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Objective: The profusion of data accumulating in the form of medical records could be of great help for
developing medical decision support systems. The objective of this paper is to present a methodology
for designing data-driven medical diagnostic tools, based on neural network classifiers.
Methods: The proposed approach adopts the radial basis function (RBF) neural network architecture and
the non-symmetric fuzzy means (NSFM) training algorithm, which presents certain advantages including
better approximation capabilities and shorter computational times. The novelty in this work consists of
adapting the NSFM algorithm to train RBF classifiers, and suitably tailoring the evolutionary simulated
annealing (ESA) technique to optimize the produced RBF models. The integration of ESA is critical as it
helps the optimization procedure to escape from local minima, which could arise from the application
of the traditional simulated annealing algorithm, and thus discover improved solutions. The resulting
method is evaluated in nine different medical benchmark datasets, where the common objective is to
train a suitable classifier. The evaluation includes a comparison with two different schemes for training
classifiers, including a standard RBF training technique and support vector machines (SVMs). Accuracy%
and the Matthews Correlation Coefficient (MCC) are used for comparing the performance of the three
classifiers.
Results: Results show that the use of ESA helps to greatly improve the performance of the NSFM algo-
rithm and provide satisfactory classification accuracy. In almost all benchmark datasets, the best solution
found by the ESA-NSFM algorithm outperforms the results produced by the SFM algorithm and SVMs,
considering either the accuracy% or the MCC criterion. Furthermore, in the majority of datasets, the aver-
age solution of the ESA-NSFM population is statistically significantly higher in terms of accuracy% and
MCC at the 95% confidence level, compared to the global optimum solution that its rivals could achieve.
As far as computational times are concerned, the proposed approach was found to be faster compared to
SVMs.
Conclusions: The results of this study suggest that the ESA-NSFM algorithm can form the basis of a
generic method for knowledge extraction from data originating from different kinds of medical records.
Testing the proposed approach on a number of benchmark datasets, indicates that it provides increased
diagnostic accuracy in comparison with two different classifier training methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Medical diagnosis refers to the act of identifying a disease from
its signs and symptoms, or, in other words, classifying input symp-
toms into some known disease category. As medical diagnosis of-
ten involves a degree of uncertainty, physicians could reap the
benefits of appropriate decision support systems, able to help them
assess medical situations. The profusion of data accumulating in
the form of medical records could be of great help for designing
such systems; however, unlocking the knowledge contained in his-
torical data is associated with a number of difficulties. The rela-
tionship between a diagnosis and the associated symptoms or
clinical findings is usually rather complex and nonlinear in nature
and the mechanisms that govern the operation of the human body
are quite often poorly understood; these facts impede the formula-
tion of explicit laws that could be fitted to the available data, and
thus, make the extraction of knowledge from medical records
rather cumbersome.

Though the aforementioned difficulties hinder the task, recent
advances in machine learning and data mining methodologies
are catalyzing the development of medical decision support
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Fig. 1. Typical structure of an RBF classifier.
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systems. In this context, a variety of techniques have been used for
building medical diagnostic tools [1], a significant portion of which
involve a family of algorithms known as neural networks (NNs).
NNs are a set of powerful mathematical tools [2] that simulate
the way that the human brain deals with information and the pro-
cedure of learning. NNs have the ability to identify and learn highly
complex and nonlinear relationships from input–output data only,
without the use of first principle equations describing the system.
This is accomplished by storing information in computational
nodes called neurons. The development of an NN is based on a
set of input–output examples, which the network learns during
the training phase. In this stage, the network parameters associ-
ated with the neurons and/or the interconnection links are deter-
mined using an optimization procedure, which minimizes the
errors between the true outputs and the network predictions over
a set of training examples. A successfully trained NN model should
be capable of producing accurate estimations given a new set of
input data.

A number of publications exploiting the use of NNs for building
medical diagnostic tools have appeared during the last decades. A
method for using variations in electrical impedance over frequency
to distinguish basal cell carcinoma from benign skin lesions based
on NN classifiers is introduced in [3]. The authors in [4] present a
neural network-based biomarker association information extrac-
tion approach for cancer classification. A system called GEMS
(gene expression model selector) has been developed for the
automated development and evaluation of high quality cancer
diagnostic models, including NN methodologies [5]. Several
NN-based classifier approaches have been proposed for diagnosing
heart diseases [6]. Training NN classifiers for medical decision
making is studied in [7], focusing on the effects of imbalanced
datasets on classification performance. The important issue of
feature selection in building support vector machine (SVM)
classifiers for biomedical diagnostic datasets has been studied in
[8]. The use of NNs for medical data classification tasks is reviewed
in [9]. Other similar machine learning approaches employed for
building medical diagnostic tools include Bayesian methods
[10–12], fuzzy logic [13], decision trees [14] and multivariable
statistical techniques [15].

Depending on the way the nodes of the network are intercon-
nected and the calculations that each node performs, NNs are
categorized to a variety of architectures. Radial basis function
(RBF) networks [16] constitute a special network architecture that
presents some remarkable advantages over other NN types
including: (a) better approximation capabilities when performing
interpolation, i.e. providing predictions in-between the training
data points, (b) simpler network structures comprising a single
hidden layer and (c) faster learning algorithms which are usually
split into two stages [17,18]. Due to these advantages, RBF
networks have been used extensively for modeling complex
systems, with many successful applications in developing medical
diagnostic tools [19–21]. Especially in this area, improving the
accuracy of the network predictions is vital in achieving high
performance diagnosis. Unfortunately, calculating optimal values
for the parameters of an RBF network – as with other NN architec-
tures – is a rather cumbersome task. When viewing the NN training
procedure as an optimization problem, one realizes that the
objective function usually presents some rather unwelcome
properties including: (a) multimodality, possibly trapping the algo-
rithm in a non-satisfactory local optimum, (b) non-differentiability,
which impedes the use of derivative-based methods and (c) high
levels of noise, typically present in the training data [17]. As these
characteristics make the use of standard optimization methods
inefficient, it is no surprise that interest is shifting to optimizing
the RBF training procedure through the use of alternative
approaches, like evolutionary-based computation techniques.
Evolutionary computation [22] refers to a family of probabilistic
optimization techniques that mimic processes from natural
evolution, where the main concept is the survival of the fittest.
Evolutionary algorithms (EAs) form a class of generic purpose
search methods, which strike a remarkable balance between explo-
ration and exploitation—two apparently conflicting objectives in
any optimization technique. There are certain differences between
EAs and conventional optimization methods: EAs manipulate
coded versions of the problem parameters instead of the parame-
ters themselves; they do not use any auxiliary information about
the objective function, such as derivatives; they operate in parallel
on a population of solutions instead of manipulating a single solu-
tion. Hence, EAs are considered to be efficient and robust optimiza-
tion methods that are able to escape from local optima. These
properties have made EAs very popular in various and diverse sci-
entific fields, including applications of medical interest [23–26].
Not surprisingly, EAs have also been used for RBF network optimi-
zation. In [27], a new algorithm is introduced for developing
dynamic RBF models based on genetic algorithms. Particle swarm
optimization (PSO) is another methodology drawn from the
arsenal of EA methods that has been exploited in this area; a novel
algorithm for training RBF regression models based on PSO is
presented in [17].

The contribution of this paper lies in presenting a new method-
ology for building and optimizing RBF-based diagnostic tools with
increased classification capabilities. The proposed approach uses
the non-symmetric fuzzy means (NSFM) algorithm [28], which in
this work is modified properly to train RBF classifiers. Furthermore,
the evolutionary simulated annealing (ESA) [29] technique is suit-
ably tailored and incorporated to the proposed scheme to optimize
the fuzzy partition of the produced classifiers, with respect to the
classifying accuracy. The resulting classification method is applied
on medical diagnosis-related datasets.

The rest of this paper is organized as follows: In the next
section, we describe the applied techniques, including a brief
introduction to the RBF architecture and the NSFM algorithm, full
presentation of the proposed approach for training RBF classifiers,
and a description of the methods used for evaluation and testing.
Experimental results are presented in Section 3, followed by
discussion in Section 4. The paper concludes by outlining the
advantages of the proposed approach and setting directions for
future work.

2. Methods

2.1. Radial basis function network classifiers

Fig. 1 depicts the typical structure of an RBF classifier, able to
discern between M different classes. The input layer distributes
the N input variables to the L nodes of the hidden layer. Each node
in the hidden layer is associated with a center, equal in dimension
with the number of input variables. Thus, the hidden layer
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performs a nonlinear transformation and maps the input space
onto a new higher dimensional space. The activity ll(u(k)) of the
lth node is the Euclidean norm of the difference between the kth
input vector and the node center and is given by:

llðuðkÞÞ ¼ kuðkÞ � ûlk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðuiðkÞ � ûi;lÞ2

r
; k ¼ 1; . . . ;K ð1Þ

where K is the total number of data, uT(k) = [u1(k), u2(k), . . ., uN(k)] is
the input vector and ûT

l ¼ ½û1;l; û2;l; . . . ; ûN;l� is the center of the lth
node.

The activation function for each node is a radially symmetric
function. This work employs the thin plate spline function:

gðlÞ ¼ l2 logðlÞ ð2Þ

Thus, the hidden node responses z(k) become:

zðkÞ ¼ ½gðl1ðuðkÞÞÞ; gðl2ðuðkÞÞÞ; . . . ; gðlLðuðkÞÞÞ� ð3Þ

The output layer of the RBF classifier consists of M summation
units, where M is the number of possible output classes. The
numerical output ŷmðkÞ for each summation unit is produced by
a linear combination of the hidden node responses:

ŷmðkÞ ¼ zðkÞ �wm ¼
XL

l¼1

wl;mgðllðuðkÞÞÞ ð4Þ

where wm = [w1,m, w2,m, . . ., wL,m]T is a vector containing the synap-
tic weights corresponding to output m. The classifier prediction for
the output class CðkÞ corresponds to the summation unit triggering
the maximum numerical output [2]:

CðkÞ ¼ arg max
m

ŷmðkÞ; m ¼ 1;2; . . . ;M ð5Þ

After fixing the RBF centers and nonlinearities in the hidden
layer, the synaptic weights are typically calculated using linear
regression of the hidden layer outputs to the real measured out-
puts (target values). The regression problem can be trivially solved
using linear least squares in matrix form:

W ¼ ðZT � ZÞ�1 � ZT � Y ð6Þ

where Z = [z(1), z(2), . . ., z(K)]T is a matrix containing the hidden
layer responses for all input vectors, W = [w1, w2, . . ., wM] is a
matrix containing the synaptic weights for the output layer units
and Y = [y(1), y(2), . . ., y(K)]T is a matrix containing the target
vectors. Each target vector y(k) carries the information of which
class the k-th input vector actual belongs to. When a target vector
y(k) belongs to output class m, then all its elements yi(k) are set
equal to zero, except from the m-th element, which is set equal to 1:

yiðkÞ ¼
1; if i ¼ m

0; if i – m

�
; i ¼ 1;2; . . . ;M ð7Þ
Fig. 2. Non-symmetric partition on a two-dimensional input space with an
elliptical membership function.
2.1.1. Non-symmetric fuzzy means for RBF classifier training
The FM algorithm [30] is a method for selecting the hidden

node centers of an RBF network. It has several advantages over
the standard approaches like the k-means algorithm [31], includ-
ing automatic determination of the size of the network, i.e. the
number of hidden nodes, and faster computational times. The FM
algorithm has been used successfully in a number of applications
[32,33]. A variant of this algorithm, utilizing a non-symmetric
fuzzy partition of the input space (NSFM algorithm) has been
recently proposed [28]. What follows is a brief description of the
main concepts behind the NSFM algorithm.

Consider a system with N normalized input variables ui, where
i = 1, . . .,N. A non-symmetric fuzzy partition of the input space,
implies that the domain of each input variable i is partitioned into
a different number ci of one-dimensional triangular fuzzy sets.
Each fuzzy set can be written as:

Ai;j ¼ fai;j; daig; i ¼ 1; . . . ;N; j ¼ 1; . . . ; ci ð8Þ

where ai,j is the center element of fuzzy set Ai,j and d ai is half of the
respective width. It should be noted that the widths are different for
each input direction, depending on the selected number of fuzzy
sets ci.

This partitioning technique creates a total of C multi-
dimensional fuzzy subspaces Al, where l = 1, . . .,C:

C ¼
YN
i¼1

ci ð9Þ

Each multi-dimensional fuzzy subspace is generated by com-
bining N one-dimensional fuzzy sets, one for each input direction.
Thus, the fuzzy subspaces can be defined using a center vector al

and a side vector da:
Al ¼ fal; dag ¼ f½al
1;j1
; al

2;j2
; . . . ; al

N;jN
�; ½da1; da2; . . . daN �g; l ¼ 1; . . . ;C ð10Þ

where al
i;ji

is the center element of the one-dimensional fuzzy set Ai;ji

that has been assigned to input i. The produced fuzzy subspaces
form a grid where each node is candidate for becoming an RBF
center. An example of the non-symmetric partition is displayed in
Fig. 2 using a two-dimensional case for visualization purposes.
The domain of input variable u1 is partitioned into 7 fuzzy sets,
whereas the domain of u2 is partitioned into 5 fuzzy sets, thus
defining a total of 35 fuzzy subspaces. The grid forms 24 equal
rectangles in the input space and the two edges of each rectangle
are twice the widths of the respective fuzzy sets da1, da2.

The objective of the FM algorithm is to assemble the RBF net-
work hidden layer by selecting only a small subset of the fuzzy
subspaces. The number of the selected fuzzy subspaces should be
kept low so as to produce a parsimonious model, but at the same
time the produced RBF centers should cover sufficiently the avail-
able input data. The NSFM algorithm performs the selection based
on the multidimensional membership function lAl ðuðkÞÞ of an in-
put vector u(k) to a fuzzy subspace Al [34]:

lAl ðuðkÞÞ ¼ 1� dl
rðuðkÞÞ; if dl

rðuðkÞÞ 6 1
0; otherwise

(
ð11Þ

where dl
rðuðkÞÞ is a function of the distance between the fuzzy

subspace Al and the input data vector u(k). The function dl
rðuðkÞÞ
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defines a hyper-ellipse on the input space, described by the
following equation:

dl
rðuðkÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
al

i;ji
� uiðkÞ

� �2
�

NðdaiÞ2
� �s

ð12Þ

Fig. 2 depicts the ellipse that is formulated in the two-dimen-
sional case.

Having defined the membership function, the algorithm
proceeds with finding the subset of fuzzy subspaces that assign a
nonzero multidimensional degree to all input training vectors. This
is accomplished using a non-iterative algorithm which requires
only one pass of the input data, thus rendering the center calcula-
tion procedure extremely fast, even in the presence of a large data-
base of input examples. Algorithm 1, presents an overview of the
NSFM algorithm.

Algorithm 1 – NSFM Algorithm
Input: {Utrain, Ytrain}: Training Dataset,

c ¼ ½ c1; c2; . . . ; cN �: Number of fuzzy sets
for partitioning each input dimension

Output: L: Number of selected RBF centers,bU ¼ ½ û1; û2; . . . ; ûL �T : Selected RBF center
locations

1: Take the first data point: k 1
2: Begin calculations for the first RBF center: L 1
3: For i = 1:N Do:
4: Calculate the fuzzy set with maximum membership in

each dimension i:

A1
i ¼ fa1

i ; daig  max
16j6si

½lAi;j
ðuið1ÞÞ�

5: End For
6: Generate the first RBF center û1: û1 ¼ ½a1

1; a
1
2; . . . ; a1

N�
7: For k = 2:K Do:
8: If data point k lies outside the hyper-ellipses defined by

the already selected centers:

min
16l6L

½dl
rðuðkÞÞ� > 1; where dl

r is calculated by (12)

9: Add a new RBF center: L L + 1
10: For i = 1:N Do:
11: Calculate the fuzzy set with maximum membership

in each dimension i:

AL
i ¼ faL

i ; daig  max
16j6si

½lAi;j
ðuiðkÞÞ�

12: End For
13: Generate the L-th RBF center ûL: ûL ¼ ½aL

1; a
L
2; . . . ; aL

N �
14: End If
15: End for
Though the NSFM algorithm can lead to significant improve-
ments in both accuracy and parsimony of the produced model,
the non-symmetric partition necessitates the determination of an
increased number of operational parameters, in an optimal way.
For problems involving a very low number of samples and input
variables, the optimal number of fuzzy sets for each variable could
be calculated using an exhaustive search procedure, where all pos-
sible combinations of non-symmetric partitions are tested. Unfor-
tunately, as the number of possible combinations increases
explosively with the dimension of the input space, the excessive
computational burden imposed by even slightly larger problems,
makes the use of exhaustive search practically infeasible in this
case. In this work, we introduce a novel method for optimizing
the non-symmetric partition of the input space through the use
of evolutionary simulated annealing (ESA), thus leading to a new
integrated procedure for developing high accuracy RBF-based
classifiers.
2.2. RBF classifier optimization based on evolutionary simulated
annealing

2.2.1. Simulated annealing
Simulated Annealing (SA) is a stochastic optimization technique

based on the work of Metropolis [35]. The SA method parallelizes
the search of the minimum energy state, which occurs during the
annealing process applied in metallurgy, to the search for the min-
imum of a mathematical function, through an iterative procedure.
The original SA algorithm operates on a single solution which is
usually expressed as a vector of integer or real values. The algo-
rithm starts with a randomly selected solution of the problem. In
each iteration, a new solution is generated by applying a random
change to the previous one. The new solution is evaluated using
the objective function and can be accepted or deleted depending
on the difference with the previous evaluation. During the first
iterations even a worst solution compared to the previous one
can probably be accepted; this corresponds to the random movement
of molecules in high temperatures. Such degradations in the solution
quality can be proven essential to avoid paths leading to local
minima. As the algorithm progresses, the probability pB that a worst
solution will be accepted gradually becomes smaller, imitating the
reduced mobility of the molecules as the temperature decreases. In
fact, this probability is given by the Boltzmann–Gibbs distribution:

pB ¼
1; if f ðxiÞ < f ðxi�1Þ

exp � f ðxiÞ � f ðxi�1Þ
kT

� �
; otherwise

8<: ð13Þ

where T is the temperature at each iteration, k is the Boltzmann
constant, f is the objective function and xi, xi�1 represent two con-
secutive solutions during the annealing procedure. An annealing
schedule is applied, starting from an initial high temperature
Tmax and gradually decreasing until reaching the lower temperature
Tmin. The most common annealing schedule is exponential cooling,
which lowers the temperature in successive discrete steps t accord-
ing to the following equation:

Tðt þ 1Þ ¼ aTðtÞ; 0 < a < 1 ð14Þ

where a is the exponential cooling constant

2.2.2. Evolutionary simulated annealing
Unlike classic evolutionary techniques, e.g. genetic algorithms

(GAs) or particle swarm optimization (PSO), the original SA
algorithm operates on a single solution, instead of using a popula-
tion of them. This is beneficial with respect to the computational
burden of the algorithm, but decreases the possibility of finding a
global minimum. Another difference of SA compared to the
aforementioned techniques, is that though detrimental moves are
allowed during the first iterations of SA, later-on the method
behaves almost like a hill-climbing algorithm, accepting only an
improved solution. This makes it harder to escape from local
minima during the last stages of the algorithm.

To obviate these drawbacks, SA was hybridized with evolution-
ary techniques, thus creating the evolutionary simulated annealing
algorithm (ESA) [29]. ESA starts with a population of randomly
initialized solutions, coded as chromosomes. In contrast with
genetic algorithms though, there are no genetic operators like
crossover or mutation involved. The only operator acting on the
chromosomes is in fact the SA operator. This implies that each
chromosome in the current generation is used as an initial solution
for performing the original SA algorithm. The terminal solution
produced by SA is then compared to the initial solution and the
best of the two survives for the next generation. The algorithm is
repeated until a stopping condition is met. Criteria that could be
used as stopping conditions for ESA include:
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� Maximum number of generations is reached.
� No improvement is accomplished in the objective function over

a number of successive generations.
� An acceptable solution is found.

It should be noted that the two first criteria refer to the gener-
ations corresponding to the evolutionary procedure. The iterations
performed by SA are kept to a constant value selected by the user.

2.2.3. Encoding fuzzy partitioning for ESA
The ESA algorithm can be used as a search method for calculat-

ing the optimum non-symmetric partitioning given as input to the
NSFM algorithm. In this case, the chromosomes that participate in
the evolutionary procedure represent different ways of partition-
ing the input space. Applying this formulation, each chromosome
cp(q), corresponds to the number of fuzzy sets in each dimension:

cpðqÞ ¼ ½c1ðqÞ; c2ðqÞ; . . . ; cNðqÞ�T ; p ¼ 1;2; . . . ; P; q ¼ 1;2; . . . ;Q ð15Þ

where P and Q denote the size of the population and the total
number of generations, respectively. In each generation, all
chromosomes in the population undergo the SA operator. The
random change which is applied to the chromosomes in each SA
iteration is of the form:

cpðqþ 1Þ ¼ roundfcpðqÞ þ rðqÞg ð16Þ

where r(q) is a vector containing N random numbers drawn from a
Gaussian distribution �N(0,r). The parameter r defines the stan-
dard deviation of the random applied changes to the chromosomes.
The round operator is used to round the chromosomes to the
nearest integer, as the number of fuzzy sets in each dimension
can receive only integer values.

2.2.4. RBF classifier training using NSFM and ESA
Optimization of the non-symmetric fuzzy partitioning of the

input space using ESA, forms the basis for an integrated RBF
classifier training methodology. The algorithm starts by randomly
dividing the available data in three datasets, namely the training,
validation and testing datasets. The classifier is trained on the
training dataset, while the validation dataset is used for model
selection. Alternatively, model selection can be performed using
a k-fold cross-validation procedure, albeit at the cost of increasing
the computational burden of the algorithm. As k-fold cross-validation
is by itself a computationally expensive procedure, incorporating it to
an evolutionary cycle would mean repeating the RBF network
training procedure many times for each chromosome and each
iteration. In any case, the existence of a third independent dataset
for testing the produced RBF classifier is crucial, since the optimi-
zation procedure could result in overfitting the model to the data
used for validation. During the particle initialization stage, P differ-
ent partitions of the input space are selected randomly, and coded
as chromosomes. Each chromosome then gives birth to an RBF
classifier by applying the NSFM algorithm. The latter, calculates
the number and coordinates of the RBF centers based on Eq. (11).
After fixing the RBF centers, the synaptic weights can be trivially
calculated using Eq. (6). Based on the emerging RBF networks, a
fitness value is calculated for each chromosome, by applying an
error-related criterion. The proposed algorithm adopts the
accuracy% criterion, defined as follows:

Accuracy% ¼ Total number of correctly classified data
Total number of data

� 100

ð17Þ

Alternative error functions can also be used. The next step is to
create a new generation of chromosomes by applying the SA
operator. SA starts with the initial chromosome and performs
random changes using Eq. (16). The resulting solution can be ac-
cepted or rejected with a probability calculated by the Boltz-
mann–Gibbs distribution (Eq. (13)). As soon as the temperature
reaches its minimum value, the SA algorithm returns the produced
solution, which is compared to the initial one. The best of the two
solutions is passed onto the next generation. The algorithm then
returns at the RBF network generation stage, until a stopping con-
dition has been met. The stopping condition in this case is satisfied
when a maximum number of generations is reached. A schematic
overview of the ESA-NSFM method is given in Fig. 3, whereas the
algorithm structure is presented in Algorithm 2.

Algorithm 2 – ESA-NSFM Algorithm

Input: {Utrain, Ytrain}: Training Dataset,
{Uval, Yval}: Validation Dataset,
smin, smax, r: Minimum and maximum number of
fuzzy sets, and standard deviation of the random
applied changes to the number of fuzzy sets
P: Population,
Tmin, Tmax, k, a: ESA operational parameters
(Minimum and maximum temperatures, Boltzmann
constant, and cooling constant, respectively)
Q: Maximum number of generations

Output: Lf: Number of selected RBF centers,bUf : Selected RBF center locations,
Wf: Selected RBF synaptic weights

1: For p = 1:P Do:
2: Initialize chromosome coordinates at random

integer
numbers between smin and smax:

cpð0Þ  
rand; rand; . . . ; rand|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N


 �
3: End For
4: For q = 1:Q Do:
5: For p = 1:P Do:
6: Pass cp(q) and the training dataset {Utrain, Ytrain} to

algorithm 1, in order to calculate the total number of
RBF centers Li(t) and their locations ûpðtÞ

7: Use (5) to calculate the synaptic weights Wp(q)
8: Calculate fitness function f(cp(q)) on the validation

dataset {Uval, Yval}
9: Initialize the solution c

0

p(0) for the annealing process
c
0

p(0) cp(q) and the annealing iterations t 0
10: While the temperature T is greater than Tmin Do:
11: Proceed to the next annealing iteration t t + 1
12: Calculate a new solution c

0

p(t) using (16)
13: If the old solution c

0

p(t � 1) is better than the new
solution c

0

p(t)
14: Calculate the Boltzmann probability pB using (13)
15: If a random number is greater than pB

16: Substitute the old solution with the new one
c
0

p(t) c
0

p(t� 1)
17: End If
18: End If
19: Update temperature using (14)
20: End While
21: If SA terminal solution c

0

p(t) is better than the current
generation solution cp(q)

22: Substitute the current generation solution with SA
terminal solution cp(q) c

0

p(t)
23: End If
24: End For
25: End For



Evolutionary
procedure

RBF 
training

NSFM

…[6  23 … 9] [5  12 … 19] [19  8 … 40]

Fitness 
evaluation

Annealing schedule

SA 
operator

…[4  19 … 11] [17  9 … 23] [22  8 … 45]

…[6  23 … 9] [5  12 … 19] [19  8 … 40]

Encoding
…

Population of chromosomes

…[4  19 … 11] [17  9 … 23] [22  8 … 45]

…

Fig. 3. A schematic overview of the ESA-NSFM algorithm. (For interpretation to colours in this figure, the reader is referred to the web version of this paper.)
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2.3. Method evaluation
To demonstrate the effectiveness of the proposed method as a
diagnostic tool in medicine, the algorithm was applied on several
datasets of medical interest, downloaded from the UCI Machine
Learning Repository [36]. The common objective in all datasets is
to predict the output class (category) based on a number of input
variables (attributes), which are continuous or ordinal. Table 1 pre-
sents an overview of the conducted experiments, depicting the
numbers of input variables, total data points, output classes, and
positive cases (only for datasets with two output classes), for the
tested datasets. Some datasets included examples with missing
values, which, for the purposes of this study, were discarded. A
brief description for each dataset is given in Appendix A, whereas
additional information can be found in [36].

For each dataset, data were split randomly to training, valida-
tion and testing subsets. In general, there is no consensus in the
relative literature regarding the amount of data that should be
allocated to each subset. In this work, a 50%–25%–25% ratio
(Training–Validation–Testing) was adopted, taking special care so
as to maintain the same splitting ratio not only for the whole
dataset, but also for each class individually.

As far as the operational parameter selection is concerned, it
was based on theoretical aspects, as well as experimentation.
Table 1
Dataset overview.

Dataset No. of inputs

Cardiotocography FHR 21
Cardiotocography NSP 21
EEG Eye State 14
Pima Indians Diabetes 8
Thyroid ANN 6
Vertebral Column – 2 Classes 6
Vertebral Column – 3 Classes 6
Wisconsin Diagnostic Breast Cancer (WDBC) 30
Wisconsin Original Breast Cancer (WOBC) 10

a This column refers only to datasets with two output classes.
Regarding the NSFM part-related parameters, the minimum and
maximum number of fuzzy sets define the lower and upper bounds
of the search space, respectively. Previous experiments with both
symmetric and non-symmetric versions of the FM algorithm have
shown that partitions outside these bounds are not likely to result
to successful models. The standard deviation of applied changes r
actually defines the expected magnitude of change that will be
applied to the fuzzy sets, in each iteration of the SA procedure. This
parameter can be used to control the exploitation–exploration
trade-off in the ESA-NSFM algorithm. Small values of r will result
to a thorough local search but poor exploration of the search space,
while large values will have the opposite effect. Obviously, the
choice for this parameter is closely related to the size of the search
space. The latter depends on the values for smin and smax, which
define its bounds, and on the dimensionality of the input space,
which coincides with the dimensionality of the search space. As
the dimensionality of the input space increases, the parameter r
should be also allowed to increase, in order to guarantee that the
search space will be sufficiently explored within reasonable simu-
lation times. In this work, two different values for r are used,
depending on the input space dimensionality of the problem. The
values were selected after experimental testing, as they were
found to provide a good balance between exploration and
exploitation.
No. of examples No. of classes No. of positive casesa

2126 10 –
2126 3 –

14,980 2 6723
768 2 268

7200 3 –
310 2 210
310 3 –
569 2 212
699 2 241
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As far as the ESA parameters are concerned, the size of the pop-
ulation and the maximum number of generations are parameters
that significantly affect the computational load of the algorithm.
Likewise, the minimum and maximum temperatures, together
with the cooling constant, actually determine the total number of
iterations that will be performed by the SA operator in each gener-
ation. In this study their respective values were chosen so as to
perform 500 iterations. Experiments showed that increasing these
three parameters (population, number of generations and number
of SA iterations), could result to improved classifier accuracy, albeit
at the cost of additional computational burden. For the purposes of
this study we have kept these parameters at small values, as our
experiments showed that satisfactory results can be obtained in
relatively fast computational times. Finally, the Boltzmann con-
stant controls whether a worse solution compared to the current
one will be accepted or rejected inside the SA loop. Choice for this
parameter also affects the exploitation–exploration balance,
although its effect is somewhat muffled by the evolutionary cycle
which repeats the SA procedure using as an initial solution, the
terminal solution of the previous SA run. Thus, a more uniform
distribution of random moves is provided throughout the ESA
procedure. This was also verified experimentally, as the results
showed that there was small sensitivity when changing this
parameter around the value of 0.05, while the results deteriorated
only for significantly lower or higher values.

Table 2 presents the selected operational parameters for the
ESA-NSFM algorithm. It should be noted that the results presented
in the next sub-section were all derived using the same operational
parameter values in all datasets, with the exception of r. The ratio-
nale behind this choice was to highlight the generic character of
the method, which can be applied in medical records of diverse
nature without a tedious tuning procedure. Nevertheless, further
improvements could be achieved by customizing the parameters
individually for each dataset along the lines discussed in the previ-
ous paragraphs.

For comparison purposes, two additional types of classifier
were also tested, namely RBF classifiers trained with the symmet-
ric version of the FM algorithm [37] and standard SVM classifiers
[38] with Gaussian kernel function [39]. In all cases, the classifier
parameters were determined using the training dataset and then
model selection was performed using the validation dataset, with
respect to the accuracy% criterion. In the case of RBF classifiers
trained with SFM, model selection was controlled by only one
parameter, namely the number of fuzzy sets c for partitioning each
input variable. Selection of c was made after testing all partitions
from 4 to 50 fuzzy sets. The SVM classifiers with Gaussian kernel
function were optimized with respect to the width of the Gaussian
kernels r and the penalty factor C. An exhaustive search procedure
based on a grid search method [40] was applied, testing different
Table 2
Operational parameters for the ESA-NSFM Algorithm.

Algorithm Parameter Symbol Value

ESA Population P 12
Maximum number of generations G 20
Maximum temperature Tmax 100
Minimum temperature Tmin 1
Cooling constant a 0.991
Boltzmann constant k 0.05

NSFM Minimum number of fuzzy sets smin 4
Maximum number of fuzzy sets smax 50
Standard deviation of random applied
changesa

r S:8,
L:12

a Value depending on input space dimensionality: Small problems (S): 1–10
input variables, Large problems (L): more than 10 input variables.
combinations of r and C. In the case of datasets with more than
two output classes, a one-against-all technique was applied, as
recommended by Vapnik [39].

A standard method for comparing the performance of different
classifiers, which is also used in this study, is the accuracy% crite-
rion. This metric comes as a natural choice, as it assesses the total
success rate of each classifier; however there are cases where addi-
tional information from the confusion matrix is needed to fully
characterize the classifier performance. A common example is
the classification of data with imbalanced class distribution, where
even a total failure in predicting a rare class, would have only a
small impact on the total accuracy%. To overcome these weak-
nesses, the Matthews correlation coefficient (MCC) was introduced
[41], summarizing the confusion matrix of a binary classification
task into a single value. As in this work datasets with more than
two classes are employed, we adopt a generalization of MCC for
the multi-class case [42], which has been reported as a good
generic comparison basis, among different classifier performance
metrics [43]. MCC is defined as:

MCC

¼
PM

k;l;m¼1CkkCml � ClkCkmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
k¼1

PM
l¼1Clk

� � PM
f ;g¼1
f –k

Cgf

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
k¼1

PM
l¼1Ckl

� � PM
f ;g¼1
f –k

Cfg

� �s
ð18Þ

where Cij is the number of elements of true class i that have been
assigned to class j by the classifier. MCC lives in the range [�11],
1 indicating perfect classification.
3. Results

The results for all datasets are summarized in Tables 3 and 4;
Table 3 depicts the accuracy% and the MCC in the validation and
testing datasets, while the optimized parameters and computa-
tional times for all three methodologies, together with the selected
fuzzy partitions for the two RBF models, can be seen in Table 4. All
computational times were measured on a PC with Intel Core 2
Quad processor (2.83 GHz) with 4 GB of RAM. All values shown
in the two tables correspond to the model achieving the best result
in terms of accuracy% in the validation dataset; for the ESA-NSFM
algorithm, the population average and 95% confidence intervals are
also given in parentheses. Fig. 4 presents the evolution of the accu-
racy% in the validation dataset for the best chromosome produced
by ESA-NSFM in each case; the horizontal axis depicts the total
iterations run (TIs), combining the generations of the evolutionary
procedure with the iterations of SA. It should be noted that for the
sake of improving clarity, each graph displays only the TIs needed
for reaching for the first time the respective best solution. The
computational times shown in Table 4, however, correspond to
the full time needed for running all 10,000 iterations which were
performed in each case.
4. Discussion

Each iteration in the graphs shown in Fig. 4 actually represents
the performance of NSFM on a specific fuzzy partition tested by
ESA. It is obvious that the performance of NSFM varies significantly
depending on the fuzzy partition, but in all tested cases, ESA even-
tually manages to greatly improve the performance of NSFM. It
should also be noted that the ESA-NSFM classifier accuracy often
remains steady for a number of iterations; this means that the
algorithm is briefly trapped to a solution corresponding to a local
minimum. The use of ESA helps the algorithm to escape the local



Table 3
Results for all datasets – Accuracy% and MCC in validation and testing subsets.

Dataset Algorithm Accuracy% validation Accuracy% testing MCC validation MCC testing

Cardiotocography FHR ESA-NSFM 83.8 82.9 0.80 0.79
(83.2 [83.0–83.4]) (82.5 [82.1–82.9]) (0.79 [0.79–0.79]) (0.79 [0.79–0.79])

SFM 80.8 80.8 0.76 0.77
SVM 80.5 80.7 0.74 0.75

Cardiotocography NSP ESA-NSFM 95.1 93.2 0.86 0.82
(94.9 [94.8–95.0]) (93.1 [92.8–93.4]) (0.85 [0.85–0.85]) (0.81 [0.81–0.82])

SFM 94.0 93.6 0.83 0.80
SVM 92.9 93.0 0.80 0.80

EEG Eye State ESA-NSFM 96.7 96.8 0.93 0.94
(96.4 [96.4–96.5]) (96.7 [96.7–96.8]) (0.93 [0.93–0.93]) (0.93 [0.93–0.94])

SFM 95.9 96.2 0.92 0.92
SVM 96.3 96.6 0.93 0.93

Pima Indians Diabetes ESA-NSFM 82.8 81.8 0.75 0.76
(81.6 [81.0–82.1]) (79.8 [78.8–80.8]) (0.72 [0.71–0.73]) (0.72 [0.70–0.74])

SFM 80.2 78.7 0.68 0.67
SVM 78.1 78.7 0.70 0.71

Thyroid ANN ESA-NSFM 95.5 95.7 0.81 0.79
(95.4 [95.4–95.5]) (95.4 [95.4–95.5]) (0.79 [0.79–0.79]) (0.78 [0.78–0.79])

SFM 94.8 95.1 0.75 0.74
SVM 95.3 95.2 0.81 0.78

Vertebral Column – 2 Classes ESA-NSFM 93.6 88.3 0.83 0.80
(93.5 [93.5–93.6]) (87.0 [86.5–87.5]) (0.82 [0.81–0.83]) (0.79 [0.78–0.80])

SFM 91.0 84.4 0.76 0.71
SVM 89.7 84.4 0.76 0.73

Vertebral Column – 3 Classes ESA-NSFM 94.9 88.3 0.92 0.89
(93.3 [92.8–93.8]) (86.4 [85.9–86.9]) (0.88 [0.87–0.89]) (0.86 [0.85–0.87])

SFM 91.0 80.5 0.83 0.77
SVM 88.6 81.6 0.81 0.78

Wisconsin Diagnostic Breast Cancer (WDBC) ESA-NSFM 99.3 96.5 0.99 0.94
(99.0 [98.8–99.2]) (94.3 [93.1–95.5]) (0.98 [0.98–0.98]) (0.91 [0.86–0.96])

SFM 97.9 93.0 0.96 0.88
SVM 100.0 96.5 1 0.93

Wisconsin Original Breast Cancer (WOBC) ESA-NSFM 99.4 99.4 0.99 0.99
(98.9 [98.8–99.0]) (98.9 [98.8–99.0]) (0.98 [0.98–0.98]) (0.98 [0.98–0.99])

SFM 97.7 98.2 0.95 0.96
SVM 98.3 98.8 0.96 0.97

The table depicts the best result in terms of accuracy% in the validation dataset for all tested classifiers. In the case of the ESA-NSFM classifier, the best result is followed in
parentheses by the average and 95% confidence intervals. Bold numbers indicate the best performance per dataset, for each one of the evaluation criteria.
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minimum and discover a path that leads ultimately to an improved
solution. It should be noted that the path towards the improved
solution, often passes transiently through worse solutions.

A comparison between the three classifiers shows that in al-
most all cases the best solution found by the ESA-NSFM algorithm
outperforms the SFM algorithm and the SVMs in terms of the best
accuracy% calculated in both validation and testing sets. A similar
result is observed when comparing the methods in terms of the
MCC, as the best solution found by ESA-NSFM outperforms its
rivals in 8 out of 9 datasets, taking into account the validation or
testing data. As the proposed approach is a stochastic process,
generating a different result for each run and each chromosome,
it is also interesting to attempt a comparison using the average
solution of the ESA-NSFM population, instead of the best. The
proposed approach again proves to be superior in the majority of
the datasets, considering either the accuracy% or the MCC criterion,
even when applying the lowest bound of the 95% confidence
interval as a comparison measure. The superiority of ESA-NSFM
becomes more obvious, keeping in mind that the solution found
by the comparison classifiers was the global optimum solution that
these classifiers could achieve, as a result of the exhaustive proce-
dure used for training them. Even though comparing the average
solution of a number of runs of the proposed approach to the best
possible solution found by its rivals puts ESA-NSFM at a disadvan-
tage, the latter can still provide statistically significantly higher
accuracy.
As far as speed is concerned, the ESA-NSFM algorithm requires
more computational effort to arrive to completion compared to the
SFM training method. This is expected due to the significant in-
crease in the size of the search space that needs to be explored
by the proposed approach. However, it is important to note that
in most cases, the RBF model generated by the ESA-NSFM algo-
rithm outperforms the final outcome of SFM in terms of accuracy%,
within a few iterations. Thus, the proposed approach generates a
highly accurate model within the first iterations, but further
improvements are being made until completion of the algorithm.
SVM training on the other hand proves to be the slowest method,
as the exhaustive search procedure in this case runs concurrently
for two parameters.

The total computational time needed for all classifiers is pro-
foundly affected by the size of the dataset, defined by the numbers
of training data and input variables, though the latter does not ap-
pear to have any explicit effects on their accuracy performance.
The number of output classes on the other hand, affects the classi-
fier performance; to be more specific, the prediction accuracy
seems to drop as the number of output classes in the dataset in-
creases. A good example can be drawn from the two Cardiotocog-
raphy datasets, where there is a significant deviation between the
performance of the classifiers for the NSP case (3 classes) and the
FHR case (10 classes). This can be attributed to the fact that the
classification task becomes more difficult, as the number of possi-
ble output categories increases. It is interesting to note, however,



Table 4
Results for all datasets – Fuzzy partition, optimized parameters and computational time.

Dataset Algorithm Fuzzy partition Optimized parametersa Computational time (s)

Cardiotocography FHR ESA-NSFM [23 6 19 4 4 44 44 4 4 45 4 5 22 15 25 4 23 9 36 10 4] 352 (453 [402–504]) 603 (834 [739–929])
SFM 10 219 69
SVM – 36.76–3.48 13535

Cardiotocography NSP ESA-NSFM [24 4 17 50 28 15 50 38 12 18 15 12 5 28 41 39 30 37 4 23 4] 825 (800 [755–845]) 604 (811 [733–889])
SFM 26 845 70
SVM – 21.11–2.55 5612

EEG Eye State ESA-NSFM [21 20 18 37 48 35 48 32 50 37 32 33 30 26] 2801 (2737 [2673–2801]) 1968 (1832 [1800–1864])
SFM 23 1867 181
SVM – 16.00–1.15 23412

Pima Indians Diabetes ESA-NSFM [4 4 9 4 6 4 36 4] 31 (45 [38–52]) 102 (99 [93–105])
SFM 7 35 8
SVM – 2.00–3.25 1383

Thyroid ANN ESA-NSFM [6 50 43 46 4 50] 183 (270 [252–288]) 832 (819 [730–908])
SFM 28 300 104
SVM – 48.50–2.30 20675

Vertebral Column – 2 Classes ESA-NSFM [9 31 4 28 4 4] 36 (29 [26–32]) 14 (13 [11–15])
SFM 9 25 1
SVM – 3.61–1.23 212

Vertebral Column – 3 Classes ESA-NSFM [4 14 4 4 5 50] 22 (23 [20–26]) 11 (13 [12–14])
SFM 13 45 2
SVM – 25.99–3.73 674

Wisconsin Diagnostic Breast Cancer (WDBC) ESA-NSFM [34 4 23 50 36 43 26 7 7 13 50 4 20 50 18 4 4 14 21 45 4 4 4 10 10 42 14 4 5 9] 149 (239 [215–263]) 95 (88 [78–98])
SFM 19 221 8
SVM – 0.38–4.93 912

Wisconsin Original Breast Cancer (WOBC) ESA-NSFM [7 4 35 4 50 28 8 8 50 4] 171 (198 [189–207]) 42 (45 [44–46])
SFM 17 203 7
SVM – 0.03–3.03 851

The table depicts the parameters corresponding to the run achieving the highest accuracy% in the validation dataset. In the case of the ESA-NSFM classifier, the best result is followed in parentheses by the average and 95%
confidence intervals.

a For the two RBF classifiers, optimized parameters correspond to the selected number of nodes; for the SVM classifier, the optimized parameters consist of the penalty factor C and the width of the Gaussian kernel r, given in the
form: C – r.
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Fig. 4. Evolution of accuracy% per iteration in the validation set for the three methodologies. The best solution found in terms of accuracy in the validation dataset is depicted
for the ESA-NSFM algorithm. (a) Cardiotocography FHR, (b) Cardiotocography NSP, (c) EEG Eye State, (d) Pima Indians Diabetes, (e) Thyroid ANN, (f) Vertebral Column – 2
Classes, (g) Vertebral Column – 3 Classes, (h) Wisconsin Diagnostic Breast Cancer (WDBC), (i) Wisconsin Original Breast Cancer (WOBC).
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that the ESA-NSFM algorithm appears to have a slightly larger
advantage over the SVM classifier in datasets with more than
two output classes. A possible explanation is that SVMs are binary
classifiers which need to be modified accordingly for predicting
more than two output classes, in contrast to the ESA-NSFM algo-
rithm which can inherently handle such cases.

As with all data-driven classification approaches, the presence
of outliers in the training data may have a detrimental effect on
the performance of the proposed classifier; therefore, it is recom-
mended to perform data preprocessing prior to applying the meth-
od to raw medical records (e.g. see [44]). As far as the treatment of
missing values is concerned, the technique used in this study, i.e.
discarding the respective examples, works adequately for the par-
ticular datasets. However, it could result in problems with smaller
datasets, as there may not be enough data left for successfully
training the RBF network. In this case, a number of more elaborate
techniques, which have been found to work well with RBF classifi-
ers [45], could be applied in conjunction with the proposed meth-
odology for missing value imputation. Finally, it should be noted
that an increase in the number of examples and the problem
dimensionality, results to higher computational times. The in-
crease in complexity could ultimately lead to computational times
that are not practically feasible. However, the performance of the
proposed approach on datasets with relatively high complexity
and the advantage of acquiring an adequate model within the first
few iterations of the algorithm, indicate that the algorithm can
handle successfully such cases.
5. Conclusions

This paper introduces a new method for training classifiers
based on RBF neural networks. At the heart of the proposed
approach lies the NSFM training algorithm, which has been found
to produce RBF networks of increased accuracy in shorter compu-
tational times. The NSFM algorithm operates on a given non-
symmetric fuzzy partition of the input space, so as to calculate
the number of RBF hidden nodes and their locations and give birth
to a fully trained RBF classifier. The ESA technique is then suitably
modified and wrapped around the NSFM algorithm to optimize the
fuzzy partition. The evolutionary nature of ESA, helps the iterative
search procedure to avoid getting stuck in local minima that could
result from the traditional SA algorithm, thus producing classifiers
with increased accuracy. To assess the performance of the
ESA-NSFM algorithm, nine datasets of medical interest are utilized.
Two different types of classifiers are used for comparison purposes,
namely RBF neural network classifiers trained with the SFM algo-
rithm and standard SVM classifiers with Gaussian kernel functions.
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The results show that the proposed approach outperforms its rivals
in terms of more accurate diagnosis, in the majority of tested cases;
furthermore it proves to be faster, compared to the SVM approach.

Future research plans include exploiting the inherent potential
of ESA for parallel implementation to design a distributed opti-
mizer. This is expected to be of particular interest in the case of
large databases of medical records. The authors also plan to release
to the research community a distributable implementation of the
ESA-NSFM algorithm.

Appendix A. Brief dataset descriptions

A.1. Cardiotocography datasets (FHR, NSP)

The two cardiotocography datasets contain a number of
fetal cardiotocograms (CTGs), which were automatically processed
with their respective diagnostic features. The aim of the
‘‘Cardiotocography dataset FHR’’ is to predict the fetal heart rate
(FHR) morphologic pattern (1–10), whereas the purpose of the
‘‘Cardiotocography dataset NSP’’ is to predict the fetal state
(Normal, Suspect, Pathologic). The available features for building
the classifier are common for the two datasets.

A.2. EEG Eye State

This dataset is formulated from continuous EEG measurement
with the Emotiv EEG Neuroheadset. The objective is to determine
the state of the eye, based on 14 different EEG features.

A.3. Pima Indian Diabetes

The scope of the Pima Indian Diabetes dataset is to build a clas-
sifier for predicting whether a patient will develop diabetes, based
on clinical findings. All patients in the database were females at
least 21 years old of Pima Indian heritage. The dataset contains
39 instances with missing values.

A.4. Thyroid ANN

The objective in this dataset is to discriminate between three
possible states of the thyroid gland (euthyroidism, hyperthyroid-
ism or hypothyroidism). Input data to the classifier include 5
different hormones that are acquired after testing blood samples
from the patients.

A.5. Vertebral Column Datasets (3 Classes–2 Classes)

Vertebral Column datasets are related to diagnosis of people
with vertebral column disorders. The data have been organized
in two different, but related classification tasks. The task in
‘‘Vertebral Column Dataset – 3 Classes’’ is to classify patients to
one out of three categories: Normal (healthy people), Disk Hernia
or Spondylolisthesis. The task in ‘‘Vertebral Column Dataset – 2
Classes’’ on the other hand is to discriminate healthy people
(Normal category) from those who suffer from Disk Hernia or
Spondylolisthesis (Abnormal category).

A.6. Wisconsin Original Breast Cancer (WOBC)–Wisconsin Diagnostic
Breast Cancer (WDBC)

These datasets [46,47] involve measurements taken from digi-
tized images of breast mass. The objective in both datasets is to
diagnose breast cancer in patients, classifying tumors as benign
or malignant; each dataset is based on different input variables.
The WOBC dataset contains 16 instances with missing values.
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