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Radial Basis Function Network Training Using a
Nonsymmetric Partition of the Input Space and
Particle Swarm Optimization

Alex Alexandridis, Member, IEEE, Eva Chondrodima, and Haralambos Sarimveis

Abstract— This paper presents a novel algorithm for training
radial basis function (RBF) networks, in order to produce
models with increased accuracy and parsimony. The proposed
methodology is based on a nonsymmetric variant of the fuzzy
means (FM) algorithm, which has the ability to determine the
number and locations of the hidden-node RBF centers, whereas
the synaptic weights are calculated using linear regression.
Taking advantage of the short computational times required
by the FM algorithm, we wrap a particle swarm optimization
(PSO) based engine around it, designed to optimize the fuzzy
partition. The result is an integrated framework for fully deter-
mining all the parameters of an RBF network. The proposed
approach is evaluated through its application on 12 real-world
and synthetic benchmark datasets and is also compared with
other neural network training techniques. The results show
that the RBF network models produced by the PSO-based
nonsymmetric FM algorithm outperform the models produced
by the other techniques, exhibiting higher prediction accuracies
in shorter computational times, accompanied by simpler network
structures.

Index Terms—Fuzzy means algorithm, fuzzy partition,
nonsymmetric partition, particle swarm optimization, radial basis
function.

I. INTRODUCTION

ADIAL basis function (RBF) networks constitute a

neural network architecture that has been used exten-
sively for modeling and control of nonlinear systems. The
popularity of the RBF network architecture stems from the
inherent simplicity of its structure, in contrast to the more
complicated multilayer perceptron (MLP) networks. RBF net-
works comprise a single hidden layer, attached linearly to the
output unit of the network. The aforementioned characteristics
are reflected on the training algorithms used for RBF networks,
which are usually comparatively fast and highly efficient.

In RBF networks, learning essentially corresponds to finding
the multidimensional surface that best approximates a set of
training examples. This surface is put together as a summation
of a number of simpler surfaces, with radial basis symmetry
around centers located in specific points of the input space.
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Training of an RBF network is then equivalent to calculating
values for the following parameters:
e number of RBFs;
e coordinates of RBF centers;
e widths of RBFs (applicable only when using RBFs with
variable width, e.g., the Gaussian function);
e synaptic weights.

A variety of algorithms have been proposed in the literature
for determining the RBF center locations. Preliminary studies
[1] and [2] selected the number of RBFs to be equal to the
total number of training data, placing the center of each RBF
on top of each datapoint. However, this technique ends up in
selecting an excessive number of hidden nodes, especially in
the case of large datasets. In order to avoid this phenomenon,
a clustering technique can be employed, aiming to segment
the input space into a number of regions, which is smaller
compared to the number of training data. RBFs are then placed
at the center of each cluster of data. Based on this concept,
the k-means clustering algorithm became a popular approach
to the selection of RBF centers in some of the early studies
on RBF networks [3], [4]. There are, however, two intrinsic
disadvantages associated with the use of k-means. The first is
due to its iterative nature, which can lead to long convergence
times, and the second originates from its inability to automati-
cally determine the number of RBF centers, thus resulting in a
time-consuming trial-and-error procedure for establishing the
size of the hidden layer. A multitude of alternative techniques
have been proposed to tackle these disadvantages. A significant
portion of these methodologies use a constructive approach,
building the hidden layer incrementally until a criterion is
met. Within this context, the application of the orthogo-
nal least squares algorithm has been thoroughly explored
[5]-[9], but other methods have also been proposed, including
constructive decay [10], resource allocating networks [11],
and the minimum description length principle [12]. Taking
a different approach compared to the constructive methods,
the fuzzy means (FM) algorithm [13] selects the number
of RBF centers and their locations in short computational
times, based on fuzzy clustering [14]-[16] of the input space.
An online version of the FM algorithm has also been proposed
[17], allowing for real-time adaptation of the RBF network
structure. Recently, we introduced a nonsymmetric approach
for partitioning the input space. Preliminary results [18]
have shown that the nonsymmetric partition can lead to the
development of more accurate RBF models, with a smaller
number of hidden layer nodes.
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As far as the selection of node widths is concerned, the stan-
dard approach involves the p-nearest neighbor heuristic [19],
where the widths for each RBF are selected so as to overlap
with its p nearest RBFs. More elaborate methods have been
suggested [20]-[22] for optimizing the RBF widths in order
to improve approximation accuracy.

Taking advantage of the linear connection between the
hidden and output layer, most training algorithms calculate
the synaptic weights of RBF networks by applying linear
regression of the output of the hidden units on the target
values. Alternative approaches for calculating the weights
include gradient descent methods [23], fuzzy logic [24], and
the expectation-maximization algorithm [25].

A few algorithms aspiring to determine all the RBF train-
ing parameters in one step have also been proposed in the
literature. In [26], a hierarchical Bayesian model is introduced
for training RBFs. The model treats all the training parameters
as unknown random variables and Bayesian calculation is
performed through a reversible-jump Markov chain Monte
Carlo method, whereas the networks are optimized using a
simulated annealing algorithm. In [27], RBF parameters are
determined in a one-step algorithm in interpolation problems
with equally spaced nodes, after replacing the Euclidean norm
associated to Gaussian RBF with a Mahalanobis norm. In [28],
all the RBF network parameters, including input weights on
the connections between input and hidden layers, are adjusted
by a second-order update rule.

It should be noted, however, that calculating optimal values
for all the RBF parameters is a rather cumbersome task.
When viewing the RBF network training procedure as an
optimization problem, one realizes that the objective function
usually presents some rather unwelcome properties, including
multimodality, nondifferentiability, and high levels of noise.
As these characteristics make use of standard optimization
methods inefficient, it is no surprise that a significant number
of studies have focused on optimizing the RBF training
procedure through the use of alternative approaches, such
as evolutionary-based computation techniques. The resulting
methodologies include a genetic algorithm for optimizing the
number and coordinates of RBF centers [29], a hybrid multi-
logistic methodology applying evolutionary programming for
producing RBFs with simpler structures [30], a multiobjective
evolutionary algorithm to optimize RBF networks including
some new genetic operators in the evolutionary process [31],
and an evolutionary algorithm that performs feature and model
selection simultaneously for RBF classifiers in reduced com-
putational times [32].

Another methodology drawn from the arsenal of evolu-
tionary computation methods that has been exploited for
RBF network training, is the particle swarm optimization
(PSO) technique. PSO is a powerful stochastic optimization
algorithm that has been used successfully in conjunction with
other computational intelligence tools [33], [34]. A PSO-aided
orthogonal forward regression algorithm based on leave-one-
out criteria is developed in [35] in order to construct par-
simonious RBF networks with tunable nodes. A recursive
orthogonal least squares algorithm has been combined with
PSO in a novel heuristic structure optimization method for

Fig. 1. Typical structure of an RBF network with N input variables, L hidden
nodes, and one output variable.

RBF probabilistic networks [36]. An advanced architecture
of k-means clustering-based polynomial RBF networks has
been introduced in [37], designed using PSO and differential
evolution.

The contribution of this paper is a novel integrated
framework for full RBF network training, combining the
nonsymmetric variant of the FM algorithm with a specially
designed PSO-based optimizer. The nonsymmetric FM
(NSFM) algorithm is applied to calculate the number and
locations of hidden node centers, while the PSO optimizer is
wrapped around it, optimizing the input space fuzzy partition.
The combined PSO-NSFM approach results in RBF models
with higher accuracy and parsimony, while a satisfactory
model can be achieved in relatively small computational times.

The rest of this paper is organized as follows: In the next
section, we describe briefly the RBF architecture. Section III
presents the FM algorithm, focusing on the nonsymmetric
variant. Section I'V presents the PSO-NSFM algorithm, starting
with a short introduction to PSO and then elaborating on
its use for optimizing nonsymmetric fuzzy partitioning, and
ultimately for fully training an RBF network. A series of
experiments in real and synthetic datasets, evaluating the PSO-
NSFM algorithm and comparing it with other methodologies,
is presented in Section V. This paper concludes by outlining
the advantages of the proposed approach and setting directions
for future work.

II. RBF NEURAL NETWORKS

Fig. 1 depicts the typical structure of an RBF network.
The input layer distributes the N input variables to the L
nodes of the hidden layer. Each node in the hidden layer is
associated with a center, equal in dimension with the number
of input variables. Thus, the hidden layer performs a nonlinear
transformation and maps the input space onto a new higher
dimensional space. The activity u; (u (k)) of the /th node is
the Euclidean norm of the difference between the kth input
vector and the node center and is given by

(k) = [uk) -

N
= D (i) —a),  k=1..K (1)
i=1
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where K is the total number of data, u’ (k) =
[ur (k),uz (k),...,un (k)] is the input vector, and &/ =
[d11,421, ...,0n,] is the center of the /th node.

The activation function for each node is a radially symmetric
function. This paper employs the thin plate spline function:

g(u) = p*log (u). )

Thus, the hidden node responses z (k) become
z(k) =[g(u1 (w(k))), g(u2(k)), ..., g(ur @K))]I
(3)

The final output 3 (k) of the RBF network is produced by
a linear combination of the hidden node responses as

L
Sy =z k) -w="> wg (u (uk)))

=1

“)

where w! = [w, w2, ..

synaptic weights.

After fixing the RBF centers and nonlinearities in the hidden
layer, the synaptic weights are typically calculated using linear
regression of the hidden layer outputs to the real measured
outputs (target values). The regression problem can be trivially
solved using linear least squares in matrix form as

1
wT:YT-Z-(ZT-Z)

.,wr] is a vector containing the

5

where Z = [z(1),2(2),...,z(K)]" is a matrix contain-
ing the hidden layer outputs for all datapoints, and Y =
[y(1),y(@2),..., y(K)] is a vector containing all the target
values.

III. FM ALGORITHM

The FM algorithm [13] is a method for selecting the hidden
node centers of an RBF network. It has several advantages
over the standard approaches like the k-means algorithm [4],
including automatic determination of the size of the network,
i.e., the number of hidden nodes, and shorter computational
times. The FM algorithm has been used successfully in a
number of applications including automatic control of indus-
trial processes [38], intelligent control [39], variable selection
problems [40], [41], property estimation in materials science
[42], [43], etc. A variant of the FM algorithm utilizing a
nonsymmetric fuzzy partition of the input space has been
recently proposed [18]. What follows is a brief description
of the main concepts behind the FM algorithm, emphasizing
on the nonsymmetric version. For more details, the interested
reader is referred to the original publications.

Consider a system with N normalized input variables u;,
where i = 1,...,N. A nonsymmetric fuzzy partition of the
input space implies that the domain of each input variable i
is partitioned into a different number s; of one-dimensional
(1-D) triangular fuzzy sets. Each fuzzy set can be written as

Ai,jz{aijj,éai}, i=1,...,N, j=1,...,si (6)

where ag; ; is the center element of fuzzy set A;;, and da;
is half of the respective width. It should be noted that the
widths are different for each input direction, depending on the
selected number of fuzzy sets s;.
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Fig. 2. Nonsymmetric partition on a 2-D input space with an elliptical

membership function.

This partitioning technique creates a total of S multidimen-
sional fuzzy subspaces A!, where [ = 1,..., S

@)

Each multidimensional fuzzy subspace is generated by
combining N 1-D fuzzy sets, one for each input direction.
Thus, the fuzzy subspaces can be defined using a center vector
o and a side vector da

Al={ogl,&a}z{[a{’jl,aé’jz,...,afv’jN],
[5a1, 5a2,...,5aN]], I=1,....5 (8)

where af ;. 1s the center element of the 1-D fuzzy set A; j; that

has been assigned to input i. The produced fuzzy subspaces
form a grid where each node is a candidate for becoming
an RBF center. An example of the nonsymmetric partition is
displayed in Fig. 2 using a 2-D case for visualization purposes.
The domain of input variable u is partitioned into 7 fuzzy sets,
whereas the domain of u; is partitioned into 5 fuzzy sets, thus
defining a total of 35 fuzzy subspaces. The grid forms 24 equal
rectangles in the input space, and the 2 edges of each rectangle
are twice the widths of the respective fuzzy sets da| and das.

The objective of the FM algorithm is to assemble the RBF
network hidden layer by selecting only a small subset of the
fuzzy subspaces. The number of the selected fuzzy subspaces
should be kept low in order to produce a parsimonious
model, but at the same time the produced RBF centers should
cover sufficiently the available input data. The FM algorithm
performs the selection based on the multidimensional mem-
bership function x4 (u(k)) of an input vector u(k) to a fuzzy
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subspace Al [44]

I —d(u(k)), if d} k) =<1
par (k) = ©)
0, otherwise

where df (u (k)) is a function of the distance between the fuzzy
subspace A! and the input data vector u(k).

The function df (u (k)) defines a hypersurface on the input
space. This hypersurface marks the boundary between input
vectors that receive nonzero or zero membership degrees to the
fuzzy subspace A!. In order to account for the nonsymmetric
partition, we will associate df (u (k)) with an N-dimensional
hyperellipse of the form

N (af, i (/’c))2
; jwﬁ -t

i=1

(10)

where b; is half of the respective ellipse axis for each variable
i =1, ..., N. A first prerequisite for calculating b; is that
the surface of the hyperellipse needs to cross all the vertices
of the hyper-rectangle defined by the fuzzy subspace; e.g., in
the 2-D example of Fig. 2, it should cross the four vertices
of the rectangle. However, this condition is not sufficient
to uniquely define the hyperellipse, since there are infinite
hyperellipses that cross all the vertices. Among them, we select
the one whose axes are proportional to the edges of the hyper-
rectangle:

oo

by

oan

_ 50(1\1
by

(1)

Inclusion of (11) in the formulation of the problem defines
uniquely the hyperellipse. It can easily be shown that the
hyperellipse is described by the following equation:

N (al{j’_ . (k))2

Z N (6a;)?

i=1

=1 (12)

Fig. 2 depicts the ellipse that is finally formulated in the
2-D case. Based on (12), the function df (u (k)) becomes

)’

I § (a’{fi
GOE) = 12 Gy

i=1

13)

Having defined the membership function, the algorithm
proceeds with finding the subset of fuzzy subspaces that
assign a nonzero multidimensional degree to all input training
vectors. This is accomplished using a noniterative algorithm
which requires only one pass of the input data, thus rendering
the center calculation procedure extremely fast, even in the
presence of a large database of input examples. Algorithm 1
presents an overview of the NSFM algorithm.

As far as the symmetric fuzzy partition employed by the
original FM algorithm is concerned, it can emerge as a special
case of the nonsymmetric one, assuming that all the input
variables are partitioned into the same number of fuzzy sets s.

Algorithm 1 NSFM Algorithm
Input:

{Utrain, Yirain}: Training Dataset,

S = [sl, 82, ..., SN ]: Number of fuzzy sets for
partitioning each input dimension

Output: L: Number of selected RBF centers,

U= [ﬁ], w, ..., ug ]T: Selected RBF center
locations

1: Take the first data point:k < 1

2: Begin calculations for the first RBF center: L < 1

3: For i = 1:N Do:

4: Calculate the fuzzy set with maximum membership in

each dimension i: A} :{ail, da; }<— max [,uA,.j (u,-(l))]
l<j<si ’
5: End For

6: Generate the first RBF center uy:
1
., ay]

7: For k = 2:K Do:

~ 1 1
u; = [ay, a,,

8: If data point k lies outside the hyperellipses defined by
the already selected centers: 1r<nli11L [df (u (k))] > 1,
where df is calculated by (13)

9: Add a new RBF center: L <— L + 1

10: For i = 1:N Do:

11: Calculate the fuzzy set with maximum

membership in each dimension i:
Al ={a}, da;} < | max [1a;; wi(k)]
12: End For

13: Generate the Lth RBF center ay :
G, = [af, a¥, ..., a§]

14: End If

15: End for

This leads to a spherical membership function, through the
use of the following distance equation:

5, )
V/Néa

In this case, the RBF centers are selected so as to guar-
antee that all training datapoints are covered by at least one
hypersphere. The final selection depends on a single parameter,
i.e., the allocated number of fuzzy sets s, which is common
for all input variables. This makes it rather easy to optimize
the resulting RBF network by testing the few possible fuzzy
partitions. In general, using a larger number s creates a denser
partition grid and results in the selection of more RBF centers.

Obviously, the original FM algorithm is less flexible and
provides fewer design parameters compared to the nonsym-
metric one. In a recent publication [18], we have shown that
the NSFM algorithm leads to significant improvements in both
the accuracy and parsimony of the produced model. On the
other hand, the nonsymmetric partition defines a more com-
plicated network design problem, due to the need to optimally
determine an increased number of operational parameters.
For problems involving a low number of input variables,

d) (u (k) = (14)
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the optimal partition can be calculated using an exhaustive
search procedure similar to the one used for the original
FM algorithm, where all possible partitions are tested [18].
This approach is feasible for small-scale problems, due to
the fast training procedure adopted by the FM algorithm. The
additional computational burden imposed by medium or large-
scale problems, though, makes the use of an exhaustive search
procedure prohibitive. In this paper, we introduce a PSO-based
approach for calculating the optimal nonsymmetric partition of
the input space, thus leading to a new integrated RBF network
training procedure.

IV. PSO-NSFM ALGORITHM

PSO is a simple, yet effective, optimization algorithm based
on simulating the social behavior of birds within a flock.
The method is based on a population of possible solutions
coded as particles, which “fly” through the hyperdimensional
search space in search of the optimal solution. Each individual
particle changes its position stochastically, trying to repeat its
own successful past positions, and at the same time emulate
the success of its neighboring individuals.

A. Standard PSO

Consider an N—dimensional search space where each possi-
ble solution is coded as the position of one particle in a swarm
containing a total of P particles. The position of particle i at
time step ¢ is denoted as x; (¢), where i = 1, 2, ..., P. At
each time step ¢, the particle positions are updated by adding
a velocity vector v; (¢), using the following equation:

X+ D) =x; ) +v;({t+1). (15)
The velocity vector v; (¢) is calculated as follows:
vij (1 + 1) = vij (1) + crrj @) [yij ) — xij (O] + -+
+ caraj (1) [ 9 (1) — xij ()] (16)
where
vij (1) velocity of particle i = 1,...,P, in dimension
j=1,...,N, at time step t;
xij (1) position of particle i = 1,...,P, in dimension
j =1,...,N, at time step ?;
yij (1) personal best position of particle i = 1,...,P,
in dimension j = 1,...,N, at time step t;
y; () global best position of the entire swarm in
dimension j = 1,...,N, at time step ¢;
c1 and ¢ acceleration constants;
r1j (1) and  random values in the range [0, 1], sampled at
raj (1) each time step ¢ from a uniform distribution.

The personal best position y; (t) of each particle i at each
time step ¢ is calculated as

it fx@+1)>fGi@)
(17)

yi (1),
yie+1) =

x; (t +1), otherwise

where f is the fitness function.

The global best position ¥ (#) at each time step ¢ is calcu-
lated as the best among the best personal positions

fF@®)=min(f y1 (®),.... f¥p©®)).

Equation (16) comprises three terms. The first term is known
as the memory term and it represents the effect that the
particle’s previous velocity has on its current velocity.

The second term is known as the cognitive term and
it expresses the personal experience of each particle. The
cognitive term is proportional to the distance of a particle from
its own best position. The constant ¢; acts as the gain of the
cognitive term and is also known as nostalgia, as it expresses
the desire of each particle to regain its best position.

The third term is known as the social term and it expresses
the swarm’s collective experience. The social term is pro-
portional to the distance of a particle from the swarm’s best
position so far. The constant ¢, acts as the gain of the social
term and is also known as envy, as it expresses the desire of
each particle to perform as good as its neighbors.

As the exploration—exploitation tradeoff plays a vital role
in the successful solution of an optimization problem, a
mechanism known as “velocity clamping” has been introduced
in order to control the exploration and exploitation capabilities
of the swarm. Velocity clamping bounds the elements of the
velocity vector to stay within predefined values

Vij t+1),

(18)

if ||vij (¢ + D|| < Vinax
vij (t+1) = 19)

4+ Vinax, otherwise.

Various criteria have been proposed as stopping conditions
for the PSO algorithm, including the following:

e maximum number of iterations is reached;

an acceptable solution is found;

slope of the objective function becomes very small;
normalized swarm radius becomes close to zero.

B. PSO for Optimizing Fuzzy Partitioning

The PSO concept can be used as a search method for
calculating the optimum nonsymmetric partitioning. In this
case, the particles in the swarm should represent different ways
of partitioning the input space. Applying this formulation, the
elements of each particle s; () at time step ¢ correspond to
the number of fuzzy sets in each dimension

s; (1) = [s1 ), s2(t), ..., SN (t)]T.

Fig. 3 gives a schematic representation for encoding the
nonsymmetric partition into particles, using a 3-D input space.
The particular encoding requires alterations to (15) and (16),
which, for a basic PSO model with fully connected topology,
become

(20)

sit+1)=s;@)+vi(t+1) 21
B _ vij (1) +crrij (1) [vij (6) = si (1]
vij (t+1) = round[ T earsy ) [5; 0 — 5 )] (22)

In (22), the round operator is used to round the velocities
to the nearest integer, since the number of fuzzy sets in
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each dimension can receive only integer values. The personal
best position of each particle is calculated using (17), after
substituting x; () with s; (¢), i.e., the particle containing the
input partitioning. The global best position and the clamping
factor are given by (18) and (19), respectively.

C. PSO-Based RBF Network Training

Optimization of the nonsymmetric fuzzy partitioning of the
input space using PSO can form the basis for an integrated
RBF network training methodology. The algorithm starts by
randomly dividing the available data in three datasets, namely,
the training, validation, and testing datasets. The existence
of a third independent dataset for testing the produced RBF
network is crucial, since the optimization procedure could
result in over-fitting the model to the validation dataset. During
the particle initialization stage, P different partitions of the
input space are selected randomly, and coded as particles.
Each particle then gives birth to an RBF network by applying
the NSFM algorithm. The latter calculates the number and
coordinates of the RBF centers based on (13). After fixing the
RBF centers, the synaptic weights can be trivially calculated
using (5). Based on the emerging RBF networks, a fitness
value is calculated for each particle, by applying an error-
related criterion. The proposed algorithm adopts the root mean
square error (RMSE) criterion, but alternative error functions
can also be used. The resulting fitness values are compared
to the personal and global best particle positions, which are
conditionally updated according to (17) and (18). The next
step is to calculate new particle velocities for time step ¢ + 1,
and then update the particle positions using (21) and (22),
respectively. The algorithm then returns to the RBF network
generation stage until one of two stopping conditions has
been met. The first stopping condition is satisfied when a

Encoding a nonsymmetric 3-D input space into a particle: The number of fuzzy sets in each dimension becomes the corresponding element of the

maximum number of simulation steps is reached, whereas the
second is satisfied when the normalized swarm radius becomes
smaller than a threshold value. The normalized swarm radius
is calculated by

Rmax (t)
Rmax (1)

where Rpmax (f) stands for the maximum radius of the swarm
at simulation time step ¢, given by

Riorm (t) = (23)

Rmax (1) = max_[[si (1) =3 ()]]- (24)

When the normalized swarm radius Rporm becomes small,
the swarm’s potential for further improvement diminishes [45],
as all the individuals are located in the proximity of the
global best position. Algorithm 2 presents an overview of the
PSO-NSFM algorithm.

V. EXPERIMENTS
A. Benchmark Dataset Description

The proposed methodology was evaluated on various syn-
thetic and real-world benchmark datasets. The latter were
downloaded from the UCI Machine Learning Repository [46],
except from the Gas Furnace dataset, which can be found
in [47]. Table I presents a summary of the employed datasets,
together with the number of input variables and total data
points for each dataset, whereas a brief description for each
one of them is given next.

o Ailerons—Elevators: These datasets are obtained from
flying an F16 aircraft. The attributes describe the status
of the airplane, while the goal is to predict the control
action on the ailerons and the elevators of the aircraft,
respectively.
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Algorithm 2 PSO-NSFM Algorithm

Input:  {Ugain, Yirain}: Training dataset,
{Uvah Yval} : Validation dataset,
Smin, Smax: Minimum and maximum number of
fuzzy sets,
P: Swarm population,
1, €2, Vmax: PSO operational parameters affecting
the cognitive and social components and velocity
clamping, respectively,
&1, &2: parameters for stopping criteria
Output: L Number of selected RBF centers,
U f: Selected RBF center locations,
w . Selected RBF synaptic weights
1: Initialize particle coordinates at random integer numbers

between spmin and smax: S; (0) < | rand, rand, ..., rand

N
2: Start with the first time step: ¢ < 1

3: While none of the two stopping criteria (¢1,£2) has been
met Do:

4:  For i=1:P Do:

5: Pass s; (¢) and the training dataset {Uain, Yirain}
to algorithm 1, in order to calculate
the total number of RBF centers L; (f) and their
locations ; (¢)

6: Use (5) to calculate the synaptic weights w; (1)

7: Calculate fitness function f (s; (z)) on the validation
dataset {Uyal, Yva1}, and update the personal y; ()
and global best § (¢) positions if needed, using (17)

and (18)
8: End For
9: For i=1:P Do:
10: For j=I1:N Do:
11: Update the elements of the velocity vector

vij (t + 1) using (22)

12: Perform velocity clamping, if needed, using (19)
13: End for
14: Update particle positions s; (# + 1) using (21)
15: End For

16. Proceed to the next time step: t <— ¢ + 1
17: End While

e Auto MPG: A slightly modified version of the original
dataset has been employed [48]. The objective is to
predict the fuel consumption of an automobile, using
as inputs some of its characteristics.

e Auto Price: The objective here is to predict the price
of an automobile, based on its characteristics. All nom-
inal attributes and data instances with unknowns were
removed. This dataset is also known as the Auto Mobile
dataset.

e Boston Housing: This dataset concerns the prediction
of selling prices for houses in Boston, based on char-
acteristics of the houses. Data were acquired from the
1970 census.

TABLE 1
BENCHMARK DATASETS

Dataset No. of Inputs | No. of Examples
Real-World Datasets

Ailerons 40 13750
Auto MPG 6 392
Auto Price 15 159
Boston Housing 13 506
CPU small 12 8192

Elevators 18 16 599
Gas Furnace 3 290

House Price-16H 16 22784
Machine CPU 6 209
Synthetic Datasets

Friedman 5 1000
Mackey-Glass 6 1995
Samad 3 1500

e CPU Small: CPU small is a small variant of the

Computer Activity dataset. It comprises a collection of
computer-system activity measures from a Sun SPARC-
station. The task is to predict the portion of time that the
CPUs run in user mode,taking into account a restricted
number of attributes.

Friedman: This dataset is generated from the
function [49]

y=5 [2 sin (mx1x2) + 4 (x3 — 0.5)2 + 2x4 + xS] +e
(25)
where ¢ is Gaussian noise ~ N(0, 0.8). Values for the
input variables are sampled from a uniform distribution
in [0,1].
Gas Furnace: This dataset involves prediction of the
CO; concentration y(z) in the exhaust gases of a gas
furnace system, while changing the methane feed rate
u(t). A previous study [41] has shown that the optimum
combination of input variables results in a model of the
form

y(@ =RBF(u(—2),y(r—-2),yt—-1). (26)

House Price-16H: This dataset is concerned with pre-
dicting the median price of houses based on demo-
graphic composition and the state of the housing market.

e Machine CPU: The objective is to predict the relative

CPU performance using as inputs CPU characteristics.
This dataset is also known as the Computer Hardware
dataset.

e Mackey-Glass: The Mackey-Glass dataset originates

from a chaotic time series which has been used exten-
sively for evaluating neural network models [50]-[52];
for the discrete case, it is generated from the following
difference equation:

y(—r1)

y(t+1)=(1—b)y(t)+am‘

27)
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The objective is to build a model for predicting the
current value of the time series y(z), based on the
previous six values

V() =RBF(y(t —1),y(t —2)....,y(t —6)).
(28)
The parameter values a = 0.2, b = 0.1, and 7 =
30 have been used in (27) for generating the dataset.
It should be noted that the first 1000 values were
discarded, in order to allow the system to reach steady-
state operation. Gaussian noise ~ N(0, 0.05) was added
to the output y(z).
e Samad: This dataset is generated from the function [53]

1
1T exp [— exp(x1) + (x2 — 0.5) + sin(wx3)] te
(29)

Yy

where ¢ is Gaussian noise ~ N(0,0.025). Values for the
input variables are sampled from a uniform distribution
in [0,1].

B. Results and Discussion

For each case, data were split randomly to training, valida-
tion, and testing datasets. In general, there is no consensus
in the literature regarding the amount of data that should
be allocated to each dataset. In this paper, a 50% - 25% -
25% ratio (training - validation - testing) was adopted, and
data splitting was performed in a random number. The only
exceptions to the random splitting rule were the Gas Furnace
and Mackey-Glass datasets, where common practice is to
maintain the original data order.

Table II presents the operational parameters for the
PSO-NSFM algorithm (including the parameters used by
the NSFM algorithm and the PSO optimizer) applied to all
experiments. The minimum and maximum number of fuzzy
sets define the lower and upper bounds of the search space,
respectively. Previous experiments with both symmetric and
nonsymmetric versions of the FM algorithm have shown that
partitions outside these bounds are not likely to result to
successful models. The constants ¢; and ¢y controlling the
effect of the cognitive and social components, respectively,
were found to have only a small effect on the outcome of the
optimization procedure when kept at small values. Selection
of larger values for c¢; and ¢, however, resulted in poor
exploitation capabilities of the algorithm. Furthermore, equal
values were selected for ¢; and ¢, since previous studies
have shown that PSO is usually most effective when the
two constants coexist in good balance [45]. The exploitation—
exploration tradeoff was controlled by the velocity clamping
constant Vpax. As the size of the search space increases
with the dimensionality of the input space, particle velocities
should be allowed to increase in order to guarantee that the
search space will be sufficiently explored within reasonable
simulation times. Therefore, three different velocity clamping
constants were used, depending on the input space dimen-
sionality of the problem (small problems: 1-4 input variables,
medium problems: 5-8 input variables, large problems: more
than 8 input variables).
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TABLE 11
OPERATIONAL PARAMETERS FOR THE PSO-NSFM ALGORITHM

Parameter Symbol Value
Minimum number of fuzzy sets Smin 4
Maximum number of fuzzy sets Smax 50
Population P 20
Nostalgia c] 0.05
Envy &) 0.05
Velocity clamping constant? Vinax S:5, M:15, L:25
Maximum number of simulation steps & 8000
Minimum normalized swarm radius & 0.1

“ Value depending on input space dimensionality: small problems (S):
1-4 input variables, medium problems (M): 5-8 input variables, large
problems (L): more than 8 input variables.

For comparison purposes, two additional methodologies
were also tested, namely, RBF networks trained with
the SFM algorithm and MLP networks trained with the
Levenberg-Marquardt algorithm [54]. In both cases, the net-
work parameters were determined using the training dataset,
and then model selection was performed using the validation
dataset. In the case of RBF networks trained with SFM, model
selection was controlled by only one parameter, namely, the
number of fuzzy sets s for partitioning each input variable.
Selection of s was made after testing all partitions from 4 to 50
fuzzy sets. Regarding MLP networks, a standard two-hidden-
layer architecture was postulated and then an exhaustive search
was performed, testing all possible combinations when the
number of nodes in each hidden layer ranged from 5 to 40.

The results for all the datasets are summarized in Tables III
and IV. Table III depicts the RMSE in the validation and
testing datasets and the number of nodes for all three
methodologies, together with the selected fuzzy partition for
the two RBF models. The computational time for all three
methodologies and the simulation time steps (STSs) for PSO-
NSFM algorithm completion are shown in Table IV, together
with the computational time and STSs needed for the PSO-
NSEM algorithm to generate a model that outperforms the
SFM algorithm in terms of the RMSE fitness criterion. All
computational times were measured on a PC with Intel Core
2 Quad processor (2.83 GHz) with 4 GB of RAM. Due to
the stochastic nature of the PSO method, the PSO-NSFM
algorithm returns different results for each run. In order to
get consistent results, the algorithm was tested 30 times for
each dataset. The tables depict the best result, followed by
the average and standard deviation values from the 30 runs
in parentheses. Fig. 4 presents the evolution of the RMSE in
the validation dataset per STS for the best solution in each
case.

It can be seen that in all cases the PSO-NSFM algorithm
outperforms the SFM algorithm and the MLP networks in
terms of the best solution found in the validation and testing
datasets. As far as the average RMSE value found by PSO-
NSFM is concerned, it is lower compared to the ones found
by the other two methodologies in 10 out of 12 cases, con-
sidering either the validation or the testing dataset. Standard
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TABLE III
RESULTS FOR ALL DATASETS—RMSE, FUZZY PARTITION AND NUMBER OF NODES

Dataset Algorithm RMSE Validation RMSE Testing Fuzzy Partition Nl;;::g::a()f
[464413754141122
PSONSEM 1.57x10~4 1.56x10~% 32544105371294504 237
) (1.58x1074+£1.08x107%) (1.56x 1074 £1.70x 1079) 245037 48 44550427 6 (314+127)
_ 50 42 6 4 50 9 9]
Ailerons SFM 1.59x 102 157x10 % 13 311
MLP 1.59x10~4 1.58x10~4 - [35 25]
PSO-NSFM 2.11 (2.14£3.19x1072) 1.95 (2.0948.96x102) [27 4 4 32 4 8] 36 (394+24)
Auto MPG SFM 2.22 2.12 10 41
MLP 251 2.34 - [23 19]
2.17x10° 2.11x10° [4 4295050237345 10 57
_ PSO-NSFM (2.38x 10341.28x102) (230x 10349.06x 101) 24 4 35 4 37] (57+5)
Auto Price 3 3
SFM 2.73x10° 2.86x10° 11 44
MLP 2.29% 103 2.38x10° - [17 11]
PSO-NSFM 235 (2.3843.13x1072) 272 B124226x10-1) | 1483039 fgsg 12;1]4 62845 1 1380141417
Boston Housing
SFM 2.77 2.93 16 146
MLP 2.47 3.38 - [18 19]
PSO-NSFM 2.80 (2.834+1.34x1072) 281 (2.8342.39x10°2) | 471815 1365 32%]24 2926 16 | 46704634261)
CPU Small
SFM 2.87 2.84 23 480
MLP 3.01 3.02 - [24 30]
PSO-NSEM 2.08x1073 2.11x1073 [16 175184917 1379 16 981
(2.08x1073+£7.27x107%) (2.11x1073£1.08x1075) 151141151516 12] (805+274)
Elevators 3 3
SFM 2.10x1073 2.12x1073 18 1776
MLP 2.10x1073 2.14x1073 - [40 24]
9.08x 10! oy
_ PSO-NSFM (9.33x 10~ £1.61x10-2) 1.06 (1.0743.03x1072) [8 4432 4] 114(116£66)
Friedman —
SFM 9.64x 10 1.09 8 179
MLP 1.04 1.08 - [15 15]
1.70x 107! 427x107! 22
PSO-NSFM (1.80x 1071 £3.70x 1073) (4.04x1071£1.65x1072) 85 23] (1745)
Gas Furnace T 1
SFM 2.19x10 4.44x10 15 29
MLP 3.10x 107! 4.60x107! - [8 19]
PSONSEM 3.62x10% 3.61x10% (59426391064 111024 984
) (3.63x104£1.24x10?) (3.59x 104 +£4.98x 10%) 16 13 12 14 30] (902+299)
House Price-16H vi vi
SFM 3.64x10 3.62x10 17 1065
MLP 3.64x10% 3.63x10% - [37 14]
PSO-NSFM 2.28x10! 2.16x 10! (2.63x10! +4.50) [12 4 13 6 16 5] 19 (2146)
) (2.30x 101 +4.03x 10~ 1) : : :
Machine CPU 1 1
SFM 2.49x10 2.77x10 11 22
MLP 2.92x 10! 2.99x 10! - [21 7]
479x10~2 5.30x 1072 24
PSO-NSFM (4.81x107241.48x 104 (5.31x107242.29x 104 [44415543] (25+4)
Mackey-Glass = —
SFM 4.92x10 5.34x10 17 34
MLP 4.88x1072 5.35x1072 - [9 13]
2.47x1072 2.80x 1072 89
PSO-NSFM (2.48x10724£2.11x10™%) (2.79%1072+4.40x 10~%) [4 6 38] (87+19)
Samad =) —2
SFM 2.59% 10 2.83x10 11 112
MLP 2.49x1072 2.81x1072 - [13 7]

The PSO-NSFM algorithm was tested 30 times for each dataset. The table depicts the run corresponding to the best result in terms of RMSE in the
Ivalidation dataset, followed by the average and standard deviation values from the 30 runs in parentheses.
* The number of nodes for the MLP networks is given in the form: [first layer nodes second layer nodes].

Another important improvement over the SFM algorithm
concerns the size of the produced networks. In 10 out of
12 datasets, the PSO-NFSM approach managed to reduce the

deviation values of RMSE were found to be relatively small,
attesting to the fact that the algorithm provides consistent
results.
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TABLE IV

RESULTS FOR ALL DATASETS-COMPUTATIONAL TIME AND SIMULATION TIME-STEPS

Computational Time (s) Simulation Time-Steps
Dataset PSO-NSFM PSO-NSFM SFM MLP PSO-NSFM PSO-NSFM
(Complete) (Outperform) (Complete) (Outperform)
Ailerons 4220 (7138£3176) | 941 (1525£1003) 2613 8141 118 (227+167) 21 (32421)
Auto MPG 92 (388+113) 4 (6£4) 8 1174 319(1725+584) 7 (134£9)
Auto Price 339 (357£112) 0.7 (5+2) 6 624 832(825+295) 1 (9+4)
Boston Housing | 2588 (2824+877) 0.8 (7£3) 13 2402 5709 (6677+£2118) 1 (7£2)
CPU Small | 4505 (2377+1053) 17 (705+£289) 790 2814 547 (261£121) 1 (58+25)
Elevators 7197 (8257+2877) | 1745 (2587£1201) 3873 10715 166 (194+77) 34 (47420)
Friedman 133 (436£123) 23 (41423) 47 1300 245 (949+£285) 21 (37£19)
Gas Furnace 77 (35422) 0.4 (1.5£1) L6 1040 620 (250£112) 1 (745)
House Price-16H | || 71382_931 651) 869 (2109+1108) 3508 15745 284 (249+86) 18 (44421)
Machine CPU 83 (69432) 1 (3+2) 4 954 943 (698£274) 5 (18+13)
Mackey-Glass | 539 (303+218) 1 (744) 27 1140 3259 (2124£1807) 3 (1145)
Samad 60 (104+30) 2 (14+£11) 34 1298 89(178+72) 1 (10£8)

The PSO-NSFM algorithm was tested 30 times for each dataset. The table depicts the best result, followed by the average and standard deviation
values from the 30 runs in parentheses. For the PSO-NSFM (Complete) case, the best result corresponds to the run achieving the lowest RMSE in the
validation dataset upon completion of the algorithm, while for the PSO-NSFM (Outperform) case, the best result corresponds to the run achieving
the lowest computational time for outperforming the SFM algorithm.

"
1.66 X10 2.52 311 x10° —PSO-NSFM 280 |
—PSO-NSFM | w --SFM w
w J— -
2 --SFM 2 —PSONSFM | &2 MLP 2 __2?3 NSFM
© MLP x --SFM e | __. o
MLP
162 2.31 MLP 261 2.55
210 L 2.1 2.30
0 110 STSs 220 330 0 300 STSs 600 900 0 2OOOSTSS4OOO 6000
(b) () (d)
-1
3.02 —_PSONSEM || 112 —PSO-NSFM | | 3.20 X10
& —PSO-NSFM --SFM u —PSO-NSFM
2 --SFM MLP H --SFM
MLP
2.40
L —
2.08 1.60
0 200 STSs 400 600 0 60 STSs 120 180 0 100 STSs 200 300 0 220 STSs 440 660
() ® (8 (h)
4 2
3.73 x10 —PSO-NSFM 3.00 x10' 4,96 x10 2.60 X_19 ___________________
--SFM w
& fALP ® —PSO-NSFM @@ f——=—=————————- | ® —PSO-NSFM
E E --SFM E E --SFM
MLP MLP
3.67 2.60 4.87 — PSO-NSFM | 253
---------------- --SFM
MLP
1 L
220 e 0 1200 2400 o0 >
0 100 gTgs 200 300 0 340 STSs 680 1020 STSs 0 35 g18s 70 105
(@) ) (k) 0]

Fig. 4. Evolution of RMSE per STS in the validation set for the three methodologies. The best solution found in terms of RMSE in the validation dataset is
depicted for the PSO-NSFM algorithm. (a) Ailerons. (b) Auto MPG. (c) Auto Price. (d) Boston Housing. (¢) CPU Small. (f) Elevators. (g) Friedman. (h) Gas
Furnace. (i) House Price-16H. (j) Machine CPU. (k) Mackey-Glass. (1) Samad.

selected by the PSO-NSFM algorithm exceeded 20%, com-
pared to the number of centers selected by the SFM algorithm.

number of nodes while still providing smaller approximation
errors. In fact, in five cases the decrease in RBF centers
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As far as simulation times are concerned, the PSO-NSFM
algorithm requires more computational effort to arrive to
completion compared to the SFM training method. This is
expected because of the significant increase in the size of
the search space that needs to be explored by the proposed
algorithm. However, it is important to note that, within a few
steps, the RBF model generated by the PSO-NSFM algorithm
already outperforms the final outcome of SFM in terms of
prediction accuracy. This is translated into computational times
that are lower in all cases (considering either the best run
or the average among the 30 runs), compared to the time
needed by the SFM algorithm to arrive to completion. In fact,
PSO-NSFM managed to outperform SFM right from the first
time-step—as far as the best run is concerned—in five cases.
Thus, the proposed approach generates a highly accurate
model within the first time steps, but further improvements
are being made until completion of the algorithm.

It should be noted that an increase in the number of
examples and the problem dimensionality results in higher
computational times. The increase in complexity could ulti-
mately lead to computational times that are not practically
feasible. However, the performance of the proposed approach
on case studies with high dimensionality and large amounts
of examples indicates that the algorithm can handle datasets
with reasonably high complexity.

VI. CONCLUSION

The symmetric version of the FM algorithm provides a
fast and reliable method for determining the hidden nodes
of an RBF network. However, the produced RBF models
could be improved both in terms of higher accuracy and
parsimony by applying a different number of fuzzy sets
in each input dimension. In this paper, we introduced a
systematic approach for fully training RBF networks using
a nonsymmetric fuzzy partitioning of the input space and
PSO-based optimization of the number of fuzzy sets in each
dimension. The produced methodology, namely, the PSO-
NSEM algorithm, was evaluated on 12 synthetic and real-
world benchmark datasets of various sizes. The resulting RBF
models were found to exhibit smaller modeling errors in the
validation and testing datasets compared to the original SFM
algorithm and MLP networks. The higher accuracy produced
by the PSO-NSFM-generated models was combined with a
smaller number of hidden node centers in most of the tested
cases. Furthermore, the computational times needed for the
PSO-NSFM algorithm in order to outperform the original SFM
algorithm in terms of modeling error were smaller compared to
the total time needed for training the latter. The performance
of the proposed approach on datasets with high complexity
indicates that it could be used in image processing, speech
recognition, biometrics, bioinformatics, and other computa-
tionally demanding tasks of practical interest.

Future research plans include substitution of the RBFs used
in this paper with alternative forms of basis functions in
order to further increase the model accuracy and decrease the
computational load.
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