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@ Introduction: AnOVa as as completely randomized design

© The randomized complete block design

© Experiment with two or more factors

@ The repeated measures design
@ Two-Factor repeated measures design
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AnOVa as completely randomized
design
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AnOVa as completely randomized design

@ An outcome variable is represented by the set of measured values that result from
an experiment or some other statistical process.

@ An explanatory variable, on the other hand, is a variable that is useful for
predicting the value of the outcome variable.

@ A linear model is any model that is linear in the parameters that define the model.
We can represent such models generically in the form:

Y = Bo + 81Xy + B2 Xoj + -+ + Bk Xj + €,

In this equation, §; represent the coefficients in the model and ¢; represents
random error (due to extraneous variables). Therefore, any model that can be
represented in this form, where the coefficients are constants and the algebraic
order of the model is one, is considered a linear model.

@ In the context of analysis of variance, the predictor variables are classification
variables used to define factors of interest (e.g., differentiating between a control
group and a treatment group—treatment variables), and in the context of
correlation and linear regression the predictor variables are most often continuous
variables, or at least variables at a higher level than nominal classes.

@ Question: Do the different “values’ of the treatment variable result in differences,
on the average, in the response variable?
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AnoVa as completely randomized design (2)

@ The one-way analysis of variance model may be written as follows:

Here:

xj=p+7i+e; i=1,2,...,n; Jj=12,...,k.

xjj represents the i—th observation resulting from the j—th treatment of a total of k treatments.
1 represents the mean of all k population means and is called the grand mean.

7j represents the difference between the mean of the j—th population and the grand mean and is
called the treatment effect.

€jj represents the amount by which an individual measurement differs from the mean of the
population to which it belongs and is called the error term.

@ Using the means comparison notation in the previous set of slides, we clearly have Hj = p+ ), ie, the
mean of the j—th population.

@ In most situations we are interested only in the k treatments represented in our experiment. Any inferences
that we make apply only to these treatments. We do not wish to extend our inference to any larger
collection of treatments. When we place such a restriction on our inference goals, we refer to our model as
the fixed-effects model.

@ The experiment is designed in such a way that the treatments of interest are assigned completely at random
to the subjects or objects on which the measurements to determine treatment effectiveness are to be made.
For this reason the design is called the completely randomized experimental design.
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AnoVa: Assumptions in the context of fixed-effects model

@ Assumptions.

@ The k sets of observed data constitute k independent random samples from
the respective populations.

Each of the populations from which the samples come is normally distributed
with mean p; and variance o7.
Each of the populations has the same variance. That is,

02 =03 =--- =07 = 02 the common variance.

The 7; are unknown constants and Z}‘Zl 7j = 0 since the sum of all
deviations of the p; from their mean, p, is zero.

The €j have a mean of 0, since the mean of x; is y;.

The €j; have a variance equal to the variance of the xj;, since the ¢; and x;
differ only by a constant; that is, the error variance is equal to 02, the
common variance specified above.

The ¢ are normally (and independently) distributed.

©0 ©6 0 ©
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AnoVa: Assumptions in the context of fixed-effects model

@ Assumptions.

@ The k sets of observed data constitute k independent random samples from
the respective populations.

Each of the populations from which the samples come is normally distributed
with mean p; and variance o7.
Each of the populations has the same variance. That is,

02 =03 =--- =07 = 02 the common variance.

The 7; are unknown constants and Z}‘Zl 7j = 0 since the sum of all
deviations of the p; from their mean, p, is zero.

The €j have a mean of 0, since the mean of x; is y;.

The €j; have a variance equal to the variance of the xj;, since the ¢; and x;
differ only by a constant; that is, the error variance is equal to o2, the
common variance specified above.

@ The €; are normally (and independently) distributed.

©0 ©6 0 ©

@ Hypotheses:

{H02M1=M2=---=Mk, - {H037'1:7'2:"':7'k:07

H. : not all y; are equal. H,: notall 7; =0.
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Implications of the assumptions

1 o M

@ Picture of the populations represented
in a completely randomized design @ Picture of the populations represented
when Ho is true and the assumptions in a completely randomized design
are met. when the assumptions of equal

@ If the populations are all normally variances and normally distributed
distributed with equal variances the populations are met, but Ho is false
distributions will be identical, so that because none of the population means
in drawing their pictures each is are equal.

superimposed on each of the others,
and a single picture sufficiently
represents them all.
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AnoVa: Why not use a number of independent stamples

t—tests instead?

@ When interested in testing the null hypothesis of no difference among several population means one might
be inclined to suggest that all possible pairs of sample means be tested separately by means of the Student
t—test.

@ Suppose there are five populations involved. The number of possible pairs of sample means is
5\ _ 5! _
(2) = ars—zy — 10

@ As the amount of work involved in carrying out this many t—tests is substantial, it would be worthwhile if a
more efficient alternative for analysis were available. A more important consequence of performing all
possible t—tests, however, is that it is very likely to lead to a false conclusion.

@ Suppose we draw five samples from populations having equal means.

@ As we have seen, there would be 10 tests if we were to do each of the possible tests separately. If we
select a significance level of o = 0.05 for each test, the probability of failing to reject a hypothesis of
no difference in each case would be 0.95.

@ By the multiplication rule of probability, if the tests were independent of one another, the probability
of failing to reject a hypothesis of no difference in all 10 cases would be o = 0.95° = 0.5987.

@ The probability of rejecting at least one hypothesis of no difference, then, would be
1 — 0.5987 = 0.4013. Since we know that the null hypothesis is true in every case in this illustrative
example, rejecting the null hypothesis constitutes the committing of a type | error.

@ In the long run, then, in testing all possible pairs of means from five samples, we would commit a type | error
40 percent of the time. The problem becomes even more complicated in practice, since three or more t—tests
based on the same data would not be independent of one another.

@ It becomes clear, then, that some other method for testing for a significant difference among several means
is needed. Analysis of variance provides such a method.
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Sample Values for the Completely Randomized Design

Treatment
1 2 3 A k
X1 X2 X13 - X1k
X2 X22 X23 s X2k
X3 X32 X33 - X3k
Xnq X nz2 Xns3 - Xk
Total T T, T3 Ca T T.
Mean X1 X2 X.3 C.. Xk X.
Here:
o xjj represents the i—th observation resulting from the j—th treatment of a total of k treatments
((=1,3,...,n,j=1,2,...,k)
n:
] T;= 2[1:1 xjj represents the total of the j—th treatment (j = 1,2,...,k).
T
o X = Tjj represents the mean of the j—th treatment (j = 1,2,..., k).
o = Yk S = Sk s :
T. =3 T=% =L, xij represents the total of all observations.
@ % — T.. _ k
X.. = “f~, where N =377 1 nj.
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The randomized complete block
design
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The randomized complete block design

@ The randomized complete block design is a design in which the units (called
experimental units) to which the treatments are applied are subdivided into
homogeneous groups called blocks, so that the number of experimental units in a
block is equal to the number (or some multiple of the number) of treatments
being studied.

@ The treatments are then assigned at random to the experimental units within each
block.

@ It should be emphasized that each treatment appears in every block, and each
block receives every treatment.

@ Objective: The objective in using the randomized complete block design is to
isolate and remove from the error term the variation attributable to the blocks,
while assuring that treatment means will be free of block effects.

@ The effectiveness of the design depends on the ability to achieve homogeneous
blocks of experimental units.

@ The ability to form homogeneous blocks depends on the researcher’'s knowledge of
the experimental material.

@ When blocking is used effectively, the error mean square in the ANOVA table will

be reduced, the Variance Ratio will be increased, and the chance of rejecting the
null hypothesis will be improved.
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The randomized complete block design (2)

@ In animal experiments, the breed of animal may be used as a blocking factor. Litters may also be used as
blocks, (an animal from each litter receives a treatment).

@ In experiments involving human beings, if it is desired that differences resulting from age be eliminated, then
subjects may be grouped according to age so that one person of each age receives each treatment.

@ The randomized complete block design also may be employed effectively when an experiment must be
carried out in more than one laboratory (block) or when several days (blocks) are required for completion.

@ The random allocation of treatments to subjects is restricted in the randomized complete block design. That
is, each treatment must be represented an equal number of times (one or more times) within each blocking
unit.

@ In practice, this is generally accomplished by assigning a random permutation of the order of treatments to
subjects within each block.

@ For example, if there are four treatments representing three drugs and a placebo (drug A, drug B, drug C,
and placebo P), then there are 4! = 24 possible permutations of the four treatments: (A, B, C, P) or (A, C,
B, P) or (C, A, P, B), and so on. One permutation is then randomly assigned to each block.

@ Note that the paired comparisons analysis is a special case of the randomized complete block design. Indeed,
the two points in time (before & after, for instance, Pre-op & Post-op) are the treatments and the
individuals on whom the measurements were taken are the blocks.
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Table of Sample Values for the Randomized Complete Block

Design

Treatments
Blocks 1 2 3 - k Total Mean
1 X11 X12 X13 S X1k T X1.
2 X21 X22 X23 - X2k 7o, X2,
3 X31 X32 X33 - X3k Ts. X3,
n Xn Xn2 Xn3 Xnk Tn )_(n
Total Ta T2 T3 L T« T
Mean X1 X2 X3 .. Xk X

Here:

o T.= Zf:l x;j represents the total of the i-th block (i =1,2,...,n).

@ X = Tk' represents the mean of the i—th block (i =1,2,...,n).

o T.= ZJ’.‘:I T.j =i, Ti represents the total of all observations.
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Two-way AnoVa

@ Two-way AnoVa. The technique for analyzing the data from a randomized
complete block design is called two-way analysis of variance since an observation is
categorized on the basis of two criteria—the block to which it belongs as well as
the treatment group to which it belongs.

@ The two-way analysis of variance model may be written as follows:
xij:u+6;+7'j—|—€0' i=1,2,...,n, j=1,2,...,k.

Here:

o 1 represents the mean of all k population means and is called the grand
mean.

o [3; represents a block effect reflecting the fact that the experimental unit fell
in the i—th block.

@ 7j represents a treatment effect, reflecting the fact that the experimental unit
received the j—th treatment.

@ ¢jj is a residual component representing all sources of variation other than
treatments and blocks.

@ Hypotheses:
Ho:77=0, j=1,2,...,k vs.
H,: notall ; =0.
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Two-way AnoVa (2)

@ Hypotheses:
Ho:77=0, j=1,2,...,k vs.
H,: notall 7; =0.

@ A hypothesis test regarding block effects is not usually carried out under the
assumptions of the fixed-effects model for two reasons:

@ First, the primary interest is in treatment effects, the usual purpose of the
blocks being to provide a means of eliminating an extraneous source of

variation.
@ Second, although the experimental units are randomly assigned to the

treatments, the blocks are obtained in a nonrandom manner.

June 19, 2024 15 /99

E. Papageorgiou, G. Katsouleas (UniWA Linear Models for experimental designs



Two-way AnoVa: test statistic

@ Hypotheses:
Ho:7,=0, j=1,2,...,k vs.
H,: notall 7; =0.

@ Analysis of Variance: It can be shown that the total sum of squares for the
randomized complete block design can be partitioned into three components, one
each attributable to blocks (SSBJ), treatments (SSTr), and error (SSE). That is,

SST = SSBI + SSTr + SSE,
where
k n — \2
e S5T = ijl Yoig (i —x.)%
o SSBI=3"1 Y0 (R — %)%,
o SSTr=3Y >0, (% —%.)%
o SSE = SST — SSBI — SSTr.
@ Degrees of freedom:
Total Blocks  Treatments Residual

— = ~ —N—
kn—1=n—-14+ k-1 +(n—-1)(k—-1)
@ Test statistic: MSTr/MSE ~ Fi_1 (n—1)(k—1)
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ANOVA Table for the Randomized Complete Block Design

@ Hypotheses:
Ho:7,=0, j=1,2,...,k vs.
H,: notall ; =0.

@ Test statistic: MSTr/MSE ~ Fi_1 (n—1)(k—1)

Source SS df. MS V.R.
Treatments SSTr (k—1) MSTr=SSTr/(k—1) MSTi/MSE
Blocks SSBI (n—1) MSBI= SSBI/(n—1)

Residual SSE (n—"1)(k—-1) MSE = SSE/(n—1)(k —1)

Total SST kn—1
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Randomized Complete Block Design: Assumptions

@ Assumptions.

@ Each x; that is observed constitutes a random independent sample of size 1
from one of the kn populations represented.

@ Each of these kn populations is normally distributed with mean p;; and the
same variance s2. This implies that the ¢; are independently and normally

distributed with mean 0 and variance s2.
© The block and treatment effects are additive. This assumption may be

interpreted to mean that there is no interaction between treatments and
blocks. In other words, a particular block-treatment combination does not
produce an effect that is greater or less than the sum of their individual
effects. It can be shown that when this assumption is met,

n

k
2om=2_6i=0
j=1 i=1
The consequences of a violation of this assumption are misleading results.
One need not become concerned with the violation of the additivity
assumption, unless the largest mean is more than 50 percent greater than the
smallest.

When these assumptions hold true, the 7; and §; are a set of fixed constants, and
we have a situation that fits the fixed-effects model.
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Example: Days Time Required to Learn the Use of a Certain

Prosthetic Device

_J time treatment age age_bins
7 A 18 Under 20
8 A 2 20t029
9 A 35 30to0 39
10 A 19 0to49
1 A 54 50 and over
9 B 13 Under 20
9 B n 20t0 29
9 B 37 30to0 39
9 B 45 40 to 49

_ 12 B 34 30 and over
10 C 17 Under 20

] 10 c 28 201029
12 C 36 30to 39
12 C 48 40to 49
14 C 60 50 and over

A physical therapist wished to compare three methods for teaching patients to use a certain prosthetic device.
He felt that the rate of learning would be different for patients of different ages and wished to design an
experiment in which the influence of age could be taken into account.

Data. Three patients in each of five age groups were selected to participate in the experiment, and one
patient in each age group was randomly assigned to each of the teaching methods.

The methods of instruction constitute our three treatments, and the five age groups are the blocks.
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Example: Days Time Required to Learn the Use of a Certain

Prosthetic Device (2)

_J time treatment age age_bins
7 A 18 Under 20
8 A 2 20t029
9 A 35 30t0 39
10 A 49 40to 49
11 A M4 30 and over
9 B 13 Under 20
9 B 2 20t0 29
9 B 37 30to 39
9 B 43 40to 49

| 12 B 54 50 and over
10 c 17 Under 20

] 10 c 8 Wt029
12 c 36 30to 39
12 C 43 40to 49
14 C 60 50 and over

Assumptions. We assume that each of the 15 observations constitutes a simple random sample of size 1
from one of the 15 populations defined by a block-treatment combination.
For example, we assume that the number 7 in the table constitute s a randomly selected response from a
population of responses that would result if a population of subjects under the age of 20 received teaching
method A.

@ We assume that the responses in the 15 represented populations are normally distributed with equal
variances.
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Calculation of test statistic

Teaching Method

Age Group A B Cc Total Mean

Under 20 7 9 10 26 8.67
20to 29 8 9 10 27 9.00
30to 39 9 9 12 30 10.00
40to 49 10 9 12 31 10.33
50 and over 11 12 14 37 12.33
Total 45 48 58 151

Mean 9.0 9.6 11.6 10.07

@ We compute the following sums of squares:

SST = (7 — 10.07)% + (8 — 10.07)% + - - - + (14 — 10.07)® = 46.933,
558/ =3 [(8467 —10.07)% + (9 — 10.07)% + - - - + (12.33 — 10.07)2] = 24.933,

SSTr=5 [(9 —10.07)2 + (9.6 — 10.07)% + (11.6 — 10.07)2] =18.533,

SSE = 46.933 — 24.933 — 18.533 = 3.467.

@ Degrees of freedom.

(a.) Total: 3 x5 —1=14,

(b.) Blocks: 5 —1 =4,

(c.) Treatments: 3 —1=2,

(d.) Residual (Error): (3 —1) x (6 —1) =8.
@ Variance Ratio = MSTr/MSE = 21.385
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Marginal means in SPSS

Days to learn use of prosthetic device * Teching

method
Analyze DirectMarketing Graphs Utiities Add-ons Window Help

oD gfe Em : Days to learn use of prosthetic device
Descriptive Statistics » M u p

|| Tames > Teching method Mean N Std. Deviation
Compare Means * [ ueans. A 900 5 15681
General LinearModel | [ one-gample T Test. ! '
Ceneagaaneariosos» | g B 9,60 5 1,342
LD " | & paired-samples TTest C 11,60 5 1,673
Comelats ' I one-way ANOVA ' '
Regression () : ’ : Total 10,07 15 1,83

[
& Means X

depenentLit Days to learn use of prosthetic device * Age group

DependentList =

i & tim
e [E ) Days to leam use of prosthetic device

Layer 1 of 1 Age group Mean N Std. Deviation
Under 20 8,67 3 1,528
Independent List 20to 29 9,00 3 1,000
g reament 301039 10,00 3 1,732
4010 49 10,33 3 1,528
(oK (paste ) (meset ) cancet]_rietp ] 50 and over 12,33 3 1,528
Total 10,07 15 1,831
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Two-way AnoVa in SPSS

Analyze DirectMarketing Graphs Utilties Add-ons Window H
Reports » P Ea g % 5: =3
Descriptive Statistics » =
Tables » Tests of Between-Subjects Effects
Compare Means b var var var
TS T T Dependent Variable: Days to leam use of prosthetic device
Generalged Linear Models ¥ | ] uutvariate Souree aauars o | Meansquare | F sig
D " | ElRepeatedMeasures Corrected Model 46,9337 14 3352
Locen L Variance Gomponents. Intercept 1520,067 1 1520,067
Regression L treatment 18,533 2 9,267
! nnlinear : age_bins 24933 4 6233
treatment * age_bins 3,467 8 433
R Univariate X Error .000 0
Total 1567,000 15
Dependent Variable: Corrected Total 46,933 14

* [owme ]
& age & tme a.R Squared = 1,000 (Adjusted R Squared = )

Fixed Factor(s):

@ Note that Interaction effects are included in this

Random Factor(s):

output.
@ @ Resultingly, the Variance Ratio cannot be
gly,
Covariate(s): computed.
:| @ We could compute relevant ratio by hand
(compare with previous "Calculation of test
WLS Weight: statistic" slide), or..

(Lo J (esse ) (Reset ) (cancet) ae J
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Two-way AnoVa in SPSS: Model selection

[ 8 Univariate: Model X 1@ Univariate: Model X
‘Specify Model ‘Specify Model
© Full factorial © Custom © Full factorial ® Custom
Factors & Covariates Model Factors & Covariates: Model
1" treatment | treatment treatment
1" age_bins 1" age_bins age_bins
Build Term(s) Build Term(s)
| Type: Type:
interadiion_~ Main effects ~

Sum of squares: Typelll ¥ | [# Include intercept in model Sum of squares: [Type il ~ [¥ Include interceptin model

‘ () Cosnce ] (it ]
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Two-way AnoVa in SPSS: Output without interaction effects

Tests of Between-Subjects Effects

Dependent Variable: Days to learn use of prosthetic device

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 43 467° 6 7,244 16,718 ,000
Intercept 1520,067 1 1520,067 | 3507,846 ,000
treatment 18,533 2 9,267 21,385 ,001
age_bins 24,933 4 6,233 14,385 001
Error 3,467 8 433
Total 1567,000 15
Corrected Total 46,933 14

a. R Squared =926 (Adjusted R Squared= ,871)

@ Statistical decision. Since our computed variance ratio, 21.385, is greater than the
critical value 4.46 (F(2,8)), we reject the null hypothesis of no treatment effects
on the assumption that such a large V.R. reflects the fact that the two sample
mean squares are not estimating the same quantity.

The only other explanation for this large V.R. would be that the null hypothesis is
really true, and we have just observed an unusual set of results. We rule out the
second explanation in favor of the first.
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Experiment with two or more
factors
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The factorial experiment

@ In the experimental designs that we have considered up to this point, we have
been interested in the effects of only one variable—the treatments. Frequently,
however, we may be interested in studying, simultaneously, the effects of two or
more variables.

@ We refer to the variables in which we are interested as factors. The experiment in
which two or more factors are investigated simultaneously is called a factorial
experiment.

@ The different designated categories of the factors are called levels.

@ Suppose, for example, that we are studying the effect on reaction time of three dosages of some
drug. The drug factor, then, is said to occur at three levels.

@ Suppose the second factor of interest in the study is age, and it is thought that two age groups,
under 65 years and 65 years and older, should be included. We then have two levels of the age factor.

In general, we say that factor A occurs at a levels and factor B occurs at b levels.

@ In a factorial experiment we may study not only the effects of individual factors
but also, if the experiment is properly conducted, the interaction between factors.
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Example: No interaction

@ Suppose, in terms of effect on reaction time, that the true relationship between
three dosage levels of some drug and the age of human subjects taking the drug is
known.

@ Suppose further that age occurs at two levels—"young” (under 65) and “old” (65
and older). If the true relationship between the two factors is known, we will know,
for the three dosage levels, the mean effect on reaction time of subjects in the two
age groups. Let us assume that effect is measured in terms of reduction in reaction
time to some stimulus.

Factor B—Drug Dosage

Factor A—Age j=1 j=2 j=3
Young (i = 1) i1 =5 iy =10 13 =20
Old (i=2) a7 = 10 flas = 15 Jig3 =25

@ For both levels of factor A the difference between the means for any two
levels of factor B is the same. That is, for both levels of factor A, the
difference between means for levels j = 1 and j = 2 is 5, for levels j = 2 and
Jj = 3 the difference is 10, and for levels j = 1 and j = 3 the difference is 15.

@ For all levels of factor B the difference between means for the two levels of
factor A is the same. In the present case, the difference is 5 at all three levels
of factor B.
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Example: No interaction (2)

@ For both levels of factor A the difference between the means for any two levels of
factor B is the same. That is, for both levels of factor A, the difference between
means for levels j =1 and j = 2 is 5, for levels j = 2 and j = 3 the difference is
10, and for levels j = 1 and j = 3 the difference is 15.

@ For all levels of factor B the difference between means for the two levels of factor
A is the same. In the present case, the difference is 5 at all three levels of factor B.

© A third characteristic is revealed when the data are plotted. We note that the
curves corresponding to the different levels of a factor are all parallel.

Factor B—Drug Dosage

Factor A—Age j=1 j=2 ji=3
Young (i=1) 111 =5 112 =10 M1z =20
old (i = 2) Jizy = 10 Jizs = 15 liz3 =25

30 Drug dosage
b3

by
by

Reduction in reaction time
oo
S o o
Reduction in reaction time
Y
S o o

o

by by by a ay
Drug dosage Age
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Example: Interaction present

@ The presence of interaction between two factors can affect the characteristics of

the data in a variety of ways depending on the nature of the interaction. To
illustrate:

Factor B—Drug Dosage

Factor A—Age j=1 j=2 j=3
Young (i =1) 111 =5 12 =10 maz =20
Old (i=2) g7 =15 1o =10 )

@ The difference between means for any two levels of factor B is not the same
for both levels of factor A. Note, for example, that the difference between
levels j = 1 and 2 of factor B is —5 for the young age group and +5 for the
old age group.

@ The difference between means for both levels of factor A is not the same at
all levels of factor B. The differences between factor A means are —10, 0,
and 15 for levels j = 1,2 and 3, respectively, of factor B.

© The factor level curves are not parallel.
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Example: Interaction present (2)

Factor B—Drug Dosage

Factor A—Age j=1 j=2 j=3

Young (i = 1) nn =5 12 =10 1z =20

Old (i =2) Jg1 =15 122 =10 Ny =5

o @

£ 30 £ 30

5 52

S 20 aj g 20 Drug dosage

® ® s

=" £® !

= 10 c 10 by

2 )

5 5 ay E 5 by

32 o I I I 2 0 | |

& by by b3 & @ az
Drug dosage Age

@ In summary, then, we can say that there is interaction between two factors if a
change in one of the factors produces a change in response at one level of the
other factor different from that produced at other levels of this factor.
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Two-Factor Completely Randomized Experiment:

Advantages

@ The interaction of the factors may be studied.

@ There is a saving of time and effort.
In the factorial experiment all the observations may be used to study the effects of
each of the factors under investigation. The alternative, when two factors are
being investigated, would be to conduct two different experiments, one to study
each of the two factors. If this were done, some of the observations would yield
information only on one of the factors, and the remainder would yield information
only on the other factor. To achieve the level of accuracy of the factorial
experiment, more experimental units would be needed if the factors were studied
through two experiments. It is seen, then, that 1 two-factor experiment is more
economical than 2 one-factor experiments.

@ Because the various factors are combined in one experiment, the results have a
wider range of application.
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Sample Data from a Two-Factor Completely Randomized

Experiment

Factor B
Factor A 1 2 . b Totals Means
1 X111 X121 X1p1
: : Th. X1.
X11n X12n X1bn
2 X211 X221 ‘s X2p1
: : : Tz, Xa.
X21n X22n .- X2bn
a Xan Xa21 .- Xab1
Ta. Xa
Xaln Xaz2n . Xabn
Totals T T2 - Th. T..
Means X1 X2 . Xh X

E. Papageorgiou, G. Katsouleas (UniWA Linear Models for experimental designs June 19, 2024



Sample Data from a Two-Factor Completely Randomized

Experiment (2)

@ Here we have a levels of factor A, b levels of factor B, and n observations for each
combination of levels. Each of the ab combinations of levels of factor A with levels
of factor B is a treatment.

@ In addition to the totals and means shown in the Table, we note that the total and
mean of the ij-th cell are

T,'J'.ZZX,'jk and Xj;. =Ty /n (i=1,...,a,j=1,...,b).

k=1

@ We consider that each combination of factor levels is a treatment and that we
have n observations for each treatment.

@ Total number of observations: nab.

@ The factorial experiment, in order that the experimenter may test for interaction,
requires at least two observations per cell, whereas the randomized complete block
design (note the similarity of the Tables) requires only one observation per cell.
We use two-way analysis of variance to analyze the data from a factorial
experiment of the type presented here.
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The factorial experiment

@ The model for the two-factor repeated measures design must represent the fact
that there are two factors, A and B, and they have a potential interaction:

ka:u+ai+,3j+(a/8)ij+egk i=1,2,...,a, j=L12....,b, k=1,2,...,n.

«j represents the main effect of factor A,

By represents the main effect of factor B,

(ceB)ji represents the interaction effect of factor A and factor B,

€jjk is a residual component representing all sources of variation other than treatments and blocks

(experimental error).

@ Assumptions:

o The observations in each of the ab cells constitute a random independent
sample of size n drawn from the population defined by the particular
combination of the levels of the two factors.

o Each of the ab populations is normally distributed.

o The populations all have the same variance.

Papageorgiou, G. Katsouleas (UniWA Linear Models for experimental designs June 19, 2024 35/99



Hypotheses

o

Ho:ai=0, i=12,...,a,
H, :not all o; = 0.

HoZ,BJ‘ZO, j:1,2,...,b,
H, : not all g; =0.

Ho:(aB); =0, i=12,...,a, j=12...b,
Ha :not all (aB); = 0.

Before collecting data, the researchers may decide to test only one of the possible hypotheses.

In this case they select the hypothesis they wish to test, choose a significance level o, and proceed in the
familiar, straightforward fashion. This procedure is free of the complications that arise if the researchers wish
to test all three hypotheses.

When all three hypotheses are tested, the situation is complicated by the fact that the three tests are not

independent in the probabilistic sense.

If we let o be the significance level associated with the test as a whole, and a’; a’’; and o’ the
significance levels associated with hypotheses 1, 2, and 3, respectively, we find

a<i-(1-a")(1=a") (1-a").

Hence, If o’ = o’/ = o’’’ = 0.05, then a < 1 — 0.95% = 0.143. This means that the probability of rejecting
one or more of the three hypotheses is less than 0.143 when a significance level of 0.05 has been chosen for
the hypotheses and all are true.
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Calculation of the test statistic

@ By an adaptation of the procedure used in partitioning the total sum of squares for
the completely randomized design, it can be shown that the total sum of squares
under the present model can be partitioned into two parts as follows:

n a b n

b
Z Xuk_X~)2: (xi. — +ZZZ Xuk_XU)

i=1 j=1 k= i=1 j=1 k=1 i=1 j=1 k=1

a

ie.,

SST = SSTr + SSE,

where the sum of squares for treatments can be partitioned into three parts as

follows:

a b n a b n a b n
S F-x)=D> D> F -x D DY (xp-x )+
i=1 j=1 k=1 i=1 j=1 k=1 i=1 j=1 k=1

a b n
YN (X — X — Xy %),
i=1 j=1 k=1
ie.,

SS5Tr = SSA + SSB + SSAB.
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Analysis of Variance Table for a Two-Factor Completely

Randomized Experiment (Fixed-Effects Model)

@ It can be shown that
SST = SSTr + SSE,

where the sum of squares for treatments can be partitioned into three parts as
follows:

SSTr = SSA + SSB + SSAB.

@ Test statistic: Variance ratios, according to the following AnOVa Table (following
F distributions with the indicated degrees of freedom, respectively):

Source Ss d.f. MS V.R.

A SSA a—1 MSA=SSA/(a—1) MSA/MSE
B ssB b—1 MSB = SSB/(b—1) MSB/MSE
AB SSAB (a—1)(b-1) MSAB = S5AB/(a—1)(b—-1) MSAB/MSE
Treatments SSTr ab -1

Residual SSE ab(n—1) MSE = S§SE/ab(n—1)

Total SST abn -1
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Two-Factor Completely Randomized Experiment

(Fixed-Effects Model): Application

@ In a study of length of time spent on individual home visits by public health
nurses, data were reported on length of home visit, in minutes, by a sample of 80
nurses. A record was made also of each nurse's age and the type of illness of each
patient visited.

@ The researchers wished to obtain from their investigation answers to the following
questions:

@ Does the mean length of home visit differ among different age groups of
nurses?

@ Does the type of patient affect the mean length of home visit?

@ s there interaction between nurse's age and type of patient?
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Length of Home Visit in Minutes by Public Health Nurses by

Nurse's Age Group and Type of Patient

Factor B (Nurse’s Age Group) Levels

Factor A
(Type of Patient) 1 2 3 4
Levels (20to 29) (30to 39) (40 to 49) (50 and Over)
1 (Cardiac) 20 25 24 28
25 30 28 31
22 29 24 26
27 28 25 29
21 30 30 32
2 (Cancer) 30 30 39 40
45 29 a2 45
30 31 36 50
35 30 42 45
36 30 40 60
3(C.V.A) 31 32 a1 42
30 35 45 50
40 30 40 40
35 40 40 55
30 30 35 45
4 (Tuberculosis) 20 23 24 29
21 25 25 30
20 28 30 28
20 30 26 27
19 31 23 30
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Data in SPSS

_] id c3 [} 1 var

1 20-29 Cardiac 20

2 2029 Cardiac 25

3 20-29 Cardiac p3)

n 2029 Cardiac 27

5 2029 Cardiac 2

6 30-39 Cardiac 25

7 30-39 Cardiac 30

8 30-39 Cardiac 2

30-39 Cardiac 28

O 10 30-39 Cardiac 30
1 40-49 Cardiac 24

O] 12 4049 Cardiac 28
13 4049 Cardiac 2

O 14 40-49 Cardiac 25
15 4049 Cardiac 30

16 50+ Cardiac 2

17 50+ Cardiac 31

18 50+ Cardiac 2

19 50+ Cardiac 2

20 50+ Cardiac 3

2 2029 Cancer 30

2 020 c 45
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The procedure in SPSS

Analyze Direct Marketing ~ Graphs

Utiliies  Add-ons

Window Hi

==

Reports [
Descriptive Statistics »

_ Tables L
Compare Means » var N
General Linear Model * | B univariate..
Generalized Linear Models » | FT1 yypivariate...
Mixed Models L [ Repeated Measures
LETCED Variance Components...

Regression »

georgiou, G. Katsouleas

25

(UniWA Linear Models for experimental desi

i Univariate

[(Lid

Dependent Variable
» sct
Fixed Factor(s)
& Nurse's age group
& Type of patient [C2]

Random Factor(s)

Covariate(s).

WLS Weight:

I (B=ste | [Reset] [Cancel| [ Help |
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SPSS Output: Tests of Between-Subjects Effects

Tests of Between-Subjects Effects
Dependent Variable: C1

Type Il Sum of
Source Squares df  MeanSquare F sig
Corrected Model 4801,950° 15 320130 21,805 <001
Intercept 82818,450 1 82818450 5641,103 <001
Between-Subjects Factors c3 1201,050 3 400,350 27,269 <,001
c2 2992,450 3 997,483 67,943 <001
Value Label N c3*c2 608,450 9 67,606 4,605 <001
Nurse's age group 1 20-29 20 Error 939,600 64 14,681
2 30-39 20 Total 88560,000 80
3 40-40 20 Corrected Total 5741,550 79
a.R Squared =836 (Adjusted R Squared =,798)
4 50+ 20
Type of patient 1 Cardiac 20
2 Cancer 20 . .
3 VA 20 @ Ho: a1 =as=asz = ag = 0: Variance ratio is
- 997.5/14.7 = 67.94 — Hg is rejected (differences
2 ; . . .
4 Tuberculosis 20 in the average amount of time spent in home visits

with different types of patients).

@ Hp : f1 = B2 = B3 = B4 = 0: Variance ratio is
400.4/14.7 = 27.27 — differences in the average
amount of time spent on home visits among the
different nurses when grouped by age.

@ We consider here the case where the number of
observations in each cell is the same. When the
number of observations per cell is not the same for
every cell, the analysis becomes more complex. In

such cases, the design is said to be unbalanced. Q@ Hp: all (ﬂﬂ);j = 0: Variance ratio is
Software packages such as SPSS accommodates 67.6/14.7 = 4.61 — different combinations of
unequal cell sizes. levels of the two factors produce different effects.

@ If the interaction term turns out to be not
significant in the model — or if the effect is not
large enough (effect size n? < 0.14) — it might be
preferable to adjust your model, removing the
interaction term and leaving only main effects.
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SPSS Output: Main effects (to remove interaction effect,

so desired)

@ This option is available from the Model Tab in the
main interface, in case the interaction term turns
out to be not significant and respecification of the
model is desired, leaving only main effects of the
Factors & Covariates:

| & Univariate: Model X Tests of Between-Subjects Effects
Specify Model Dependent Variable: C1
O Full factorial @/ Custom| Type Il Sum
Source of Squares df Mean Square F Sig.
e flocel Corracted Mode! 31935007 5 698,917 | 32,058 000
I c2 o Intercept 82818,450 1| 82818450 | 3905395 000
i c3 1201,080 3 400350 | 18879 000
ET;':‘: W c2 2992,450 3 997483 | 47,097 000
e Error 1548,050 73 21,208
(Mein effects ~ | Total 88560,000 80
® Corrected Total 5741,550 79
2 R Squared =730 (Adjusted R Squared = ,708)

Sum of sguares: [Type il ¥ | [ Include interceptin model
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Levene's test of equality of error variances

1@ Univariate: Options X
Display
] Descriptive statistics jomogeneity tests
[ Estimates of effect size [ Spread-vs -level plots
[] Observed power [ Residual plots
[ Parameter estimates [ Lack-of-it test
[ Contrast coefficient matrix [ General estimable function(s)
Heteroskedasticity Tests
[JModified Breusch-Pagan test [JF test
Mod Mod

[ Breusch-Pagan test [J White's test
Mod

[[] Parameter estimates with robyst standard errors
o
o
o

o

Confidence intervals are 95.0%

Significance level

@ The previous output should only be interpreted
under the assumption of homogeneity of error
variances across cells.

@ To verify whether this assumption is met or not,

Levene's test should be considered.
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Levene's Test of Equality of Error Variances™®
Levene
Statistic an an sig.
c1 Based on Mean 2577 15 64 005
Based on Median 1,260 15 o4 253
Based on Median and with 1,260 15 25125 1295

adjusted d
Based on timmed mean 2484 15

64 007
Tests the null hypothesis that the error variance of the dependentvariable is equal across

a.Dependentvariable: C1
b. Design: Intercept + C3+ C2+ C3* C2

Levene's test can be accessed, using the Options
Tab in the main interface and flagging
"Homogeneity Tests".

The null hypothesis of this test involves equality of
error variances, hence a Sig. value greater than

« = 0.05 is desired, so that the Hg cannot be
rejected.

Its classical version is the one 'based on mean’,
the validity of which can be affected by the
presence of outliers/non-normality.

Three modifications of Levene's test are also
provided which are more robust, hence preferable,
in such instances.

Here, the classical test is significant (p=0.005),
while the more robust modifications are not

(p > 0.05), hence indicative that the assumption
of homogeneity of variances is met.
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SPSS Output: Descriptive Statistics

@Uniaiszoptons
. x Descriptive Statistics
Display
iDsscripthe siatsicd ] Homogensiy tests Dependent Variable: C1
[ Estimates of efect size [0 Spread-s evel plts Nurse's age group  Type of patient Mean Std. Deviation N
[ Observed power [ Residual plots. N
[ Parameter stimatss [lLeckott test 20-29 Cardiac 23,00 2915 5
[ Cantrast cosficent matix [ Genera esimabl function(s) Cancer 35,20 6,140 5
Heteroskedastiity Tests
[ Modifed Breusch-Pagan test OFtest CVA 33,20 4,324 5
fodel dodel Tuberculosis 20,00 707 5
[ Breusch-Pagan test I Whie's test Total 27,85 7,611 20
30-39 Cardiac 28,40 2,074 5
O opmmr estimates with robust standard erors Cancer 30,00 707 5
° CVA 33,40 4219 5
g Tuberculosis 27,40 3,362 5
5 Total 29,80 3,548 20
Significance leyel onfidence intenvls are 95,0% 40-49 Cardiac 26,20 2,683 5
[ Coniru | KRS Cancer 39,80 2,490 5
CVA 40,20 3,564 5
Tuberculosis 25,60 2,702 5
@ When the Anova table in significant, it is desirable Total 32,95 7.708 20
to report differing means. 50+ Cardiac 29,20 2,387 5
. . . - Cancer 48,00 7,583 5
@ Using the Options Tab in the main interface and
I - e CVA 46,40 6,107 5
flagging "Descripitve Statistics", we have e ST Y0 =
X N e
immediate access to cell means and standard CLLTellb 1 = :
. . . . . 2 2
deviations, along with respective cell sizes. Total 38,10 10442 20
P . . . . . Total Cardiac 26,70 3,389 20
Mcre.detalled means |nformat|ofl (|nc|uc!|ng Cancer 38,25 8213 20
marginal means and the respective Confidence CVA 38.30 7042 20
Intervals) are obtainable via the EM Means Tab in : e =
) Tuberculosis 25,45 4,019 20

the main interface.
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Estimated marginal means

| #@ Univariate: Estimated Marginal Means X

| Estimated Marginal Means
1

Factor(s) and Factor Interactions Display Means for
(OVERALL)
c3 . ]
c2 Estimated Marginal Means
| o0 [ Compare main effects
o Nurse's age group
; Dependent Variable: C1
i 95% Confidence Interval
Nurse's age group Mean Std. Error  Lower Bound  Upper Bound
20-29 27,850 857 26,138 29,562
30-39 29,800 857 28,088 31,512
40-48 32,950 857 31,238 34,662
@ Marginal Means for various factors are obtainable 50+ 38,100 857 36,388 30,812

via the EM Means (Estimated Marginal Means)
Tab in the main interface.

@ Here, we consider Marginal Means with respect to
the groups defined by Variable C3 (Nurse Age
Group).
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Estimated marginal

means (compare main effects)

| #@ Univariate: Estimated Marginal Means X

Estimated Marginal Means

Factor(s) and Factor Interactions
(OVERALL)
c3

Display Means for
c3

c2
c3'C2

Compare main effects

[m]

Confidence interval adjustment
Bonferroni i ~]

@ To obtain pairwise comparisons among the mean
times across the different groups defined by by
Variable C3 (Nurse Age Group), flag "compare
mean effects".

@ Here, we consider Marginal Means with respect to
the groups defined by Variable C3 (Nurse Age
Group).

@ Since multiple tests will be conducted, it is
advisable to opt for a more conservative testing
approach using the Bonferroni modification, which
adjusts the significance level a to a/r, where r is
the number of pairwise tests being carried out.

georgiou, G. Katsouleas (

Pairwise Comparisons

DependentVariable: C1

Mean

() Nurse's age group () Nurse's age group _ Diffe sta.Ermor__Sig® -
2028 3038 1212 675 5.248 1349
4049 51000 1212 <001 8,399 1,801
50+ 02500 1212 <oon 13548 -6.951
3038 1950 1212 675 1348 5249
350 1212 063 6449 189
83000 1212 <ot 11588 5,001
4049 5100 1212 <01 1,801 8399
3150 1212 068 -8 6449
ss00 1212 <00 8448 1,851
50+ 10250 1212 <01 6951 13549
83000 1212 <got 5,001 11599
4049 5150 1212 <01 1,851 8449

iWA Linear Models for expe

‘Based on estimated marginal means
*The mean difiersnce is significant atthe 05 level
b. Adjustment for multple comparisons: Bonferroni.

Significant differences are flagged.

Note that for significant differences (i.e., with
p-values (Sig.)<0.05), the difference 0 lies within
the corresponding 95%-C.1. (confidence interval).

The last portion of the output contains an ANOVA
table, replicating the relevant portion from the
initial "Tests of Between-Subjects Effects".

Univariate Tests

DependentVariable: C1

Sum of

Squares df Mean Square F Sig.
Contrast 1201,050 3 400,350 27,269 <,001
Error 939,600 64 14,681

mental desi

June 19, 2024 48 /99



Estimated marginal means (compare main effects) - cont'd

@ The last part of the output includes an ANOVA
table, replicating the relevant portion from the

Tests of Between-Subjects Effects initial "Tests of Between-Subjects Effects".
Dependent Variable: C1
Type Il Sum of

Source Squares df  MeanSquarz  F sig.
Corrected Mode! 4801 950 15 320130 21805 <001 Univariate Tests
Intercept 82818,450 1 82818450 5641103 <001
c3 1201,050 3 400350 27,269 <001 Dependent Variable: C1
c2 2992,450 3 997483 67,943 <001 Sum of
c3*c2 608,450 9 67,606 4,605 <,001 Squares df Mean Square F Sig.
frer 929,800 o 1aeet Contrast 1201,050 3 400350 27,269 <001
Total 88560,000 80
Corrected Total 5741550 79 Ermor 939,600 64 14,681

2. R Squared = 836 (Adjusted R Squared = ,798) The F tests the effect of Nurse's age group. This test is based on the linearly

pairwise among the marginal means.
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Marginal means for Type of Patient

@ The analogue procedure to obtain Marginal Means Estimated Marginal Means
and compare main effects with respect to the

groups defined by Variable C2 (Type of Patient). Type of patient

@ Again, since multiple tests will be conducted, it is
advisable to opt for a more conservative testing -
. L e . Estimates

approach using the Bonferroni modification.

Dependent Variable: C1

— = S 95% Confidence Interval
& Univariate: Estimated Marginal Means. X

Type of patient Mean Std. Error  Lower Bound  Upper Bound

Estimated Marginal Means

Cardiac 26,700 857 24,988 28,412
Eactor(s) and Factor Interactions Display Means for Cancer 38,250 857 36,538 30,962
(Overat) = CVA 38,300 857 36,588 40,012
c2 Tuberculosis 25,450 857 23,738 27162
c3c2 Compare main effects
[m]
Confidence interval adjustment Pairwise Comparisons
LSD(none) vl DependentVariable: C1
[SD(none) , 95% canndence el ar
- Mean
Bonferroni () Type of patient _(J) Type of patient _Difference () Std. Error _ Sig?  LowerBound Upper Bound
. Sidak Cardiac Cancer 11,5507 1212 <001 13971 9129
CVA -11,600° 1212 <001 14,021 9,179
Tuberculosis 1250 1212 308 a7 3671
. R Cancer Cardiac 11,550 1,212 <001 9129 13971
Univariate Tests CVA -,050 1212 967 -2471 231
Dependent Variable: C1 Tuberculosis 12,800" 1212 <001 10379 15201
Sum of cvA Cardiac 11,600 1212 <001 9179 14,021
Squares df Mean Square F Sig Gancer o0 N2 967 2371 240
Tuberculosis 12,850 1212 <001 10,429 15271
Contrast 2992450 3 997,483 67,943 <,001 Tuberculosis Cardiac 1,250 1212 306 3671 1471
Error 939600 64 14,681 Cancer 12,8007 1212 <001 -15221 -10,379
The F tests the effect of Type of patient. This testis based on the linearly v 12:850) 1.212 10} 15271 10:478)
Based on estmated marginal means
pairwise among the marginal means

* The mean difference s significant at the 05 level.
b. multipls Least e to no adjustments).
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Graphing options (marginal means for nurse age group)

@ From the "Profile Plots" Tab in the main

. . . . @ Univariate: Profile Plots X
interface, we may visualize the corresponding
marginal means. Eactors: Horizontal Axis:
c3 'S
@ To graph marginal mean times for the different ¢

Separate Lines

nurse age groups, select the corresponding variable

[
(variable C3) and place it the Horizontal Axis tab.
Separate Plots
[
18 Unvaristes rofle Plots x
Plots: add | [Change | R
Eactors Horzontal Avis -
s [¢]
Separate Lines
ﬂ Chart Type:
@© Line Chart
Separate Plots: O Bar Chart
4]
Error Bars.
Plots: ad R [Minclude Error bars

© Confidence Interval (95,0%)

O Standard Ermor
Chart Type: [include reference line for grand mean
® 1 as starts at 0
° — o]
Error Bars.
o . . .
® @ Line Chart and Bar Chart options are provided
° (prefer Line chart myself..).
S @ Also, option to include Error Bars in the resulting
chart are provided (although that may clutter the
[ Coe | rt are provided (althoug| may clutter

resulting graph).
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rts for marginal means for nurse age group

Estimated Marginal Means of C1 Estimated Marginal Means of C1

w5

0

w5

=0

Estimated Marginal Means
Estimated Marginal Means

75

2029 3039 4049 50+ 30.39 4049
Nurse’s age group. Nurse's age group
Evrorbars: 95% CI Error bars: 5% C1

o Line Chart o Bar Chart

Estimated Marginal Means

Nurse's age group
Dependent Variable: C1
95% Confidence Interval
Nurse's age group Mean Std. Error  Lower Bound  Upper Bound

20-29 27,850 857 26,138 29,562
30-39 29,800 857 28,088 31,512
40-49 32950 857 31,238 34,662
50+ 38,100 857 36,388 39812
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Graphing options (marginal means for type of patient)

Estimated Marginal Means of C1

@ To graph marginal mean times for type of patient
groups, select the corresponding variable (variable

C2) and place it the Horizontal Axis tab. H
H
g
@ Univariate: Profe lots x H
H
Hl
Eactors: Horizontal Axis: E>
]
&
c2
Separate Lines: -
Cardiac Cancer VA Twbercuosis
Separate Plots:
Type of patient
(] i 1
Plots: Add  Change Remove
c2 Profile Plots.
Estimated Marginal Means of C1
Chart Type: w
®lLine Chart
O Bar Chart
Error Bars g
Include Error bars -
@ Confidence Interval (95,0%) E
O Standard Error E .
E
[Jinclude reference line for grand mean H

[ axis starts at 0

tin

Cancer Tuberculosis

Type of patient
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Charts for marginal means for type of patient groups

Estimatea Marginal Means of C1 o s
Extimated Marginl Means of C1
H
E .
e H
H H
H 3.
] 2.
H
H

Cardiac Cancer VA Tubercuosis

Type of patient ° Cardiac Cancer CVA Tubarcuiosis

et 5% 01 Type of patient

@ Line Chart o Bar Chart

Marginal M;

Type of patient

Estimates
Dependent Variable: C1
95% Confidence Interval
Type of patient Mean Std. Error  LowerBound  Upper Bound

Cardiac 26,700 857 24,988 28,412
Cancer 38,250 857 36,538 39,962
CVA 38,300 857 36,588 40,012
Tuberculosis 25,450 857 23738 27,162
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Means for each of the 16 cells of the experime

1@ Univariate: Estimated Marginal Means X

Estimated Marginal Means

Factor(s) and Factor Interactions Display Means for
(OVERALL) C3*C2

c3

c2

C3'C2 O

Compare simple main effects
Confidence interval adjustment.
LSD(none) v]
LSD(none)

Bonferroni

@ Flagging "Simple effects tests" in the EM Means Tab, we investigate pairwise
differences in mean length of home visit among different nurse age groups for
different types of patients, i.e., among the 16 cells.

@ Since multiple tests will be conducted, it is advisable to opt for a more conservative
testing approach using the Bonferroni modification, which adjusts the significance
level a to a/r, where r is the number of pairwise tests being carried out.
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Means for each of the 16 cells of the experiment

Estimated Marginal Means

1. Nurse's age group * Type of patient

Estimates
Dependent Variable: C1

95% Confidence Interval
Nurse's age group _Type of patient _ Mean  Std. Error  Lower Bound _Upper Bound
2029 Cardiac 23,000 1,714 19,577 26,423
Cancer 35,200 1,714 31,777 38,623
CVA 33,200 1,714 20,777 36,623
Tuberculosis 20,000 1714 16,577 23423
30-39 Cardiac 28,400 1,714 24,977 31,823
Cancer 30,000 1,714 26,577 33423
CVA 33,400 1,714 20,977 36,823
Tuberculosis 27,400 1,714 23,977 30,823
4049 Cardiac 26,200 1,714 22777 29,623
Cancer 39,800 1,714 36,377 43223
cVA 40,200 1,714 36,777 43623
Tuberculosis 25,600 1,714 2177 29,023
50+ Cardiac 29,200 1,714 25,777 32623
Cancer 48,000 1,714 44,577 51,423
CVA 46,400 1,714 42977 49,823
Tuberculosis 28,800 1,714 25377 32223
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Means for each of the 16 cells of the experiment - Simple

main effects comparisons (1st Version - partial output

Estimated Marginal Means

1. Nurse's age group * Type of patient
Pairwise Comparisons

Dependent variable: C1

Estimates
Dependent Variable: C1 Typeofpaten_( Nurse's age roup_() Nurse'sage roup_ Wt () _ st Evor__ig
95% Confidence Interval Cardac 2028 03 saw 243 o
Nurse's age group _Type ofpatient _ Mean __ Std.Emor _ Lower Bound _ Upper Bound 2| _um|
2029 Cardiac 23000 1714 19,577 26423 03 san | 2am o
Cancer 35200 1714 3777 38,623 2200 367
a0 702
ovA 33200 1714 20777 36,623 =5 — z
Tuberculosis 20,000 1,714 16,577 23,423 2,200 367
30-39 Cardiac 28,400 1714 24,977 31,823 200 2
5 200 o
Cancer 30000 1714 26,577 33423 * = e
ovA 33400 1714 20977 3000 2
Tuberculosis 27,400 1,714 23977 Cancer w2 5200 036
S 4500 062
40-49 Cardiac 26200 1714 22777 Tt =T
Cancer 39800 1714 36377 03 5200 3
cvA 40200 1714 36,777
Tuberculosis 25,600 1,714 22177
50+ Cardiac 20200 1714 25,777 . . L .
Cancer oD aon G @ Like previously, significant differences are flagged.
ovA 46400 1718 42,077
Tuberculosis 28,800 1,714 25377
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Means for each of the 16 cells of the experiment - Simple

main effects comparisons (2nd Version - partial output

Estimated Marginal Means

Pairwise Comparisons

1. Nurse's age group * Type of patient DependentVariable: C1
35% Conte
Mean oife
Estimates Nurse's age group () Type of patient () Type of patient _ Difference () | Std.Eror __ Sig® __ Lower Bound _Upper Bound
2020 Cardac Cancar a0 2am < EZT 735
DependentVariable: C1 CVA 10,200 2423 <001 15,041 -5,359
95% Confidence Interval Tuberculosis 3000 2423 220 1841 781
Nurse's age group _ Type of patient  Mean  Std. Error _ Lower Bound  Upper Bound Cancer Cardiac 12200 2423 <ot 7359 17,000
20-29 Cardiac 23,000 1,714 19,577 26,423 O 2000 242 412 280 S84
Tubercuios's B0 24m <o 1035 0041
Gancaiy 55200 iHAL) EAHAL 56,624 CVA Cardiac 10,2000 2423 <001 5350 15,041
CVA 33,200 1714 29,777 36,623 Cancer -2,000 2423 412 -6,841 2841
Tuberculosis 20,000 1,714 16,577 23,423 Tuberculosis 13200 2423 <001 8,359 18,041
3039 Cardiac 8400 1714 20977 31823 Tubercuosis _Cardiac a0 2 B 1841
Cancer 30,000 1714 26,577 33423 cee S0 | 4% L <o Elnds
o G0 2am <o 5350
CVA 33400 1714 29977 30-39 Cardiac Cancer 1,600 2423 511 3241
Tuberculosis 27,400 1,714 23,977 CVA 5,000 2423 043 -159.
40-49 Cardiac 26200 1714 2717 Tubercuiosis o0 2423 et ssut
o T aon T Cancar Caraac o0 2423 st san
= 5 : 8 CVA -3,400 2423 165 1441
CVA 40,200 1714 36,777 Tuberculosis 2600 2423 287 7481
Tuberculosis 25,600 1,714 22177 CVA Cardiac 5,000 2423 043 9,841
50+ Cardiac 20200 1714 25,777
Cancer 48000 1714 44,577
ovA 46400 1718 42,077 . . TS .
@ Like previously, significant differences are flagged.
Tuberculosis 28,800 1,714 25377
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Means plots (1st Version)

@ To construct means plot with respect to Nurse's

age group:

1§ Univariate: Profile Plots

Eactors Horizontal Axis:
c3 » C3
c2
Separate Lines:
Cc2 2
H
Separate Plots: E
.
°
£
Plots Change Remove £
@
u
Chart Type:
®
o
Error Bars
®
[e]
]
(]

ageorgiou, G. Katsouleas

(

iWA Linear Models for expe

Estimated Marginal Means of C1

0 Type of
patient
Cardiac

w -
Tuberculosis

w

%

©

»

x

2029 30-39 4049 50+
Nurse's age group
@ When no interaction is present, we would expect

the line connecting the means for different nurse
age groups to be roughly parallel across levels of
the type of patient factor.
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Means plots (2nd Version)

@ To construct means plot with respect to Type of
Patient group:

& Univariate: Profile Plots X
Eactors Horizontal Axis:

c3 w C2

c2

Separate Lines:
c3

Separate Plots

Plots:

Estimated Marginal Means

C3'C2

Chart Type
® Line Chart
O Bar Chart

Error Bars

[ nclude Error bars
®
o

[Jinclude reference line for grand mean
[JY axis starts at 0

Estimated Marginal Means of C1
© Nurse's
a

I/

ge
group

Cardiac Cancer CVA Tuberculosis

Type of patient

@ When no interaction is present, we would expect
the line connecting the means for different types
of patient groups to be roughly parallel across
levels of nurse age.
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Repeated measures design

E. Papageorgiou, G. Katsouleas (UniWA Linear Models for experimental designs June 19, 2024 61 /99



The repeated measures design

A repeated measures design is one in which measurements of the same variable are
made on each subject on two or more different occasions.

The different occasions during which measurements are taken may be either points
in time or different conditions such as different treatments

Motivation. Desire to control for variability among subjects. In such a design, each
subject serves as its own control.

When measurements are taken on only two occasions, we have the paired means
comparison design.

Most frequent use. Situation in which the investigator is concerned with responses
over time.

Advantages.

@ Ability to control for extraneous variation among subjects. Since the variability in the error term due
to individual differences is removed (as we are “blocking on each subject”), this generally makes these
designs more powerful than randomized designs, where subjects are randomly assigned to the
different treatments.

@ Also, fewer subjects are needed than for a design in which different subjects are used for each
occasion on which measurements are made. Suppose, for example, that we have four treatments (in
the usual sense) or four points in time on each of which we would like to have 10 measurements —
40 subjects vs. 10 subjects required in repeated measures.

This can be a very attractive advantage if subjects are scarce or expensive to
recruit.
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The repeated measures design: Disadvantages

@ A major potential problem to be on the alert for is what is known as the carry-over
effect. When two or more treatments are being evaluated, the investigator should
make sure that a subject’s response to one treatment does not reflect a residual
effect from previous treatments.

@ This problem can frequently be solved by allowing a sufficient length of time
between treatments.

@ Another possible problem is the position effect. A subject’s response to a
treatment experienced last in a sequence may be different from the response that
would have occurred if the treatment had been first in the sequence.

@ In certain studies, such as those involving physical participation on the part of the
subjects, enthusiasm that is high at the beginning of the study may give way to
boredom toward the end.

@ A way around this problem is to randomize the sequence of treatments
independently for each subject. Otherwise, time and the order of administration of
stimuli will be confounded.
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Single-Factor Repeated Measures Design

@ The repeated measures design in which one factor (additionally to the already
present treatment variable) is introduced into the experiment is called a
single-factor repeated measures design. The reason for introducing this additional
variable is to measure and isolate its contribution to the total variability among the
observations.

@ We refer to the additional factor as subjects (“blocking on each subject”). In the
single-factor repeated measures design, each subject receives each of the
treatments. The order in which the subjects are exposed to the treatments, when
possible, is random, and the randomization is carried out independently for each
subject.
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Single-Factor Repeated Measures Design: Assumptions

@ Assumptions.

@ The subjects under study constitute a simple random sample from a
population of similar subjects.

@ Each observation is an independent simple random sample of size 1 from
each of kn populations, where n is the number of subjects and k is the
number of treatments to which each subject is exposed.

© The kn populations have potentially different means, but they all have the
same variance.

@ The k treatments are fixed; that is, they are the only treatments about which
we have an interest in the current situation. We do not wish to make
inferences to some larger collection of treatments.

© There is no interaction between treatments and subjects; that is, the
treatment and subject effects are additive.
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Single-Factor Repeated Measures Design: Assumptions (2)

@ Additionally, in a repeated measures experiment there is a presumption that
correlations should exist among the repeated measures. That is, measurements at
time 1 and 2 are likely correlated, as are measurements at time 1 and 3, 2 and 3,
and so on. This is expected because the measurements are taken on the same
individuals through time.

@ An underlying assumption of the repeated-measures ANOVA design is that all of
these correlations are the same, a condition referred to as compound symmetry.
This assumption, coupled with assumption 3 concerning equal variances, is referred
to as sphericity. Violations of the sphericity assumption can result in an inflated
type | error.

@ Most computer programs provide a formal test for the sphericity assumption along
with alternative estimation methods if the sphericity assumption is violated.
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Single-Factor Repeated Measures Design

@ The model for the fixed-effects additive single-factor repeated measures design
may be written as follows:

xj=p+Bi+71+e i=12,...,n j=12,... k.

@ This model is completely analogous to the model for the randomized complete
block design. The subjects are the blocks.

@ Consequently, the notation, data display, and hypothesis testing procedure are the
same as for the randomized complete block design as presented earlier.
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Health Condition Scores at Four Different Points in Time

id Baseline Month_1 Month_3 Month_6
1 1 80 60 95 100
2 2 95 %0 95 95
3 3 65 55 50 45
4 n 50 a5 70 70
5 5 60 75 80 85
6 5 70 70 7s 70
7 7 80 0 85 30
8 3 70 60 75 65
9 9 80 30 60 65
10 10 65 30 45 60
11 1 0 70 95 30
) o) 50 50 70 60
13 13 50 65 80 65
14 14 85 45 85 30
15 15 50 65 % 70
16 16 15 30 20 25
17 17 10 15 55 75
18 13 80 85 % 70

@ Subjects with chronic, nonspecific low back pain.

@ 18 of the subjects completed a survey questionnaire assessing physical functioning at baseline, and after 1, 3,
and 6 months.

@ Data for those subjects who received a sham treatment that appeared to be genuine osteopathic
manipulation. Higher values indicate better physical functioning.

@ The goal of the experiment was to determine if subjects would report improvement over time even though
the treatment they received would provide minimal improvement.

@ We wish to know if there is a difference in the mean survey values among the four points in time.
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Health Condition Scores at Four Different Points in Time (2)

id Baseline Month_1 Month_3 Month_6
1 1 80 60 95 100
2 2 95 % 95 95
3 3 65 55 50 45
4 4 50 15 70 70
5 5 60 75 80 85
6 6 70 70 75 70
7 7 80 80 85 80
8 3 70 60 75 65
9 9 80 30 60 65
10 10 65 30 45 60
11 1 0 70 95 30
2 o) 50 50 70 60
13 13 50 65 80 65
14 14 85 45 85 30
15 15 50 65 % 70
16 16 15 30 20 25
1 17 10 55 75
18 18 80 % 70

@ The goal of the experiment was to determine if subjects would report improvement over time even though
the treatment they received would provide minimal improvement.

@ We wish to know if there is a difference in the mean survey values among the four points in time.
@ Hypotheses.

Ho : kg = My = WMz = HMg»
H, : not all u's are equal.

ageorgiou, G. Katsouleas (UniWA Linear Models for experimental desi June 19, 2024 69 /99



Health Condition Scores at Four Different Points in Time (3)

id Baseline Month_1 Month_3 Month_6
1 1 80 60 95 100
2 2 95 90 95 95
3 3 65 55 50 45
4 4 50 45 70 70
5 5 60 75 80 85
6 6 70 70 75 70
7 7 80 80 85 80
8 8 70 60 75 65
9 9 80 80 60 65
10 10 65 30 45 60
11 1 60 70 95 80
12 12 50 50 70 60
13 13 50 65 80 65
14 14 85 45 85 80
15 15 50 65 90 70
16 16/ 15 30 20 25
17 17 10 15 55 75
18 18 80 85 % 70

@ Hypotheses.
Ho : ppg = tpy = BMz = HMg»
H, : not all u's are equal.

@ Test statistic. Variance ratio = Treatment MS/Error MS ~ F(471),(7173—17) = F3,51.
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Single-Factor Repeated Measures in SPSS
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Single-Factor Repeated Measures in SPSS (2)

;| Q Repeated Measures Define Factor(s) X |

| #3 Repeated Measures

Within-Subject Factor Name:

Number of Levels: D

&id

time(4)

Measure Name:

L 1|

Health_score

-

(etine ) Reset ] (cancei] [_+ep |

Papageorgiou, G. Katsouleas

Within-Subjects Variables
(time):

Baseline(1,Health_score)
Month_1(2 Health_score)
Month_3(3 Health_score)
Month_6(4,Health_score)

Covariates:

Between-Subjects Factor(s):
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Single-Factor Repeated Measures in SPSS: Output

If no further options are activated, SPSS Output provides the following Tables:
(a.) Multivariate Tests

(b.) Mauchly's Test of Sphericity

(c.) Test of Within-Subjects Effects
(d.) Test of Within-Subjects Contrasts
(e.) Test of Between-Subjects Effects
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Multivariate Tests vs. Test of Within-Subjects Effects

Measure
Health_score
Dependent
time Variable
1 Baseline
2 Month_1
3 Month_3
4 Month_6
Multivariate Tests™
Effect Valug F Hypothesis df | Erordf | Sig
time  Pillai's Trace 444 | 3995 3,000 [ 15,000
Wilks' Lambda 556 | 3,995 3000 | 15000
Hotelling's Trace 799 | 3995 3000 | 15000
Roy's Largest Root 799 | 3995 3,000 | 15,000

a. Design: Intercept
Within Subjects Design: time

b. Exact statistic

@ The test of overall mean differences in the repeated measures design can be carried out in two ways:
using either the multivariate test approach (see above), or
the univariate approach (see below).

Tests of Within-Subjects Effects

Measure: Health_score

Type I Sum

Source of Squares df [ MeanSquare F sig.
time Sphericity Assumed 3 750926 | 4975 004

Greenhouse-Geisser 2229 1010848 | 4975 010

Huynh-Feldt 2,580 873064 | 4975 007

Lowsr-bound 1,000 2252778 | 4975 039
Error(ime)  Sphericity Assumed 51 150,826

Greenhouse-Geisser 37,886 203,167

Huynh-Feldt 43865 175474

Lower-bound 17,000 452778
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Multivariate Tests

Measure:
Health_score
Dependent
time Variable
1 Baseline
2 Month_1
3 Month_3
4 Month_6
Multivariate Tests™
Effect Value F Hypothesis df | Error df Sig
time Pillai's Trace 444 3,995 3,000 15,000 028
Wilks' Lambda 556 3,995° 3,000 15,000 028
Hotelling's Trace 799 3,995° 3,000 15,000 028
Roy's Largest Root 799 3,095° 3,000 15,000 028

a. Design: Intercept
Within Subjects Design: time

b. Exact statistic

@ Assumptions. The multivariate test assumes independence of observations and

multivariate norm

ality.

@ A benefit of this approach is that it does not require one of the assumptions
necessary for the univariate approach (via Test of Within-Subjects Effects Table);

namely, sphericity

@ There are times when the multivariate test may be more powerful than the
univariate test. However, when sphericity is assumed, the univariate approach
tends to be more powerful than the multivariate test.
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Multivariate Tests (2)

Measure:
Health_score
Dependent
time Variable
1 Baseline
2 Month_1
3 Month_3
4 Month_6
Multivariate Tests™
Effect Value F Hypothesis df | Error df Sig.
time  Pillai's Trace 444 39957 3,000 15,000 ,028
Wilks' Lambda 556 3995° 3,000 15,000 028
Hotelling's Trace 799 3,905° 3,000 15,000 028
Roy's Largest Root ,799 3,995" 3,000 15,000 ,028

a. Design: Intercept
Within Subjects Design: time

b. Exact statistic

@ According to this Table, we have:
Wilks' lambda = 0.556, F(3,15) = 3.995, p = 0.028.

Hence, we conclude significant differences in means on the Health Score across
time periods.

Papageorgiou, G. Katsouleas (UniWA Linear Models for experimental desig June 19, 2024 76 /99



Univariate approach and Sphericity assumption

Mauchly's Test of Sphericity®
Measure: Health_score
Epsllonb
Approx. Chi- Greenhouse-
Within Subijects Effect | Mauchly's W Square df Sig. Geisser Huynh-Feldt | Lower-bound
time 520 10,296 5 ,068 743 860 333
Tests the null thatthe error i matrix of the variables is p!

to an identity matrix.

a. Design: Intercept
Within Subjects Design: time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

The standard univariate repeated measures ANOVA (Test of Within-Subjects Effects Table below) assumes a
condition called sphei
@ When sphericity is wolated there is increased risk of committing Type 1 error. To evaluate whether that
condition is met, we consider the information contained in the table above.
@ Problems with violating sphericity (or with compound symmetry for that matter) tend to arise when the time
elapsed between measurement occasions are not equal.

Tests of Within-Subjects Effects

Measure: Health_score

Type Il Sum
Source of Squares df Mean Square F Sig
time Sphericity Assumed 2252,778 3 750,926 4975 004
Greenhouse-Geisser 2252,778 2,229 1010,848 4,975 010
Huynh-Feldt 2252,778 2,580 873,064 4975 007
Lower-bound 2252,778 1,000 2252,778 4,975 039
Error(time)  Sphericity Assumed 7697,222 51 150,926
Greenhouse-Geisser 7697,222 37,886 203,167
Huynh-Feldt 7697,222 43,865 175474
Lower-bound 7697,222 17,000 452,778
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Ascertaining the Sphericity Assumption: Epsilon (€)

parameters

Mauchly’s Test of Sphericity®
Measure: Health_score
Epsilon®
Approx. Chi- Greenhouse-
Within Subjects Effect | Mauchly's W Square df Sig. Geisser Huynh-Feldt | Lower-bound
time 520 10,296 5 ,068 743 ,860 333
Tests the null thatthe error matrix of the variables is

to an identity matrix

a. Design: Intercept
Within Subjects Design: time

b. May be used to adjustthe degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

@ The sphericity assumption may be evaluated using the Greenhouse-Geisser epsilon (¢) parameter and/or

Mauchly's test.
@ When ¢ = 1, this is considered an indicator that sphericity is met. Values < 1 indicate departure
from sphericity.
@ In the table above, the Greenhouse-Geisser ¢ = 0.743. This parameter is used to adjust the degrees
of freedom of the Greenhouse-Geisser repeated measures ANOVA results in the table containing the
‘Tests of within-subjects effects’.
@ Huynh-Feldt also defined an e parameter that can used to adjust degrees of freedom in the repeated
measures analysis (see Table containing ‘Tests of Within-subjects effects’).
@ The G-G epsilon tends to underestimate the degree to which sphericity is met (making it a more conservative
estimate of sphericity), while the H-F epsilon tends to overestimate the degree of sphericity (i.e., it is a more
liberal estimate of sphericity).

ageorgiou, G. Katsouleas (UniWA Linear Models for experimental desi June 19, 2024 78 /99



Ascertaining the Sphericity Assumption: Mauchley's test

Mauchly’s Test of Sphericity®

Measure: Health_score

Epsilon®
Approx. Chi- Greenhouse-
Within Subjects Effect | Mauchly's W Square df Sig. Geisser Huynh-Feldt | Lower-bound
time 520 10,296 5 ,068 743 ,860 333
Tests the null thatthe error matrix of the variables is

to an identity matrix.
a. Design: Intercept
Within Subjects Design: time
b. May be used to adjustthe degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

@ Mauchley's test provides a test of sphericity. If significant, then we assume
sphericity is not met as the matrix of difference scores differs significantly from a
diagonal matrix.

@ In our case, p=0.068, which suggests sphericity is met.

@ Note. There will be no test of sphericity (and corresponding Sig.=.) and the Greenhouse-Geisser epsilon
parameter will be 1 if there are only two levels of the repeated factor. The issue of sphericity is a non-issue
in this case.

@ Disadvantages:

@ Mauchley's test is sensitive to multivariate nonnormality.

@ The power of the test will be impacted by sample size (i.e., less powerful for detecting a violation in
smaller samples versus overpowered in larger samples).

@ Many analysts suggest Mauchly's test is unnecessary since the Greenhouse-Gessier test incorporates
the degree to which the data depart from sphericity into the test results. Hence, when there is some
minor deviation from sphericity, a minor adjustment to the degrees of freedom is performed and when
there is greater deviation from sphericity, a more substantial adjustment to the degrees of freedom is
made.
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Test of Within-Subjects Effects: Choosing between the

different alternatives

Tests of Within-Subjects Effects

Measure: Health_score

Type Il Sum

Source of Squares df Mean Square F Sig.
time Sphericity Assumed 2252778 3 750,926 4,975 004

Greenhouse-Geisser 2262778 2,229 1010,848 4,975 010

Huynh-Feldt 2252,778 2,580 873,064 4,975 007

Lower-bound 2252,778 1,000 2252778 4,975 1039
Error(time)  Sphericity Assumed 7697222 51 150,926

Greenhouse-Geisser 7697,222 37,886 203,167

Huynh-Feldt 7697,222 43,865 175474

Lower-bound 7697,222 17,000 452,778

@ Since the e¢ parameter computed using G-G computation can be overly
conservative (thereby making the repeated measures ANOVA too conservative in
terms of rejecting the null), the Huynh-Feldt test provides a less conservative
alternative to testing for differences in means.

@ As a general “rule of thumb”: If the Greenhouse-Geisser ¢ < 0.75, then use the
Greenhouse-Geisser test. Otherwise, if you determine sphericity is violated (or at
least are seeking a more conservative alternative to the standard ‘sphericity
assumed test’), then use the Huynh-Feldt test (when the G-G € € [0.75, 1.0]).
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Test of Within-Subjects Effects: Conclusion

Tests of Within-Subjects Effects

Measure: Health_score

Type Il Sum

Source of Squares df Mean Square F Sig.
time Sphericity Assumed 2252778 3 750,926 4,975 ,004

Greenhouse-Geisser 2252778 2,229 1010,848 4,975 010

Huynh-Feldt 2252,778 2,580 873,064 4,975 007

Lower-bound 22527 1,000 2252778 4,975 039
Error(time)  Sphericity Assumed 7697222 51 150,926

Greenhouse-Geisser 97,222 37,886 203,167

Huynh-Feldt 7697,222 43,865 175474

Lower-bound 7697,22 17,000 452,778

@ For our data, the G-G ¢ = 0.743(< 0.75) suggests the use of the
Greenhouse-Geisser test.

@ The univariate repeated measures ANOVA using the Greenhouse-Geisser correction
indicated there were significant differences in scores over time:

F(2.229,37.886) = 4.975, p = 0.010.

@ Note that the assumption of sphericity was not violated for these data
(marginally), but the decision rule did not change, since all of the p—values were
less than a = 0.05.
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Test of Within-Subjects Contrasts

Tests of Within-Subjects Contrasts

Measure: Health_score

Type Il Sum

Source time of Squares df Mean Square F Sig
time Linear 1284,444 1 1284 444 5,267 035

Quadratic 1,389 1 1,389 on 917

Cubic 966,944 1 966,944 11,313 004
Error(time)  Linear 4145 556 17 243856

Quadratic 2098,611 17 123,448

Cubic 1453,056 17 85474

@ One may wonder whether there is evidence of trending over time with respect to
the means of the repeated measurements.

@ The 'Tests of Within-subjects contrasts’ Table above can be useful in this regard.

@ A linear trend implies that the change on the repeated measure will be the same between each pair of
adjacent measurement occasions.

@ A quadratic trend implies change in the change over time, and will give the appearance of a “bowl”
shape as there is one “bend” in the line.

@ A cubic trend assumes two bends in the line.

@ The highest possible trend is equal to k — 1 (i.e., # of repeated measurements minus 1). When k = 2,
the highest order polynomial trend is linear. When k = 3, the highest order polynomial trend that is
possible is quadratic. When k = 4 (as we have here), the highest order trend that is possible is cubic.

@ When pondering such questions, it is instructive to provide profile plots for
jllustration/comparison.
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Option to obtain Profile Plots

@ Repeated Measures: Profile Plots X

Factors: Horizontal Axis:
time time

Separate Lines:

Separate Plots:

time L

Estimated Marginal Means of Health_score

Estimated Marginal Means
8

time

[Conlinuo]{ Cancel M Help J

@ When performing a trend analysis, we need to look at the highest-order polynomial terms that are
significant, consider the added explanatory power that results from the addition of terms, and also consider
the shape of change itself (e.g., inspection of the profile plot).

@ Although one rule of thumb might be to simply go with the highest order polynomial terms that are
significant, it is also important to consider the value-added of adding in those terms and whether the loss of
parsimony is worth the cost of added complexity in terms of your ability to interpret the results.
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Test of Within-Subjects Contrasts

Measure: Health_score

Tests of Within-Subjects Contrasts

Type Il Sum

Source time of Squares df Mean Square F Sig.
time Linear 1284,444 1 1284 444 5,267 035

Quadratic 1,389 1 1,389 01 917

Cubic 966,944 1 966,944 11,313 ,004
Error(time)  Linear 4145 556 17 243 856

Quadratic 2098,611 17 123,448

Cubic 1453,056 17 85474

@ When performing a trend analysis, we need to look at the highest-order polynomial
terms that are significant, consider the added explanatory power that results from
the addition of terms, and also consider the shape of change itself (e.g., inspection

of the profile plot).

@ Although one rule of thumb might be to simply go with the highest order
polynomial terms that are significant, it is also important to consider the

value-added of adding in those terms and whether the loss of parsimony is worth

the cost of added complexity in terms of your ability to interpret the results.

@ Here, we could say the trend is cubic (p = 0.004).
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Additional Options: Descriptives

13 Repeated Measures: Options X |

Estimated Marginal Means |

Factor(s) and Factor Interactions: Display Means for: ‘
(OVERALL)
time @ ‘
} Descriptive Statistics
B ‘ Mean Std. Deviation N
Physical functioning at 61,94 22,435 18
| Baseline
N Physical functioning after 5944 20,572 18
1 month
Display - Physical functioning after 73,06 20,374 18
escriptive statisﬁcs: 7] Transformation matrix 3 months
[ Estimates of effect size ] Homogeneity tests Physical functioning after 70,00 17,150 18
- - 6 months
|| Observed power || Spreadvs. level plot
["] Parameter estimates [ Residual plot
[T] SSCP matrices | Lack of fit

I”| Residual SSCP matrix F General estimable function

Significance level: Confidence intervals are 95,0 %

[continue] [ cancel |[ Hep |
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Additional Options: Estimated Marginal Means

3 Repeated Measures: Options X

| rEstimated Marginal Means

Factor(s) and Factor Interactions: Display Means for:
(OVERALL) time.

time @

Pairwise Comparisons

Measure: Health_score

95% Confidence Interval for
Mean Difference
- = Difference (-
¥|Compare main effects | () time () time J) Std.Emor |  Sig” | LowerBound | UpperBound
2 3 5512 2
Confidence interval adjustment ! - 2500 3791 518 5512 10512
LSD(none) = 3 111 4493 024 -20,591 1,831
4 -8,056 4,611 099 17,785 1674
Display 2 1 -2,500 3797 519 -10,512 5512
¥/ Descriptive statistics ] Transformation matrix 3 13611 3915 ,003 -21.871 -5,351
Estimates of effect size Homogeneity tests 4 -10,556 4747 040 -20,570 -541
Opsenved power Spreadys. level plot 3 1 EEEEE] 4403 024 1,631 20591
Parameter estimates Residual plot 2 13611 3915 003 5,351 21,871
‘SSCP matrices. 7 Lackoffit 4 3,056 2624 260 481 8592
Residual SSCP matrix ] General estimable function 4 1 8,056 4611 099 1674 17,785
2 10,556" 4747 040 541 20570
Significance leye onfidence intervals are 95,0% 3 3,086 2624 260 8592 2481

Based on estimated marginal means
*.The mean difference is significant atthe ,05 level.

b. Adjustment for multiple comparisons: Least Significant Difference (squivalent to no

adjustments)
Estimates
Measure: Health_score @ These are paired t-tests with p-values adjusted for
95% Confidence Interval multiple comparisons.
time Mean | Std. Eror | LowerBound | Upper Bound @ Significant pairwise differences in scores among
! 61,944 5,288 50,788 73,101 the time periods are flagged.
2 59,444 4,849 49,214 69,675 ° dif b dh
3 73,056 14,802 62,924 83,187 ant differences are observed here.
4 70,000 4,042 61,472 78,528
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Two-Factor repeated measures
design
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Two-Factor Repeated Measures Design

@ Repeated measures ANOVA is not useful just for testing means among different
observation times. The analyses are easily expanded to include testing for
differences among times for different treatment groups.

@ This approach can be used when testing whether individuals react the same or
differently across levels of a repeated factor (for example, different stimuli for
which a person is exposed) and a grouping variable.

@ As an example, a clinic may wish to test a placebo treatment against a new
medication treatment. Researchers will randomly assign patients to one of the two
treatment groups and will obtain measurements through time for each subject. In
the end they are interested in knowing if there were differences between the two
treatments on subjects that were measured multiple times.

@ The model for the two-factor repeated measures design must represent the fact
that there are two factors, A and B, and they have a potential interaction:

Xijk = ptai+Bi+(af)+ew i=1,2,...,a, j=1,2,....b, k=1,2,...,n.

a; represents the main effect of factor A,

By represents the main effect of factor B,

(aeB)ji represents the interaction effect of factor A and factor B,

€jjk is a residual component representing all sources of variation other than treatments and blocks.
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Oral Health Condition Scores at Four Different Points in

Time Under Two Treatment Conditions

Treatment
1= placebo

Subject 2 = aloe juice TotalC1 TotalC2 TotalC3 TotalC4
1 1 6 6 6 7
2 1 9 6 10 9
3 1 7 9 17 19
4 1 6 7 9 3
5 1 6 7 16 13
6 1 6 6 6 n
7 1 6 " 1 10
8 1 6 " 15 15
9 1 6 9 6 8
10 1 6 4 8 7
1 1 7 8 1 n
12 1 6 6 9 6
13 1 8 8 9 10
14 1 7 16 9 10
15 2 6 10 1 9
16 2 4 6 8 7
17 2 6 " n 14
18 2 6 7 6 6
19 2 12 " 12 9
20 2 5 7 13 12
21 2 6 7 7 7
22 2 8 m 16 16
23 2 5 7 7 7
24 2 6 8 16 16
25 2 7 8 10 8
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Oral Health Condition Scores at Four Different Points in

Time Under Two Treatment Conditions (2)

5
subject t TotalCl TotalC2 TotalC3 TotalC4 var
1 1 Placebo 6 [ 6 7
2 2 Placebo 9 6 10 9
3 3 Placebo 7 9 7 19
4 4 Placebo [ 9 3
5 5 Placebo 6 16 15
6 6 Placebo 6 6 6 1
7 Placebo 6 1 [ 10
s 3 Placebo 6 1 15 15
9 9 Placebo 6 9 6 8
10 10 Placebo 6 4 s 7
1 1 Placebo 7 8 1 1
2 12 Placebo 6 6 9 6
13 13 Placebo 8 8 9 10
14 1 Placebo 7 16 9 10
15 15 Aloejuice 6 10 1 °
16 16 Aloejuice 4 6 ] 7
17 17 Aloejuice 6 1 1 n
18 18 Aloejuice 6 6 6
19 19 Aloejuice 2 1 2 9
2 20 Aloejuice 5 13 2
2 2 Aloejuice 6 7 7

Examination of 25 subjects with neck cancer with outcome variable an oral health condition score.

Random division into two treatment groups — placebo treatment (treatment 1) and an aloe juice group
(treatment 2).

Cancer health was measured at baseline and at the end of 2, 4, and 6 weeks of treatment.

The goal was to discern if there was any change in oral health condition over the course of the experiment
and to see if there were any differences between the two treatment conditions.
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Hypotheses

Ho:
o {Ha:
Ho:
o {Ha:

Ho:
° {Ha:

aj=0, i=12,...,a,

not all o; = 0.

B=0, j=12,...,b,

not all §; = 0.

(aﬁ)ij:O, i=12...;a, j=1,2,...,b,
not all (af); =0.

@ Test statistic. Distributed as F with:

o Within-subject effects: 4 — 1 = 3 numerator degrees of freedom and
(4 — 1)(25 — 2) = 69 denominator degrees of freedom for the time factor.

o Within-subject effects: (4 — 1)(2 — 1) = 3 numerator degrees of freedom for
the interaction factor and (4 — 1)(25 — 2) = 69 denominator degrees of
freedom for the interaction factor.

o Between-subject factor: 2 — 1 = 1 numerator degrees of freedom and
25 — 2 = 23 denominator degrees of freedom .

@ If the assumptions, specifically of sphericity, are not met, then the computer
program will alter the degrees of freedom and hence the critical value for
comparisons.
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Two-Factor Repeated Measures in SPSS

Jn.sav |[Data>etb] - I8V S>> daustcs Uata editor
m Analyze DirectMarketing Graphs Utilities Add-ons Window H

Reports :iﬁg %%:

Descriptive Statistics

4

| Tables »

t Compare Means » TotalC3 TotalC4

Ply General Linear Model * | B univariate...

:: Generalized Linear Models » % Multivariate...

Pla) R % E Repeated Measures...
Correlate » 5

Pla Variance Components...

Pla Regression » 5 I

Plal Loglinear » 1 10

Pla Neural Networks 3 15 15

Plal Classify » 6 3

Plal Dimension Reduction 4 ] 7

Papageorgiou, G. Katsouleas (UniWA Linear Models for experimental desig June 19, 2024 92 /99



Two-Factor Repeated Measures in SPSS (2)

[ RE— - — e " xoae "

" 3 Repeated Measures Define Factor(s) X

| Within-Subject Factor Name:

Number of Levels: E]

time(4)

Measure Name:

Oral_health_condition

Oral_health_condition

(oetine ) ( Reset ) (cancel_tetp |

t &3 Repeated Measures

Within-Subjects Variables

&> subject

(time):

TotalC1(1,0ral_health_c.
TotalC2(2,0ral_health_c...
TotalC3(3,0ral_health_c.
TotalC4(4,0ral_health_c.

Between-Subjects Factor(s):

ot

Covariates:

(Lo J[paste | meset | [cancel | rietp |
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Tests of Sphericity

Mauchly's Test of Sphericity”
Measure: Oral_health_condition
Epsﬂanb
Approx. Chi- Greenhouse-
Within Subjects Effect | Mauchly's W Square df Sig. Geisser Huynh-Feldt | Lower-bound
time 487 15,620 5 ,008 675 J73 ,333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional
to an identity matrix.
a. Design: Intercept + it
Within Subjects Design: time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

@ The sphericity assumption is required for all univariate main effects tests and interaction tests. Given
Mauchly’s test is impacted by non-normality and by sample size, it is not highly recommended when
evaluating whether the sphericity condition has been met. We would reject the null for this test, according to
the output p—value (p=0.008).

@ A Greenhouse-Geisser epsilon (€) value < .75, suggests using the Greenhouse-Geisser adjustment with the
univariate test of mean differences (see table of “Tests of within-subjects effects”), whereas a value falling
between .75 and 1 suggests the use of the Huynh-Feldt adjustment with the univariate tests. [e = 1 is
consistent with sphericity]. The sphericity assumed test can be used if you determine sphericity is not
violated.

@ The Lower-Bound test is generally overly conservative and is not typically used.

@ Following the considerations above, we will proceed, referring to the G-G modification of the degrees of
freeedom in the "Tests of within-subjects effects" Anova Table.
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Tests of within subjects effects in SPSS: Output

Tests of Within Subjects Effects.

Measure: Oral_health_condition

Type lsum
ource ofSquarss | o | weansauae | ¢ sig —
time Sphericity Assumed 233,391 3 77797 13926 000 Tests of Within-Subjects Contrasts
Greenhouss-Geisser a0 | 2005 | 115261 | 13926 | 000
Huynh-Feldt 233,391 2318 100,682 13926 000 Measurs: Oral_hsalth_condilion
Lower-bound 233391 1,000 233,391 13,926 001 Type Il Sum
Tme*m  Sphenciy Assumed 1231 3 a0 o073 e Source time of Squares df Mean Square F Sig
Greenhouse-Geisser 1,231 2,025 608 073 931 time Linear 195,008 1 195,008 19,476 ,000
Huynh-Feldt 1231 2318 531 073 948 Quadratic 28,889 1 28,889 | 12834 002
Lower-bound 1201 | 1000 1om | ora| e cubie 40 | ot | 2112 160
Erortime)  Sphericity Assumed 385,469 69 5,587
Greenhouse-Geisser 385469 | 46572 8277 time * tt Linear 320 1 320 032 860
Huynh-Feldt 385,469 53316 7230 Quadratic 889 1 889 395 536
Lower-bound 385,469 23,000 16,760 Cubic 022 1 ,022 ,005 945
Error(time)  Linear 230,292 23 10,013
Quadratic 51,771 23 2,251
Cubic 103,406 23 4,496

@ All three test results yield the same conclusions
with respect to the main and interaction effects.

@ The main effect of time on oral condition scores is @ Although the test of the linear component of the
statistically significant, according to the G-G trend is significant (p<0.001), the higher-order
modification. Variance ratio: quadratic component was also significant

[F(1,23)=12.834, p=0.002]. This suggests that
F(2.025, 46.572) = 13.926, p < 0.001 across groups, the mean oral health score
.025, 46. = 13.926, . .

exhibited a quadratic trend over the four
measurement occasions. This is further suggested

Hence, we reject the null hypothesis concerning by examining the profile plot of the means

changes through time.

@ Also, the test of the interaction between the linear
(also quadratic etc.) component of the trend and
treatment group is not significant [F(1,23)=0.320,
p=.860].

@ Not significant time X group interaction effect:
F(2.025, 46.572) = 0.073, p > 0.05.

Hence, we fail to reject the null hypothesis
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Plotting the mean scores by time and by time and treatment

group

@ Though the previous output can be valuable for statistical interpretation, it is often useful to examine plots
to obtain a visual interpretation of the results:

ﬂ'ﬁ Repeated Measures: Profile Plots X
| Factors: Horizontal Axis:
||t time
time

Separate Lines:
'Y

Separate Plots:

time
time*tit

[continue ] [ cancel |[ Help |
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Assessment of trending over time

Assessment of trending over time (irrespective of group
membership)

Estimated Marginal Means of Oral_health_condition

Estimated Marginal Means.

time

We observe that across groups, the mean level of
oral condition scores exhibited a quadratic trend
over the four measurement occasions.

@ It is evident that changes in oral condition did
occur through time, but that the two treatments
were very similar, as can be seen by the close
proximity of the two curves in the differential
trending plot on the right:

georgiou, G. Katsouleas (

Testing for differential trending across groups

Estimated Marginal Means

iWA Linear Models for experimental designs

Estimated Marginal Means of Oral_health_condition

[Treatment

— Placebo
B — Aloe juice:

time

Plot of marginal means against time, with lines
representing each of the treatments.

Looking at the profile plot of means, we see that
the curvatures of the lines for the two Treatments
are not that different. Since these trends are
roughly parallel, it is no surprise the test of the
time X group interaction is not significant.
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Tests of between subjects effects in SPSS: Output

Levene's Test of Equality of Error Variances®

F dft df2 Sig

Tests of Between-Subjects Effects Oral Health Condition at 2210 1 23 161
Measure: Oral_health_condition Time Point1

Transformed Variable: Average Oral Health Condition at 657 1 23 426
Type Il Sum Time Point 2

Source of Squares df Mean Square F Sig Oral Health Condition at 000 1 23 995
Intercept 7637274 1 7637,274 | 382,508 ,000 Time Point 3

ttt 1114 1 1114 056 815 Oral Health Condition at 194 1 23 664
Error 459,226 23 19,966 Time Point 4

Tests the null hypothesis that the error variance of the dependent variable
is equal across groups
a. Design: Intercept + ttt
@ The Tests of Between-subjects Effects is a test of Within Subjects Design: ime

the main effect of the grouping variable on scores
on the repeated measure averaged over time. The
result presented here is simply a test of group
differences on the average of oral health condition
scores (i.e., those scores averaged over time for
each person).

@ The Levene's test results involve tests of
differences in variances at each time point, an
assumption of the univariate ANOVA (for the
Tests of Between-subjects effects). It turns out

@ The main effect of treatment group on the that the standard Levene's tests (and robust tests,
average oral health condition score across time is ba.sed on r.nedian, etc.) are non-significant for all
not statistically significant, F(1, 23)=.056, Times periods.

E:0'8:5.>0'05' He.nce,‘:ly:fe fail to :Jec': the null @ Nevertheless, in general, a potential violation of
ypothesis concerning ditferences between this assumption is less of an issue with roughly
treatments.

equivalent sample sizes (where largest n/smallest
n < 1.5).
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Levene's Test of Equality of Error Variances in SPSS

To get the output for Levene's Test of Equality of Error Variances:

Descriptive Statistics
S — [Treatment Mean Std. Deviation N
1 Repeated Measures: Options X Oral Health Conditionat _ Placebo 6,57 1938 14
]
Time Point 1 Aloe juics 645 2115 1
Estimated Marginal Means | Total 6,52 1,531 25
Factor(s) and Factor Interactions: Display Means for: Oral Health Conditionat  Placebo 8.14 3,008 14
(OVERALL) ime ‘ Time Point 2 Alo juice 845 1,916 1
it tttime ‘ Total 828 2,542 25
time t Oral Health Condition at Placebo 10,14 3,592 14
‘ Time Point 3 Aloe 72
ttime e juice 10,64 3,472 1"
‘ Total 10,36 3,475 25
[7] Compare main effects ‘ Oral Health Condition at Placebo 993 3,970 14
- Time Point 4 Aloe juice 10,08 3,754 1
| Total 10,00 3,797 25
Display
_ . Levene's Test of Equality of Error Variances®
7/ Descriptive statistics | Transformation matrix
["] Estimates of effect size L — F dnt a2 Sig
= B Oral Health Condition at 2,210 1 23 151
[”] Observed power "] Spreadvs. level plot Time Point1
[T] Parameter estimates ["] Residual plot Oral Health Condition at 657 1 23 426
[] SSCP matrices [7] Lack of fit Time Point 2
[”] Residual SSCP matrix || General estimable function Oral Health Condition at .0oo 1 3 895
= = Time Point 3
5
Significance level Confidence intervals are 95,0 % Oral Heaitn Condition at 194 1 3 664
= Time Point 4
Cmﬁnual Cancel Help Tests the null hypothesis that the error variance of the dependent variable

is equal across groups.
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