number of seismicity rates
to be used as input variables was optimized based on numerical
experiments, as will be discussed later.

It would be intuitive to include as input seismicity rates of the
type Ré‘{ll 1, for the prediction of the corresponding interevent
time 7%, as they contain the most recent information preceding
the main event numbered k. However, such an inclusion would
significantly diminish the practical value of the resulting NN
as a predictive tool. The reason is that, in order to make a

prediction for the interevent time 7" between main events
k — 1 and k, one would have to wait until main event k£ has
already occurred, so that the rate Rﬁh M, 18 available. In

this case, prediction of the interevent time 7% would be of
no practical use. Thus, the input vector for prediction of the
interevent time 7 should contain past seismicity rates from
the period between main events k — 1 and k — 2, i.e., wa’l 1 My
More than one period between older main events could be also
utilized to produce additional input variables. Fig. 3 depicts a
visual example for the definition of the seismicity rate wa’l 1 My
in relation with main events numbered k¥ — 1 and k& — 2.

The bounding parameters M; and M, define the range of
magnitudes used for calculating the corresponding seismicity
rate R’]“VI_] 1 M, The selection of the lower bounding parameter
M, which acts as a cutoff magnitude, is important in order
to avoid producing a nonhomogenous set of training data. A
sufficiently high value for M should be applied, guaranteeing
that variations in the calculated seismicity rate are not due to
differences in the way earthquakes are recorded (e.g., changes
in the sensitivity of earthquake recorders), but in fact reflect
a change in seismicity dynamics. The importance of securing
the homogeneity of the data set by properly selecting the cutoff
magnitude is discussed in [32]. It is also possible to intro-
duce additional bounding parameters Ms, My, ..., M., thus
segmenting the magnitude range in more than one zone, i.e.,
Mz — My,...,M, 1 — M,. In this case, the total number of
seismicity rates to be used as input variables for each period
between older main events is equal to z — 1. Assuming that
p periods between older main events are taken into account,
a total of p-(z — 1) possible input variables to the NN is
produced.

C. Aftershock Removal

The removal of aftershock events is an important preprocess-
ing procedure, which should precede the presentation of the
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data to the NN. Application of the aftershock removal stage
is crucial, particularly in the context of the output variable
selection adopted in this study: In many cases, the aftershock
events are of important size that may exceed the threshold
M indicating a main event; thus, the particular aftershock
events would be erroneously considered as main events, and
the corresponding interevent times between the main event and
the aftershock event would be presented to the NN as training
examples. This not only produces new erroneous input exam-
ples but also alters the values of interevent times corresponding
to the real main events, thus totally skewing the data set. This
phenomenon is visualized in Fig. 4, where the seismic activity
between two main events is presented.

In order to illustrate the importance of removing the after-
shocks before presenting the training examples to the NN, we
applied the training procedure to the original California cata-
log, without using any declustering technique. The threshold
parameter M for selecting the main events was set equal to 6,
and then, the choice of input variables was optimized for this
particular case. The parameters to be optimized were the num-
ber of periods between older main events p and the number and
values for magnitude bounding parameters My, Mo, ..., M,.
Optimization was performed following an exhaustive search
procedure, testing all possible combinations for values of p that
ranged between 1 and 3 and values of z that ranged between
2 and the maximum recorded magnitude in the catalog. For
each possible configuration of p and z, the full magnitude range
between M7 and M, was split in increments of 0.1, and all
possible combinations for the values of M7, Mo, ..., M, were
also tested. Each combination of input variables was evaluated
using the LOO-CV procedure, and the best input vector xp,, was
found to contain the following inputs:

Xr = [Riole Riou Rirbl. (10)
The RBF network model was trained and tested using the
LOO-CV procedure described by Algorithm 2. The best net-
work using this procedure was the one using an input partition
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Fig. 6. Raw catalog. Real and predicted interevent times versus time of real
event occurrence.

of 20 fuzzy sets, which resulted in 13 hidden node centers.
The results for this configuration are depicted in Figs. 5 and 6,
showing the real versus predicted interevent times and the
real and predicted interevent times versus the year of the real
event occurrence, respectively. The correlation coefficient RZ,,
and RMSEcy were found to be equal to the values —5.2
and 2.13y, respectively. Additionally, a multilayer perceptron
(MLP) network was also trained using the same optimized input
vector. In this case, a standard two-hidden-layer architecture
was postulated, and then, an exhaustive search was performed,
testing all possible combinations when the number of nodes
in each hidden layer ranged from 5 to 60. Table I contains
the results for both networks. The results show that despite
optimizing the input vector, the produced NNs cannot detect
any significant correlation between the input values and the
interevent times.

In order to remove the aftershocks and improve the net-
work predictions, the Reasenberg declustering technique was
applied, resulting to a declustered catalog of 152641 events,
16 out of which were main events with M > 6. The decluster
analysis was performed using the ZMAP software [51]. The
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TABLE 1
COMPARATIVE RESULTS FOR ALL CASES
Case Input # of data NN # of fuzzy # of hidden R2 RMSE ¢y
cv
vector Architecture sets layer nodes” )
[ RE T ! RBF 20 13 52 213
Raw catalogue, 3236
Rk—l
3.6.4 21
M>6 =1
472 MLP - [42 18] 5.7 221
=
Declustered 3235 RBF 10 13 0.875 1
RA-1
354
catalogue, M>6 Rl 16
L 472 ] MLP - [36 16] 0.627 1.26
[rELT RBF 7 10 0.705 128
Declustered 3235 ' '
R
catalogue, M>6.2 Jk_l ' 12
L 3772] MLP - [58 41] 0432 1.62

*The number of nodes for the MLP networks is given in the form: [1st layer nodes 2nd layer nodes]

@

| @ >M>=6.5

T 6.5>M>=6

© 6>M>=3

Latitude

Longitude

Fig. 7. Geographical locations for events with magnitude greater than or equal
to 3 within the study area, following the implementation of the declustering
procedure.

parameters used in the declustering method were the default
ones suggested by the software, except from some slight
changes concerning the number of crack radii surrounding
each earthquake 7¢,.¢, which has been set equal to 5, and the
depth and epicenter errors, which have been set equal to 0.
Fig. 7 presents the geographical locations of the remaining
events with magnitude greater than or equal to 3, following the
implementation of the declustering procedure.

D. Interevent Time Estimation Using RBF Models

The first step toward obtaining the RBF model was to for-
mulate the input vector, which was optimized using the same

procedure described in the previous section. In this case, the
best input vector Xj,q¢ contained the following inputs:
Xbas = [Riams Risa Riro]- (11)
Following the optimization of the input vector, Algorithm 2 was
applied for training and evaluating the model. The best network
was found to have 13 hidden layer nodes, which correspond
to a partition of ten fuzzy sets per input dimension. During the
execution of Algorithm 2, models with a higher number of RBF
centers were also tested; however, they were rejected as they
produced a higher cross-validated prediction error, as a result
of overfitting during the LOO-CV procedure. The RZ,, and
RMSEcy pointers for the optimal configuration were equal to
0.875 and 1y, respectively. The results for this case are depicted
in Figs. 8 and 9, showing the real versus predicted interevent
times and the real and predicted interevent times versus the
year of the real event occurrence, respectively. For comparison
purposes, an MLP network was also trained based on the same
input vector configuration. The results for both NN models
are summarized in Table I. It should be noted that, although
the MLP network can also provide successful estimations, the
superiority of the RBF model is obvious, as it provides higher
accuracy, combined with a simpler network structure.

The benefits of incorporating a declustering stage before
formulating the input vector and presenting it to the NN model
become obvious, as, in contrast to the previous case where the
raw catalog was used, the results now reveal a strong correlation
between the seismicity rates used as input variables and the in-
terevent times between significant events. This is supported not
only by the high values of the R%; coefficient but also by the
RMSEcy value of 1y, taking into account that the uncertainty
for interevent time prediction when building a precursory model
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Fig. 9. Declustered catalog. Real and predicted interevent times versus time
of real event occurrence, with aftershock removal.

for earthquakes with M >= 6 was estimated to be ~2.5y [32].
It should be emphasized that, in contrast to similar studies, this
result is not produced by evaluating the network predictions on
the same data used for training. Therefore, the prediction for
each event is independent from the training data set—a fact
which adds to the statistical significance of the results. It should
be also noted that the applied data set contains a wide range of
interevent times spanning from 0.77y to 14.07y.

Apart from serving as an estimator for earthquake occur-
rence, the produced model can be also used to shed some light
in the relationship between seismic rate and interevent time.
An indication for this relationship can be obtained through
univariate analysis, where the effect of a single input variable
on the output is separately examined, whereas the rest of the
input variables are kept at constant values. In this case, the
produced RBF model was applied in order to obtain estimations
for the interevent time between significant earthquakes, when
the seismicity rate for events with magnitudes larger than 3.2
and smaller than 3.5, i.e., input R%,% -, spanned the domain
[40 75]. The specific input domain was selected to be within the
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Fig. 10. Effect of the seismicity rate R’g;lg‘ 5 on the interevent time, as
predicted by the RBF model using univariate analysis.

training limits for the particular input variable, thus avoiding
extrapolation. The results are depicted in Fig. 10, showing
a nonlinear relationship. It should be noted, however, that
this technique does not take into account possible correlations
between the input variables.

In order to demonstrate the robustness of the proposed ap-
proach, the value of the threshold M for selecting the main
events was slightly changed from 6 to 6.2, and the input vector
optimization and training procedures were repeated. Following
the optimization procedure, the best input vector Xpgs.2 was
found to contain the following inputs:

k-1
R3 557

R37)r.] -
After repeating the training procedure for both RBF and MLP
networks, the best network was an RBF network with ten
hidden layer nodes, with a partition of seven fuzzy sets per input
dimension. The RZ,, and RMSEcy pointers were now equal
to 0.705 and 1.28y, respectively. The results for this case are
also summarized in Table I, where the superiority of the RBF
network predictor is confirmed.

As a result of shifting the threshold value M, the quality of
the models’ estimations has obviously deteriorated, a fact that
can be attributed to the decrease in the total number of training
data from 16 to 12; the RBF model, however, is still acceptable
as a predictor tool. The MLP network, on the other hand, essen-
tially fails to capture the relationship between input and output
variables as it exhibits a significantly lower R%,, coefficient. It
should be noted that, despite changing the threshold value M,
the calculated optimal values for the number of input variables
and the magnitude bounding parameters My, Ms, ..., M, were
similar to the ones resulting from the rest of the cases examined
in this work. This does not only attest to the robustness of
the proposed method but could be also an indication of an
underlying relationship to the physics of earthquake generation.

Xpa6.2 = [R5 )35 (12)

V. CONCLUSION

This paper introduces a new methodology to estimate the
occurrence of significant earthquake events based on RBF
NNs, given a database of historic seismicity data. In order to
formulate the models, the input variables are selected among
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different seismicity rates, whereas the output variable is the
interevent time between significant seismic events. Training of
the RBF models is performed using a novel variant of the FM
algorithm, which applies LOO-CV in order to deal success-
fully with small data sets, while maintaining the advantages
of the original FM algorithm, which include higher accuracy
and parsimony of the produced networks compared with other
approaches.

The resulting methodology is applied to the California earth-
quake catalog. The results stress the importance of removing
the aftershock events since a reliable estimation cannot be
obtained using the raw catalog. To this end, the Reasenberg
technique is employed in order to decluster the raw catalog. Fol-
lowing the application of the Reasenberg technique, the input
vector to the NN model is optimized, and the FM algorithm is
used to train the model. The resulting predictions reveal a strong
correlation of the input variables with the interevent times, thus
confirming the applicability of the proposed approach for suc-
cessfully estimating large earthquake occurrence. A different
NN architecture, namely, the MLP architecture, is also tested
on the same data. A comparison between the two techniques
highlights the superiority of the RBF network models, in terms
of higher estimation accuracy and simpler network structure.
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