Chi-square & Non-parametric tests

E. Papageorgiou, G. Katsouleas

University of West Attica

June 19, 2024

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non-parametric tests

1 Chi square tests

- Goodness of fit test
- Kolmogorov–Smirnov test
- χ^2 test of independence

2 Non-parametric tests

- Sign Test
- Wilkoxon signed-rank Test
- Kruskal–Wallis Test

Chi square tests

표 문 문

• A test to determine if some population has a specified theoretical distribution.

 H_0 : The population has a specified theoretical distribution vs.

 H_1 : The population does NOT have the specified theoretical distribution.

- The test is based on how good is the obtained fit between the frequency of occurrence of observations in an observed sample and the expected frequencies obtained from the hypothesized distribution.
- For example, we consider the tossing of a die. We hypothesize that the die is honest.

$$H_0: f(x) = \frac{1}{6}, x = 1, \dots, 6,$$

 $H_1: \text{NOT } H_0.$

Assume that the die is tossed 120 times and each outcome is recorded as follows:

x	1	2	3	4	5	6
Observed	18	22	30	21	17	12
Expected	20	20	20	20	20	20

• Test at a level of significance of 5% whether the die is unbiased.

.∋...>

Goodness of fit test (2)

Observed frequencies: O_i

Compute the expected frequencies under the null hypothesis:

 $E_i = np_i$,

where

- n : sample size,
- p_i : probability of value x_i (i = 1, ..., k).

Compute the quantity

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim X_{k-1}^{2}, \text{ under } H_{0}.$$

• If $\chi^2 > X_{k-1;1-\alpha}$, then H_0 is rejected at α % significance level.

Use this test only if

- (a) No more than 1/5 of the expected values are < 5.
- (b) No expected value is < 1.

•
$$\chi^2 = \frac{(18-20)^2}{20} + \frac{(22-20)^2}{20} + \frac{(30-20)^2}{20} + \frac{(21-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(17-20)^2}{20} + \frac{(12-20)^2}{20} = 9.1$$

 $X_{k-1:1-\alpha} = X_{5:0.95} = 11.07 \longrightarrow \text{fail to reject H}_0.$

June 19, 2024

Image: A matrix and a matrix

3 × 4 3 ×

	outcome_die	frequencies
Ι	1,00	18,00
	2,00	22,00
]	3,00	30,00
	4,00	21,00
	5,00	17,00
	6,00	12,00

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Goodness of fit test: Example (SPSS), cont'd

outcome_die

	Observed N	Expected N	Residual
1,00	18	20,0	-2,0
2,00	22	20,0	2,0
3,00	30	20,0	10,0
4,00	21	20,0	1,0
5,00	17	20,0	-3,0
6,00	12	20,0	-8,0
Total	120		

Test Statistics

	outcome_die
Chi-Square	9,100 ^a
df	5
Asymp. Sig.	,105

a. 0 cells (0,0%) have expected frequencies less than 5. The minimum expected cell frequency is 20,0.

(a)

7 / 51

• When the X^2 test is applied to continuous variables, it is influenced by the grouping of the data. Hence, the X^2 goodness of fit test is preferred when we have categorical variables with finite state space. In SPSS, we cannot apply the X^2 goodness of fit test to continuous variables. In cases where continuous data is available, the Kolmogorov - Smirnov test is preferable. This test is based on the empirical cumulative distribution function.

• The X² test can be applied even when the parameters of the population distribution are unknown. In this case the degrees of freedom of the statistical test are reduced according to the number g of parameters under estimation.

The unknown parameters of the distribution are estimated by the observations and in this case the test statistic has the following form:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim X_{k-g-1}^{2}, \text{ under } H_{0}$$

and H_0 is rejected when $\chi^2 > X_{k-g-1;1-\alpha}$.

- Diastolic blood-pressure measurements were collected at home in a community-wide screening program of 14.736 adults ages 3069 in East Boston, Massachusetts, as part of a nationwide study to detect and treat hypertensive people.
- We would like to assume these measurements came from an underlying normal distribution because standard methods of statistical inference could then be applied on these data.

Group (mm Hg)	Observed frequency	Expected frequency	Group	Observed frequency	Expected frequency
<50 ≥50, <60 ≥60, <70 ≥70, <80	57 330 2132 4584	77.9 547.1 2126.7 4283.3	≥80, <90 ≥90, <100 ≥100, <110 ≥110 Total	4604 2119 659 <u>251</u> 14,736	4478.5 2431.1 684.1 <u>107.2</u> 14,736

Frequency distribution of mean diastolic blood pressure for adults 30–69 years old in a community-wide screening program in East Boston, Massachusetts

Image: A matrix and a matrix

- Diastolic blood-pressure measurements were collected at home in a community-wide screening program of 14.736 adults ages 3069 in East Boston, Massachusetts, as part of a nationwide study to detect and treat hypertensive people.
- We would like to assume these measurements came from an underlying normal distribution because standard methods of statistical inference could then be applied on these data.

Group (mm Hg)	Observed frequency	Expected frequency	Group	Observed frequency	Expected frequency
<50	57	77.9	≥80, <90	4604	4478.5
≥50, <60	330	547.1	≥90, <100	2119	2431.1
≥60, <70	2132	2126.7	≥100, <110	659	684.1
≥70, <80	4584	4283.3	≥110	251	107.2
			Total	14,736	14,736

Frequency distribution of mean diastolic blood pressure for adults 30–69 years old in a community-wide screening program in East Boston, Massachusetts

- The expected frequency within a group interval from a to b would then be given by:

14.736
$$\left[\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)\right],$$

where $\Phi(x) = P(X < x)$.

• The statistic $\chi^2 = \frac{(57-77.9)^2}{77.9} + \frac{(330-547.1)^2}{547.1} + \dots + \frac{(251-107.2)^2}{107.2} = 350.2 \sim \chi^2_{k-g-1}$ under H_0 , where k = 8 the number of groups and g = 2 the number of estimated parameters (internally specified model).

Goodness of fit test: Example (SPSS)

Edit	<u>View Data Tra</u>	nsform <u>A</u> nalyze	e Direc
	Group_midpoints	Frequency	v
1	45,00	57,00	
2	55,00	330,00	
3	65,00	2132,00	
4	75,00	4584,00	
5	85,00	4604,00	
6	95,00	2119,00	
7	105,00	659,00	
8	115,00	251,00	
9			
0			

< 4[™] > <

Goodness of fit test: Example (SPSS), cont'd

Edit	View	<u>D</u> ata	Transform	<u>A</u> nalyze	Direc
) [📮 🗠	7	

	Group_midpoints	Frequency	v
1	45,00	57,00	
2	55,00	330,00	
3	65,00	2132,00	
4	75,00	4584,00	
5	85,00	4604,00	
6	95,00	2119,00	
7	105,00	659,00	
8	115,00	251,00	
9]		
10			

Statistics

Group_midpoints				
N Valid	14736			
Missing	0			
Mean	81,0125			
Std. Deviation	12,12561			

Group_midpoints

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	45,00	57	.4	,4	,4
1	55,00	330	2,2	2,2	2,6
1	65,00	2132	14,5	14,5	17,1
1	75,00	4584	31,1	31,1	48,2
1	85,00	4604	31,2	31,2	79,4
1	95,00	2119	14,4	14,4	93,8
1	105,00	659	4,5	4,5	98,3
1	115,00	251	1,7	1,7	100,0
	Total	14736	100,0	100,0	

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non–parametric tests

11/51

Goodness of fit test: Example (SPSS), cont'd

tariable Compute Variable			×		
Target Variable: Exp_freq Type & Label Crope & Label Crope for the state of t	•	Numgtic Expression: 14739/CDF AORIAL(Croup_micpoints+5.60.68.12) C 02.69.121	DE NORMAL/Group_midpaints-5		
		<pre>x + x 2 + 4 x + x + 4 + 5 x + x + 2 + 2 x + 1 + 0 x + 0 + 0 x + 0 x + 0 + 0 x +</pre>	All Admentic CDF & Noncentral CDF Connection Counter (10 Add Time Data) Adminis Data Adminis Data Adminis Functions and Special Variables		
K (optional case selection condition)					
	OK Paste Reset Cancel Help				

<u>File</u> Edit	<u>V</u> iew <u>D</u> ata <u>T</u> ran	sform <u>A</u> nalyze	Direct <u>Marketing</u>	G					
😂 H	🖨 🛄		🖹 🕌 🗐						
1 : Group_midpoints 45,00									
	Group_midpoints	Frequency	Exp_freq						
1	45,00	57,00	72,72						
2	55,00	330,00	547,15						
3	65,00	2132,00	2126,68						
4	75,00	4584,00	4283,35						
5	85,00	4604,00	4478,52						
6	95,00	2119,00	2431,13						
7	105,00	659,00	684,09						
8	115,00	251,00	99,48						

 The discrepancy in the outer bins is due to the fact the original bins were not bounded by specific bounds (need to correct by hand).

▲ 西部

- ∢ ≣ →

Empirical cumulative distribution function.

Let x₁, x₂, ..., x_n be a random sample.

$$F_n(x) = \frac{1}{n} \cdot \sum_{i=1}^n I(x_i \leq x),$$

where $I(x_i \leq x)$ denotes the number of incidences of observations with $x_i \leq x$.

• If the sample is derived from the assumed distribution then the empirical cumulative distribution function should not differ significantly from the theoretical cdf.

It holds

$$P\left(\lim_{n\longrightarrow\infty}|F_n(x)-F(x)|=0\right)=1, \text{ for all } x.$$

The Kolmogorov - Smirnov test is based on the observed differences of F_n(x) between and the theoretical cdf F(x).

< □ > < 同 > < 回 > < 回 > < 回 >

K-S Test:

 $\begin{aligned} & H_0: F_n(x) = F(x), \text{ for all } x \in \mathbb{R} \text{ vs.} \\ & H_1: F_n(x) \neq F(x), \text{ for at least one } x. \end{aligned}$

Let

$$D_n^+ = \sup \{F_n(x) - F(x)\} D_n^- = \sup \{F(x) - F_n(x)\}.$$

The test statistic is

$$D = \sup \{ |F_n(x) - F(x)| \}$$
$$= \max \{ D_n^+, D_n^- \}$$

It is based on the maximum observed difference of the theoretical and the empirical cdfs.

June 19, 2024

< 4 ₽ > <

3 × 4 3 ×

Under H₀, it holds

$$P\left(\sqrt{n}D < d\right) = 1 - 2\sum_{k=1}^{\infty} (-1)^{k-1} e^{-2k^2/d^2}, 0 \le d \le 1.$$

This is true for any theoretical distribution assumed.

- H_0 is rejected at significance level α if $D > D_{n;\alpha}$, where $D_{n;\alpha}$ the value of the corresponding table.
- Kolmogorov Smirnov test requires the theoretical distribution under the null hypothesis to be fully determined.
- If the theoretical distribution is not known, its parameters are estimated by the data. But, in this case, there are no tables to give the critical values, so simulations are needed to identify them.

Kolmogorov-Smirnov test: Example

Example:

The following Table shows fasting blood glucose values (mg/100ml) for 36 nonobese, apparently healthy, adult males:

75	92	80	80	84	72
84	77	81	77	75	81
80	92	72	77	78	76
77	86	77	92	80	78
68	78	92	68	80	81
87	76	80	87	77	86

Test whether the observations given above come from the normal distribution.

< 47 ▶

⇒ →

Kolmogorov-Smirnov test: Example

Example:

The following Table shows fasting blood glucose values (mg/100ml) for 36 nonobese, apparently healthy, adult males:

75	92	80	80	84	72
84	77	81	77	75	81
80	92	72	77	78	76
77	86	77	92	80	78
68	78	92	68	80	81
87	76	80	87	77	86

Test whether the observations given above come from the normal distribution.

Calculation of Empirical cdf $F_S(x)$: x Frequency Cumulative x Frequency Cumulative

8 8

Calculation of Theoretical cdf $F_T(x)$:

Image: A matrix and a matrix

r	Frequency	Cumulative Frequency	$F_{S}(x)$	×	z = (x - 80)/6	$F_T(\mathbf{x})$
8	2	2	.0556	68	-2.00	.0228
2	2	4	.1111	72	-1.33	.0918
5	2	6	.1667	75	83	.2033
6	2	8	.2222	76	67	.2514
7	6	14	.3889	77	50	.3085
8	3	17	.4722	78	33	.3707
0	6	23	.6389	80	.00	.5000
1	3	26	.7222	81	.17	.5675
4	2	28	.7778	84	.67	.7486
6	2	30	.8333	86	1.00	.8413
7	2	32	.8889	87	1.17	.8790
2	4	36	1.0000	92	2.00	.9772
	36					

э

- ∢ ≣ →

Kolmogorov–Smirnov test: Example (cont'd)

Calculation of Empirical cdf $F_S(x)$:

Calculation of Theoretical cdf $F_T(x)$: Calculation of $|F_S(x) - F_T(x)|$:

	F	Cumulative	E (10)	×	z = (x - 80)/6	$F_T(\mathbf{x})$				
<u> </u>	Frequency	rrequency	rs(x)		- (×	$F_x(x)$	$F_T(x)$	$ F_s(x) - F_T(x) $
68	2	2	.0556	68	-2.00	.0228	68	.0556	.0228	.0328
72	2	4	.1111	72	-1.33	.0918	72	.1111	.0918	.0193
75	2	6	.1667	75	83	.2033	75	.1667	.2033	.0366
76	2	8	.2222	76	67	.2514	76	.2222	.2514	.0292
77	6	14	.3889	77	50	.3085	77	.3889	.3085	.0804
78	3	17	.4722	78	33	.3707	78	.4722	.3707	.1015
80	6	23	.6389	80	.00	.5000	80	.6389	.5000	.1389
81	3	26	.7222	81	.17	.5675	81	.7222	.5675	.1547
84	2	28	.7778	84	.67	.7486	84	.7778	.7486	.0292
86	2	30	.8333	86	1.00	.8413	86	.8333	.8413	.0080
87	2	32	.8889	87	1.17	.8790	87	.8889	.8790	.0099
92	4	36	1.0000	92	2.00	9772	92	1.0000	.9772	.0228
				52	2.00					

The test statistic D may be computed algebraically, or it may be determined graphically by actually measuring the largest vertical distance between the curves of F_S(x) and F_S(x) on a graph:

- Examination of the graphs reveals that D ~ 0.72 0.56 = 0.16.
- p-value. Since we have a two-sided test, and since 0.1547 < 0.174, we have p > 0.20.
- Therefore, we cannot reject H₀, i.e., the sample may have come from the specified distribution.

Kolmogorov-Smirnov test: Correct calculation of D statistic

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non-parametric tests

Kolmogorov–Smirnov test: Example (SPSS)

_2	iew L	ata j	ransesers.	Arrayos	Deed Basseng	Graph	3 9		A30-5	ina j	Mincol	1.10	пр		-	-	
4	台	10.	5	Reg	ports	•	١.	*	2		47				0		ABC
-		-		Dgt	scriptive Statistics		-				•			The second	-	-	-
201		_		Tab	jie a	•	⊢	_									
	VAR0	0001	VBF	Cog	mpare Means		<u>}</u>		var	v	31		var		var	v	ar 🛛
		75,00		Ger	neral Linear Model	•											
		\$4,00		Ger	neralized Linear No:	dels ►											
щ		\$0,00		Mo	ed Models												
Ц		77,00		Cor	rolate												
		68,00		Rec	pression												
Ц		\$7,00		Los	linear.												
		92,00		Net	and Mehandra												
4		11,00		0	cold.												
8		92,00		0.0	ang Sadada	- 1											
H		68,00		200	-												
4		/8,00		sq	ha .	,	_	_		_		_					
н		10,00		Nor	sparametric Tests			<u>O</u> re:	Sample.								
H		60,00		For	ecasting			Indep	endent	Sample	15						
4		22,60		gur	leviv			Rela	ed Sam	p1es							
		77.00		10,0	tiple Response	•		Lega	cy Dialo	23							
H		92.00		S 16 s	sing Value Analysis												
		\$2.00		10.0	tiple Imputation									somial			
		\$2.00		Con	mpjex Samples								- B	ins			-
H		77.00		Qui	ally Control								1 14	Sampl	e K-S		
H		77.00		100	COme								2	ndepe	ndent S	amples.	
m,		03.00					<u> </u>								a faire S	services	- E

ter One-Sample Kolmogorov-Smirnov Test									
Tel Valable List	Exact Options								
Test Distribution									
OK Paste Reset Cancel Help									

One-Sample Kolmogorov-Smirnov Test

		VAR00001
N		36
Normal Parameters ^{a,b}	Mean	80,0833
	Std. Deviation	6,19850
Most Extreme Differences	Absolute	,163
	Positive	,163
	Negative	-,095
Kolmogorov-Smirnov Z		,981
Asymp. Sig. (2-tailed)		,291

a. Test distribution is Normal.

Image: A matrix and a matrix

b. Calculated from data.

∃ ► < ∃ ►</p>

χ^2 test of independence

The chi-square test can also be used to test the hypothesis of independence of two variables of classification.

 H_0 : Variables A and B are independent vs.

H₁ : Variables A and B are dependent.

Consider the two-way Table:

	B1	B2		B_c
A 1	011	012		01c
A2	0 ₂₁	022		02c
			· .	
	•		•	
Ar	0 ₁	0r2		Orc

Note the following property:

 H_0 : The probability in the (*i*, *j*)-cell is equal to the product of the probabilities of being in the group-*i* of variable *A* and in group-*j* of variable *B*:

$$p_{ii} \neq p_i \cdot p_{i}$$
, for all i, j .

*H*₁: Not *H*₀; i.e., $p_{ij} \neq p_{i} \cdot p_{.j}$, for at least one pair (i, j).

Test statistic:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \sim X^{2}_{(r-1)(c-1)}, \text{ under } H_{0}.$$

Assumptions:

- 1. No more than 1/5 of the cells have expected values < 5.
- 2. No cell has an expected value < 1.

June 19, 2024

∃ ► < ∃ ►</p>

χ^2 test of independence: Example

Suppose we want to investigate the relationship between age at first birth and development of breast cancer.

In particular, we would like to know whether the effect of age at first birth follows a consistent trend, that is,

- (1) more protection for women whose age at first birth is < 20 than for women whose age at first birth is 25-29 and
- (2) higher risk for women whose age at first birth is \geq 35 than for women whose age at first birth is 30-34.

The data are presented in the following Table:

Case-control status	<20	20-24	25-29	30-34	≥35	Total
Case	320	1206	1011	463	220	3220
Control	1422	4432	2893	1092	406	10,245
Total	1742	5638	3904	1555	626	13,465

We want to test for a relationship between age at first birth and casecontrol status.

▲ 西型

χ^2 test of independence: Example

Suppose we want to investigate the relationship between age at first birth and development of breast cancer.

In particular, we would like to know whether the effect of age at first birth follows a consistent trend, that is,

- (1) more protection for women whose age at first birth is < 20 than for women whose age at first birth is 25-29 and
- (2) higher risk for women whose age at first birth is \geq 35 than for women whose age at first birth is 30-34.

The data are presented in the following Table:

		Age at first birth						
Case-control status	<20	20-24	25-29	30-34	≥35	Total		
Case	320	1206	1011	463	220	3220		
Control	1422	4432	2893	1092	406	10,245		
Total	1742	5638	3904	1555	626	13,465		

• We want to test for a relationship between age at first birth and casecontrol status.

Compute the expected table for these data:

		Age at list bitti						
Case-control status	<20	20-24	25-29	30-34	≥35	Total		
Case	416.6	1348.3	933.6	371.9	149.7	3220		
Control	1325.4	4289.7	2970.4	1183.1	476.3	10,245		
Total	1742	5638	3904	1555	626	13,465		

A ma at first birth

Test statistic:

$$\chi^{2} = \frac{(320 - 416.6)^{2}}{416.6} + \frac{(1206 - 1384.3)^{2}}{1384.3} + \dots + \frac{(406 - 476.3)^{2}}{476.3} = 130.3 > 18.47 = \chi^{2}_{4:0.001}.$$

H₀ is rejected.

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non–parametric tests

June

χ^2 test of independence: Example (SPSS)

Status	Age	Frequences
Case	<20	320
Case	20-24	1206
Case	25-29	1011
Case	30-34	463
Case	>=35	220
Control	<20	1422
Control	20-24	4432
Control	25-29	2893
Control	30-34	1092
Control	>=35	406

4 SPS	S Statistics	Data Editor						
irm	Analyze	Direct <u>M</u> arketing	Graph	s <u>U</u>	tilities	Add-or	ns <u>V</u>	Vindov
1	Rep	orts	*		*			
·	Des	criptive Statistics	- F	123	Frequ	encies		1 ~ 6
	Ta <u>b</u> l	es	۰.	۳d	Desc	iptives		
Age	Con	pare Means	- F	4	Explo	re		va
_	Gen	eral Linear Model	- F		Cross	tabs		
_	Gen	eralized Linear Moo	dels ▶		Ratio			<u> </u>
-	Mixe	d Models	•		0.00			<u> </u>
-	<u>C</u> orr	elate	- F		E-F F	1015		<u> </u>
	Reg	ression	- F	1	<u>Q</u> -Q P	lots		<u> </u>
	L <u>o</u> gi	inear		-			-	
	Neu	ral Net <u>w</u> orks	- F					

< □ > < 同 > < 回 > < 回 > < 回 >

χ^2 test of independence: Example (SPSS), cont'd

🕼 Crosstabs: Cell Display	, ×					
Counts	z-test					
Observed	Compare column proportions					
Expected	Adjust p-values (Bonferroni method)					
E Hide small counts						
Less than 5						
Percentages	Residuals					
Row	T Unstandardized					
Column	Standardized					
Total	Adjusted standardized					
Noninteger Weights						
Round cell counts	Round case weights					
O Truncate cell counts	O Truncate cell counts O Truncate case weights					
O No adjustments						
Continue Cancel Help						

🕼 Crosstabs: Statistics	×
√ C <u>h</u> i-square	Correlations
Nominal	Ordinal
Contingency coefficient	🔲 <u>G</u> amma
Phi and Cramer's V	🔲 Somers' d
🔲 Lambda	📃 Kendall's tau- <u>b</u>
Uncertainty coefficient	📃 Kendall's tau- <u>c</u>
Nominal by Interval	🔲 <u>K</u> appa
🔲 <u>E</u> ta	Risk
	McNemar
Cochran's and Mantel-Hae	enszel statistics
<u>T</u> est common odds ratio e	quals: 1
Continue	Help

3

χ^2 test of independence: Example (SPSS), cont'd

Case Processing Summary

		Cases				
	Valid		Missing		Total	
	N	Percent	N	Parcant	N	Parcant
Case-control status * Age at first birth	13465	100,0%	0	0,0%	13465	100,0%

Case-control status * Age at first birth Crosstabulation

			1	Age at first birth				
			<20	20-24	25-29	30-34	>=35	Total
Case-control status	Case	Count	320	1205	1011	463	220	3220
		Expected Count	416,6	1348,3	933,6	371,9	149,7	3220,0
		% within Case-control status	9,9%	37,5%	31,4%	14,4%	6,8%	100,0%
	Control	Count	1422	4432	2893	1092	406	10245
		Expected Count	1325,4	4289,7	2970,4	1183,1	476,3	10245,0
		% within Case-control status	13,9%	43,3%	28,2%	10,7%	4,0%	100.0%
Total		Count	1742	5638	3914	1555	626	13465
		Expected Count	1742,0	5638,0	3904,0	1555,0	626,0	13465,0
		% within Case-control status	12,9%	41,9%	29.0%	11,5%	4,6%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	130,338ª	4	,000
Likelihood Ratio	127,385	4	,000
Linear-by-Linear Association	129,002	1	,000
N of Valid Cases	13465		

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 149,70.

Case-control status

Image: A matrix and a matrix

Non-parametric tests

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non-parametric tests

표 ▶ 표

The Sign Test: Exact method (n < 20)

• Test the equality of the medians of two continuous dependent random variables X and Y (paired samples).

$$H_{0}: \delta_{X} - \delta_{Y} = 0 \text{ vs.}$$
$$H_{1}: \delta_{X} - \delta_{Y} \neq 0.$$

Equivalently, this test can be rephrased as

$$H_0: p = 0.5 \text{ vs.}$$

 $H_1: p \neq 0.5.$

where p = P(X > Y).

Test statistic: Let

$$R = \sum_{i=1}^{n} I(x_i > y_i).$$

• Under H_0 , the random variable R follows the binomial distribution with parameters (n, 0.5); i.e. $R \sim \mathscr{B}(n, 0.5)$. Important: In computations, reduce sample size to exclude ties (if any).

• p-values: Thus, the probability P(R > r) (i.e., the corresponding p-values) can be computed as follows:

$$p = \begin{cases} 2 \cdot \sum_{i=R}^{n} {n \choose i} \left(\frac{1}{2}\right)^{n}, & \text{if } R > \frac{n}{2}, \\ 2 \cdot \sum_{i=0}^{R} {n \choose i} \left(\frac{1}{2}\right)^{n}, & \text{if } R < \frac{n}{2}, \\ 1, & \text{if } R = \frac{n}{2}. \end{cases}$$

4 A & 4

ㅋㅋ ㅋㅋㅋ

The Sign Test: Exact method example

Example.

- Suppose we wish to compare two different types of eye drops (A, B) that are intended to prevent redness in people with hay fever.
- Drug A is randomly administered to one eye and drug B to the other eye.
- The redness is noted at baseline and after 10 minutes by an observer who is unaware of which drug has been administered to which eye.
- We find that for 15 people with an equal amount of redness in each eye at baseline, after 10 minutes the drug A eye is less red than the drug B eye for 2 people $(d_i = x_i y_i < 0)$; the drug B eye is less red than the drug A eye for 8 people $(d_i > 0)$; and the eyes are equally red for 5 people $(d_i = 0)$.
- Assess the statistical significance of the results.

Image: A matrix and a matrix

The Sign Test: Exact method example

Example.

- Suppose we wish to compare two different types of eye drops (A, B) that are intended to prevent redness in people with hay fever.
- Drug A is randomly administered to one eye and drug B to the other eye.
- The redness is noted at baseline and after 10 minutes by an observer who is unaware of which drug has been administered to which eye.
- We find that for 15 people with an equal amount of redness in each eye at baseline, after 10 minutes the drug A eye is less red than the drug B eye for 2 people (d_i = x_i y_i < 0); the drug B eye is less red than the drug A eye for 8 people (d_i > 0); and the eyes are equally red for 5 people (d_i = 0).
- Assess the statistical significance of the results.

Answer.

Because sample size *n* = 10 is small, the exact method must be used.

Because

$$R=8>rac{10}{2}=5,$$

we have

$$p = 2 \cdot \sum_{i=8}^{10} \binom{n}{i} \left(\frac{1}{2}\right)^{10} = 2 \cdot \left(P(C=8) + P(C=9) + P(C=10)\right) = 2 \cdot (0.0439 + 0.0098 + 0.0010)$$
$$= 2 \cdot 0.0547 = 0.109$$

• This is not statistically significant. Thus, we accept H₀, that the two types of eye drops are equally effective in reducing redness in people with hay fever.

(日) (四) (日) (日) (日)

The Sign Test: Exact method example SPSS

	VAR00001	VAR00002	
1	1,00	1,00	
2	1,00	1,00	
3	1,00	,00	
4	1,00	,00	
5	1,00	,00	
6	1,00	,00	
7	1,00	,00	
8	1,00	,00	
9	1,00	,00	
10	1,00	,00	
11	,00	1,00	
12	,00	1,00	
13	,00	1,00	
14	,00	1,00	
15	,00	1,00	

	<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	; !	Utiliti	es Add- <u>o</u>	ins j	<u>M</u> indow I
	Rep	orts	•		*			
	D <u>e</u> s	criptive Statistics						
	Tab	les						
0	Con	npare Means		var		var		var
_	Gen	eral Linear Model						
_	Gen	eralized Linear Mod	dels ▶					
_	Mi <u>x</u> e	d Models					_	
_	<u>C</u> orr	relate					_	
-	<u>R</u> eg	ression					_	
	L <u>o</u> gi	linear						
	Neu	iral Net <u>w</u> orks						
	Clas	ssify					-	
	Dim	ension Reduction						
	Scal	le						
	Non	parametric Tests	•	1	On	e Sample		
_	Fore	ecasting	•		Ind	ependent :	Sample	es
_	Surv	ival	•		Re	lated Sam	nles	
	Mult	iple Response	•			acc Dialor	10	
-	💋 Miss	sing Value Analysis.			Fei		10	

→

3

The Sign Test: Exact method example SPSS (cont'd)

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non-parametric tests

June 19, 2024

Sian Test

Asymptotic significances are displayed. The significance level is .05.

(日) (同) (三) (三)

¹Exact significance is displayed for this test.

29 / 51

hypothesis.

The Sign Test: Normal theory method

Test the equality of the medians of two continuous dependent random variables X and Y (paired samples).

$$H_0: \delta_X - \delta_Y = 0 \text{ vs.}$$
$$H_1: \delta_X - \delta_Y \neq 0.$$

Equivalently, this test can be rephrased as

$$H_0: p = 0.5 \text{ vs.}$$

 $H_1: p \neq 0.5.$

 $R=\sum_{i=1}^{n}I(x_i>y_i).$

where p = P(X > Y). • Let

• Under
$$H_0$$
, the random variable R follows the binomial distribution with parameters $(n, 0.5)$; i.e. $R \sim \mathscr{B}(n, 0.5)$.
Thus, $E(R) = \frac{n}{2}$ and $Var(R) = \frac{n}{4}$ and the probability $P(R > r)$ (i.e., the corresponding *p*-values) can computed.

• If *n* is large then (n > 20), under H_0 , $R \sim \mathcal{N}\left(\frac{n}{2}, \frac{n}{4}\right)$.

In this case, the test statistic is

$$\frac{R-\frac{n}{2}-\frac{1}{2}}{\sqrt{\frac{n}{4}}}\sim \mathcal{N}(0,1).$$

• p-value. Denoting $\Phi(z) = P(Z < z)$, we have

$$p = \begin{cases} 2 \cdot \left(1 - \Phi\left(\frac{R - n/2 - 1/2}{\sqrt{n/4}}\right)\right), \text{ if } R > n/2, \\ 2 \cdot \Phi\left(\frac{R - n/2 + 1/2}{\sqrt{n/4}}\right), \text{ if } R < n/2, \\ 1, \text{ if } R = n/2. \end{cases}$$

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non–parametric tests

э

30 / 51

be

The Sign Test: Normal theory method example

Example.

- Suppose we want to compare the effectiveness of two ointments (A, B) in reducing excessive redness in people who cannot otherwise be exposed to sunlight.
- Ointment A is randomly applied to either the left or right arm, and ointment B is applied to the corresponding area on the other arm. The person is then exposed to 1 hour of sunlight, and the two arms are compared for degrees of redness.
- Suppose only the following qualitative assessments can be made:
 - 1. Arm A is not as red as arm B.
 - 2. Arm B is not as red as arm A.
 - 3. Both arms are equally red.
- Of 45 people tested with the condition, 22 are better off on arm A, 18 are better off on arm B, and 5 are equally well off on both arms.
- Can we decide whether this evidence is enough to conclude that ointment A is better than ointment B?

Answer.

- There are 40 untied pairs and R = 18 < n/2 = 20.
- Using the normal distribution, for $\alpha = 0.05$, the critical values are given by

$$c_2 = \frac{n}{2} + \frac{1}{2} + z_{\alpha/2}\sqrt{\frac{n}{4}} = \frac{40}{2} + \frac{1}{2} + 1.96 \cdot 3.162 = 26.7$$

and

$$c_1 = \frac{n}{2} - \frac{1}{2} - z_{\alpha/2} \sqrt{\frac{n}{4}} = \frac{40}{2} - \frac{1}{2} - 1.96 \cdot 3.162 = 13.3.$$

Because 13.3 ≤ R = 18 ≤ 26.7, H₀ is accepted using a two-sided test with α = 0.05 and we conclude the ointments do not significantly differ in effectiveness.

• Also, we have
$$p = 2 \cdot \Phi\left(\frac{18-20+\frac{1}{2}}{\sqrt{40/4}}\right) = 2 \cdot \Phi(-0.47) = 2 \cdot 0.316 = 0.635.$$

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non-parametric tests

 $H_{\mathbf{0}}: \delta_X - \delta_Y = \mathbf{0} \text{ vs.}$ $H_{\mathbf{1}}: \delta_X - \delta_Y \neq \mathbf{0}.$

Wilcoxon signed-rank test step by step:

1 Compute the ranks of the absolute differences $|x_i - y_i|$, ignoring cases where $x_i - y_i = 0$. **2** Compute the sum of the ranks S_p that correspond to positive differences. **3** If the sample size *n* is large, then

$$Z = \frac{\left|S_{p} - \frac{n(n+1)}{4}\right| - \frac{1}{2}}{\sqrt{\frac{n(n+1)(2n+1)}{24} - \sum_{i=1}^{L} \frac{t_{i}^{3} - t_{i}}{48}}} \sim \mathcal{N}(0, 1),$$

under Ho.

Here, L denotes the number of cases for which we have equal observations and t_i the number of observations with the same rank.

3 K K 3 K

Image: A matrix and a matrix

Example.

- Previously, we assumed that the only possible assessment was that the degree of sunburn with ointment A was either better or worse than that with ointment B.
- Suppose instead that the degree of burn can be quantified on a 10-point scale, with 10 being the worst burn and 1 being no burn at all.
- We can now compute q_i = x_i y_i, where x_i = degree of burn for ointment A and y_i = degree of burn for ointment B. If d_i is positive, then ointment, B is doing better than ointment A; if d_i is negative, then ointment A is doing better than ointment B.
- Difference in degree of redness between ointment A and ointment B arms after 10 minutes of exposure to sunlight:

	Nega	Negative		tive
d;	d _i	f,	d	f _i
10	-10	0	10	0
9	-9	0	9	0
8	-8	1	8	0
7	-7	з	7	0
6	-6	2	6	0
5	-5	2	5	0
4	-4	1	4	0
з	-3	5	3	2
2	-2	4	2	6
1	-1	_4	1	10
		22		18

Test whether the ointments are equally effective.

Wilkoxon signed-rank Test: Example ranks computation

	Negative		Positive		Number of people with same	Paper of	A
d _i	d _i	f_i	d_i	f,	value	ranks	rank
10	-10	0	10	0		_	_
9	-9	0	9	0	0	_	_
8	-8	1	8	0	1	40	40.0
7	-7	3	7	0	3	37-39	38.0
6	-6	2	6	0	2	35-36	35.5
5	-5	2	5	0	2	33–34	33.5
4	-4	1	4	0	1	32	32.0
з	-3	5	3	2	7	25-31	28.0
2	-2	4	2	6	10	15-24	19.5
1	-1	_4	1	10	14	1-14	7.5
		22		18			

0 0 5

• Arrange the differences *d*; in order of absolute value.

• Arrange the differences a_i in order of absolute value.

• Count the number of differences with the same absolute value.

Ignore the observations where d_i = 0, and rank the remaining observations from 1 for the observation with the lowest absolute value, up to n for the observation with the highest absolute value.

• If there is a group of several observations with the same absolute value, then find the lowest rank in the range = 1 + R and the highest rank in the range = G + R, where R = the highest rank used prior to considering this group and G = the number of differences in the range of ranks for the group. Assign the average rank = (lowest rank in the range + highest rank in the range)/2 as the rank for each difference in the group.

Wilkoxon signed-rank Test: Example ranks computation (SPSS)

< 4³ ►

Wilkoxon signed-rank Test: Difference frequences computation (SPSS)

e	-1,00)	
	VAR00001	VAR00002	difference
	5,00	6,00	-1,00
	6,00	7,00	-1,00
	4,00	5,00	-1,00
	3,00	4,00	-1,00
	5,00	7,00	-2,00
	6,00	8,00	-2,00
	1,00	4,00	-3,00
	1,00	4,00	-3,00
	3,00	6,00	-3,00
	5,00	9,00	-4,00
	3,00	8,00	-5,00
	4,00	9,00	-5,00
	4,00	10,00	-6,00
	2,00	8,00	-6,00
	2,00	9,00	-7,00
	1,00	8,00	-7,00
	3,00	10,00	-7,00
	,00	8,00	-8,00
	3,00	6,00	-3,00
	4,00	7,00	-3,00
	5.00	7.00	2.00

Statistics

difference						
	Ν	Valid	40			
		Missing	0			

difference

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	-8,00	1	2,5	2,5	2,5
	-7,00	3	7,5	7,5	10,0
	-6,00	2	5,0	5,0	15,0
	-5,00	2	5,0	5,0	20,0
	-4,00	1	2,5	2,5	22,5
	-3,00	5	12,5	12,5	35,0
	-2,00	4	10,0	10,0	45,0
	-1,00	4	10,0	10,0	55,0
	1,00	10	25,0	25,0	80,0
	2,00	6	15,0	15,0	95,0
	3,00	2	5,0	5,0	100,0
	Total	40	100,0	100,0	

∃ ▶ 3

Wilkoxon signed-rank Test: Example ranks (SPSS)

VAR00001	VAR00002	difference	abs_difference	Rabs_dif
5,00	6,00	-1,00	1,00	7,500
6,00	7,00	-1,00	1,00	7,500
4,00	5,00	-1,00	1,00	7,500
3,00	4,00	-1,00	1,00	7,500
5,00	7,00	-2,00	2,00	19,500
6,00	8,00	-2,00	2,00	19,500
1,00	4,00	-3,00	3,00	28,000
1,00	4,00	-3,00	3,00	28,000
3,00	6,00	-3,00	3,00	28,000
5,00	9,00	-4,00	4,00	32,000
3,00	8,00	-5,00	5,00	33,500
4,00	9,00	-5,00	5,00	33,500
4,00	10,00	-6,00	6,00	35,500
2,00	8,00	-6,00	6,00	35,500
2,00	9,00	-7,00	7,00	38,000
1,00	8,00	-7,00	7,00	38,000
3,00	10,00	-7,00	7,00	38,000
,00	8,00	-8,00	8,00	40,000
3,00	6,00	-3,00	3,00	28,000
4.00	7.00	-3.00	3,00	28.000

Wilkoxon signed-rank Test: Example (rank sum)

Because the number of nonzero differences (22 + 18 = 40) ≥ 16, the normal approximation method can be used. Compute the rank sum S_p for the people with positive d_i—that is, where ointment B performs better than ointment A, as follows:

 $S_p = 10 \cdot 7.5 + 6 \cdot 19.5 + 2 \cdot 28.0 = 75 + 117 + 56 = 248$

UB UB UB CS CS CS UB MAD UB UB CS UB UB<		VA830001	V.A.800002	difference	aba_difference	Rabo_df	6007_3
Id Id<	-14	1,00	\$,00	-7,00	7,00	38,000	Nat Selected
A D3 D4 D4 D5 D4 D4 <thd4< th=""> D4 <thd4< th=""> D4 <thd4< th=""> D4</thd4<></thd4<></thd4<>		3,00	90,00	.7,00	7,00	38,000	Nat Selected
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-10-	,00	8,90	-8,00	\$,00	43,000	Net Selected
Ali 10 1.0 1.0 1.0 1.0 1.0 Market 1 10 20 2.0 2.0 1.0 No 1.0 No 1.0 No 1.0 No	-10-	3,00	6,00	-3,00	3,00	25,000	Nat Selected
1 10/ 10/ 2.0/ 2.0/ 10/ Not dent 10/ 10/ 2.0/ 2.0/ 10.0/ Not dent 20 10/ 3.0/ 0.0/ 0.0/ 10.0/ Not dent 2 10/ 10/ 0.0/ 0.0/ 0.0/ 10.0/ 10.0/ 2 2.0/ 10/ 10/ 0.0/ 10.0/ 10.0/ 10.0/ 2 2.0/ 10/ 10/ 10.0/ <		4,00	7,80	-3,00	3,00	28,000	Nat Selected
J J3 J3 </td <td>-11-</td> <td>5,00</td> <td>7,80</td> <td>-2,00</td> <td>2,00</td> <td>19,500</td> <td>Not Selected</td>	-11-	5,00	7,80	-2,00	2,00	19,500	Not Selected
D L00 3/4 L00 L00 L00 E38 Edent 2 L00 L00 L00 L00 L00 Edent Margin 2 L00	-20-	3,00	5,00	-2,00	2,00	19,500	Nat Selected
J J.M J.M L.M L.M L.M S.M S.M 2 2.0 1.0 1.0 1.0 1.0 5.0 5.0 3 2.0 1.0 1.0 1.0 1.0 5.0 5.0 3 2.0 1.0 1.0 1.0 1.0 5.0 5.0 2 0.0 1.0 1.0 1.0 1.0 5.0 5.0 2 0.0 1.0 1.0 1.0 1.0 5.0 5.0 3 0.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 3 0.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 3 0.0 1.0 1.0 1.0 1.0 1.0 5.0 5.0 4 1.0 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	23	1,00	.80	1,00	1,00	7,500	Selected
31 2.00 1.00 1.00 1.00 7.30 Belen 34 2.00 1.00 1.00 1.00 7.30 Belen 27 8.00 8.00 1.00 1.00 7.30 Belen 36 8.00 7.30 1.00 1.00 7.30 Belen 39 8.00 7.30 1.00 1.00 7.30 Belen 39 8.00 7.30 1.00 1.00 7.30 Belen 30 7.30 1.00 1.00 7.30 Belen 3.00 3.00 3.00 3.00 3.00 Second 3.00 3.00 Second 3.00 3.00 Second	24	3,00	2,80	1,00	1,00	7,500	Selected
M 2,00 1,00 1,00 1,00 7,500 Selection 27 6,00 8,00 1,00 1,00 1,00 5,00 Belevin 28 6,00 7,90 1,00 1,00 1,00 5,00 Selection 29 6,00 7,90 1,00 1,00 1,500 Selection 39 6,00 7,90 6,00 1,00 1,500 Selection	25	2,00	1,90	1,00	1,00	7,500	Selected
27 8.00 8.00 1.00 1.00 7.00 Edited 28 8.00 1.00 1.00 1.00 7.00 Edited 29 8.00 1.00 1.00 1.00 7.00 Edited 29 8.00 1.00 1.00 1.00 7.00 Edited 20 7.00 6.00 1.00 1.00 7.30 Edited	26	2,00	1,00	1,00	1,00	7,500	Selected
28 5.00 7.00 1.00 1.00 7.300 Editori 29 5.00 7.00 1.00 1.00 7.300 Selection 39 5.00 7.00 1.00 1.00 7.300 Selection 30 7.00 6.00 1.00 1.00 7.300 Selection	27	9,00	8,00	1,00	1,00	7,500	Selected
29 E.00 7,00 1,00 1,00 7,500 Selects 70 7,00 6,00 1,00 1,00 7,500 Selects	28	\$,00	7,80	1,00	1,00	7,500	Selected
10 7.00 6.00 1.00 1.00 7.500 Selects	29	\$,00	7,00	1,00	1,00	7,500	Selected
	30	7,00	6,00	1,00	1,00	7,500	Selected

E. Papageorgiou, G. Katsouleas (UniWA

taistics	×
Percentile Values Cut points for: 10 equal groups Add Change	Central Tendency Mean Median Mode Sum
Dispersion Stateward Variance Ragge SEmean Continue Continue Cancel	Vajues are group midpoints Distribution Skeyness Kurtosis Help

Statistics

Rank of abs_difference

Chi-square & Non-parametric tests

Ν	Valid	18
	Missing	0
Varia	nce	58,536
Sum		248,000

Rank of abs difference

Wilkoxon signed-rank Test: Example (rank sum)

- S_p = 248.
- The expected rank sum is given by:

$$E(S_p) = 40(41)/4 = 410$$

The variance of the rank sum corrected for ties is given by:

$$Var(S_p) = \frac{40(41)(81)}{24} - \frac{(14^2 - 14) + (10^3 - 10) + (7^3 - 7) + (1^3 - 1) + (2^3 - 2) + (2^3 - 2) + (3^3 - 3) + (1^3 - 2)}{48}$$

= 5449.75 \Rightarrow sd(S_p) = $\sqrt{Var(S_p)} = \sqrt{5449.75} = 73.82.$

Test statistic:

$$Z = \frac{\left|S_{p} - \frac{n(n+1)}{4}\right| - \frac{1}{2}}{\sqrt{\frac{n(n+1)(2n+1)}{24} - \sum_{i=1}^{L} \frac{t_{i}^{3} - t_{i}}{48}}} = \frac{|248 - 410| - \frac{1}{2}}{73.82} = 2.19.$$

p-value:

 $p = 2 \cdot [1 - \Phi(2.19)] = 2 \cdot (1 - 0.9857) = 0.029$

- We therefore can conclude that there is a significant difference between ointments, with ointment A doing better than ointment B because the observed rank sum (248) is smaller than the expected rank sum (410).
- This conclusion differs from the conclusion based on the sign test, where no significant difference between ointments was found. This result indicates that when the information is available, it is worthwhile to consider both magnitude and direction of the difference between treatments, as the signed-rank test does, rather than just the direction of the difference, as the sign test does.

Wilkoxon signed-rank Test: Example (rank sum)

	VA830001	VA800002	difference	aba_difference	Rabo_df	thm_5
	1,00	6,90	-7,00	7,00	38,000	Nat Selected
-+	3,00	10,80	-7,00	7,00	38,000	Nat Selected
-11-	,00	8,80	-8,00	8,00	43,000	Nat Selected
-10-	3,00	6,00	-3,00	3,00	25,000	Not Selected
	4,00	7,80	-3,00	3,00	25,000	Nat Selected
	5,00	7,80	-2,00	2,00	19,500	Nat Selected
-32	3,00	5,80	-2,00	2,00	19,500	Nat Selected
23	1,00	.00	1,00	1,00	7,500	Selected
24	3,00	2,00	1,00	1,00	7,500	Selected
25	2,00	1,80	1,00	1,00	7,500	Selected
26	2,00	1,80	1,00	1,00	7,500	Selected
27	9,00	8,90	1,00	1,00	7,500	Selected
28	5,00	7,80	1,00	1,00	7,500	Selected
3	1,00	7,80	1,00	1,00	7,500	Selected
30	7,00	6,00	1,00	1,00	7,500	Selected
31	6,00	3,80	1,00	1,00	7,500	Selected

Statistics

Rank of abs_difference

Ν	Valid	18
	Missing	0
Varia	nce	58,536
Sum		248,000

Rank of abs_difference

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	7,500	10	55,6	55,6	55,6
1	19,500	6	33,3	33,3	88,9
1	28,000	2	11,1	11,1	100,0
	Total	18	100,0	100,0	

< ロト < 同ト < ヨト < ヨト

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non–parametric tests

40 / 51

Wilkoxon signed-rank Test (SPSS)

Hypothesis Test Summary

	Null Hypothesis $ ilde{\Rightarrow}$	Test	\bigcirc	Sig. ⇔	Decision
1	The median of differences between VAR00001 and VAR00002 equals 0.	Related- Samples Wilcoxon Signed Rank Test		,028	Reject the null hypothesis.

Asymptotic significances are displayed. The significance level is ,05

< ロト < 同ト < ヨト < ヨト

Kruskal–Wallis Test

Nonparametric alternative to the one-way ANOVA. In some instances we want to compare means among more than two samples, but either the underlying distribution is far from being normal or we have ordinal data.

$$H_0: \delta_{X_1} = \delta_{X_2} = \dots = \delta_{X_k} \text{ vs.}$$
$$H_1: \text{ Not } H_0.$$

Kruskal–Wallis Test test step by step:

Compute the ranks of the observations assuming the k samples as a single sample. Compute the sums of the ranks R_i , the number of observations n_i in each group and the quantity $T_i = t_i^3 - t_i$ in cases where there are observations with the same rank where t_i is the number of observations with the same rank.

3 If all sample sizes n_i (i = 1, ..., k) are large (i.e., $n_i > 5$), then

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1) \sim X_{k-1}^2,$$

under Ho.

In the case that they are observations with the same rank, the quantity above is corrected as follows:

$$H' = \frac{H}{1 - \sum_{i=1}^{L} \frac{t_i^2(t_i - 1)}{N^2(N - 1)}}$$

where L denotes the number of cases for which we have equal observations and t_i the number of observations with the same rank.

Remark. This test procedure should be used only if minimum n_i ≥ 5 (i.e., if the smallest sample size for an individual group is at least 5). Else, combine samples.

Example.

- A study was conducted to compare the anti-inflammatory effects of four different drugs in albino rabbits after administration of arachidonic acid.
- Six rabbits were studied in each group. Different rabbits were used in each of the four groups. For each animal in a group, one of the four drugs was administered to one eye and a saline solution was administered to the other eye.
- Ten minutes later arachidonic acid (sodium arachidonate) was administered to both eyes. Both eyes were evaluated every 15 minutes thereafter for lid closure.
- At each assessment the lids of both eyes were examined and a lid-closure score from 0 to 3 was determined, where 0 = eye completely open, 3 = eye completely closed, and 1, 2 = intermediate states.
- The measure of effectiveness (x) is the change in lid-closure score (from baseline to follow-up) in the treated eye minus the change in lid-closure score in the saline eye.
- A high value for x is indicative of an effective drug. The results, after 15 minutes of follow-up, are presented in the following Table:

D-1-1-1	Indomethacin		Asp	Aspirin		Piroxicam		BW755C	
Raddit Number	Score ^a	Rank	Score	Rank	Score	Rank	Score	Rank	
1	+ 2	13.5	+ 1	9.0	+ 3	20.0	+ 1	9.0	
2	+ 3	20.0	+ 3	20.0	+ 1	9.0	0	4.0	
3	+ 3	20.0	+ 1	9.0	+ 2	13.5	0	4.0	
4	+ 3	20.0	+ 2	13.5	+ 1	9.0	0	4.0	
5	+ 3	20.0	+ 2	13.5	+ 3	20.0	0	4.0	
6	0	4.0	+ 3	20.0	+ 3	20.0	- 1	1.0	

°(Lid-closure score at baseline − lid-closure score at 15 minutes)_{drug eye} − (lid-closure score at baseline − lid-closure score at 15 minutes)_{antee ave}

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Kruskal–Wallis Test: Example (cont'd)

• Pool the observations over all samples, thus constructing a combined sample of size $N = \sum_{i=1}^{k} n_i$.

Assign ranks to the individual observations, using the average rank in the case of tied observations

Lid-closure score	Frequency	Range of ranks	Average rank
-1	1	1	1.0
0	5	2-6	4.0
+1	5	7-11	9.0
+2	4	12-15	13.5
+3	9	16-24	20.0

Compute the rank sum R_i for each of the k samples:

P. 1.1.11	Indome	Indomethacin		Aspirin		Piroxicam		BW755C	
Rabbit Number	Score ^a	Rank	Score	Rank	Score	Rank	Score	Rank	
1	+ 2	13.5	+ 1	9.0	+ 3	20.0	+ 1	9.0	
2	+ 3	20.0	+ 3	20.0	+ 1	9.0	0	4.0	
3	+ 3	20.0	+ 1	9.0	+ 2	13.5	0	4.0	
4	+ 3	20.0	+ 2	13.5	+ 1	9.0	0	4.0	
5	+ 3	20.0	+ 2	13.5	+ 3	20.0	0	4.0	
6	0	4.0	+ 3	20.0	+ 3	20.0	- 1	1.0	

"(Lid-closure score at baseline – lid-closure score at 15 minutes)_{dug eye} – (lid-closure score at baseline – lid-closure score at 15 minutes)_{atine we}

 $R_1 = 13.5 + 4 \cdot 20.0 + 4.0 = 97.5$ $R_2 = 2 \cdot 9.0 + 2 \cdot 20.0 + 2 \cdot 13.5 = 85.0$ $R_3 = 2 \cdot 9.0 + 4 \cdot 20.0 + 1 \cdot 13.5 = 91.5$ $R_4 = 4 \cdot 4.0 + 9.0 + 1.0 = 26.0$

Kruskal–Wallis Test: Example (cont'd)

Compute the rank sum R_i for each of the k samples:

$$R_1 = 13.5 + 4 \cdot 20.0 + 4.0 = 97.5$$

$$R_2 = 2 \cdot 9.0 + 2 \cdot 20.0 + 2 \cdot 13.5 = 85.0$$

$$R_3 = 2 \cdot 9.0 + 4 \cdot 20.0 + 1 \cdot 13.5 = 91.5$$

$$R_4 = 4 \cdot 4.0 + 9.0 + 1.0 = 26.0$$

Because there are ties, compute the Kruskal-Wallis test statistic H as follows:

$$H = \frac{\frac{12}{24 \times 25} \times \left(\frac{97.5^2}{6} + \frac{85.0^2}{6} + \frac{91.5^2}{6} + \frac{26.0^2}{6}\right) - 3(25)}{1 - \frac{(5^3 - 5) + (5^3 - 5) + (4^3 - 4) + (9^3 - 9)}{24^3 - 24}}$$
$$= \frac{0.020 \times 4296.583 - 75}{1 - \frac{1020}{13,800}} = \frac{10.932}{0.926} = 11.804$$

• To assess statistical significance, compare H with a chi-square distribution with k - 1 = 4 - 1 = 3 df.

- Since $\chi^2_{3;0.01} = 11.34$, $\chi^2_{3;0.005} = 12.84$. Because 11.34 < H < 12.84, it follows that 0.005 .
- Thus, there is a significant difference in the anti-inflammatory potency of the four drugs.

Comparison of Specific Groups Under the Kruskal-Wallis Test

Dunn procedure. To compare the *i*-th and *j*-th treatment groups under the Kruskal-Wallis test, use the following test statistic:

$$z = \frac{\overline{R}_i - \overline{R}_j}{\sqrt{\frac{N(N+1)}{12} \cdot \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}} \sim \mathcal{N}(0, 1)$$

where \overline{R}_i denotes the average rank in the *i*-th sample.

For a two-sided level α test, compare test statistic:

If $|z| > z_{\alpha^*}$, then reject H_0 , If $|z| < z_{\alpha^*}$, then reject H_0 ,

where

$$\alpha^* = \frac{\alpha}{k(k-1)}.$$

Comparison of Specific Groups Under the Kruskal-Wallis Test

Application. For the previous Example, we have

$$\overline{R}_1 = \frac{97.5}{6} = 16.25, \ \overline{R}_2 = \frac{85.0}{6} = 14.17,$$

 $\overline{R}_3 = \frac{91.5}{6} = 15.25, \ \overline{R}_4 = \frac{26.0}{6} = 4.33.$

Therefore, the following test statistics are used to compare each pair of groups:

• Groups 1 and 2: $z_{12} = \frac{16.25 - 14.17}{\sqrt{\frac{24.25}{12} \cdot \left(\frac{1}{6} + \frac{1}{6}\right)}} = \frac{2.08}{4.082} = 0.51,$ • Groups 1 and 3: $z_{13} = \frac{16.25 - 15.25}{4.082} = \frac{1.02}{4.082} = 0.24,$ • Groups 1 and 4: $z_{14} = \frac{16.25 - 4.33}{4.082} = \frac{11.92}{4.082} = 2.92,$ • Groups 2 and 3: $z_{23} = \frac{14.17 - 15.25}{4.082} = \frac{-1.08}{4.082} = -0.27,$ • Groups 2 and 4: $z_{24} = \frac{14.17 - 4.33}{4.082} = \frac{9.83}{4.082} = 2.41,$ • Groups 3 and 4: $z_{34} = \frac{15.25 - 4.33}{4.082} = \frac{10.92}{4.082} = 2.67.$

• The critical value for $\alpha = 0.05$ is $\alpha^* = \frac{0.05}{4\cdot 3} = 0.0042$, whereby $z_{\alpha^*} = 2.635$.

Because z₁₄ and z₃₄ are greater than the critical value, it follows that indomethacin (group 1) and piroxicam (group 3) have significantly better anti-inflammatory properties than BW755C (group 4), whereas the other treatment comparisons are not statistically significant.

Kruskal-Wallis Test (SPSS)

1.

	score	group	7
1	2	Indomethacin	
2	3	Indomethacin	
3	3	Indomethacin	
4	3	Indomethacin	
5	3	Indomethacin	
6	0	Indomethacin	
7	1	Aspirin	
8	3	Aspirin	
9	1	Aspirin	
10	2	Aspirin	
11	2	Aspirin	
12	3	Aspirin	
13	3	Piroxicam	
14	1	Piroxicam	
15	2	Piroxicam	
16	1	Piroxicam	
17	3	Piroxicam	
18	3	Piroxicam	
19	1	BW755C	
20	0	BW755C	

m	<u>A</u> nalyze	Direct <u>M</u> arketing	Graphs	s <u>U</u> tiliti	es Add-	ons	Window	Help
~	Rep	orts	*	*				
	D <u>e</u> s	criptive Statistics						
	Ta <u>b</u>	les						
oup	Con	npare Means		var	var		var	
neti	<u>G</u> en	eral Linear Model						
neti	Gen	eralized Linear Mo	dels 🕨					
neti	Mi <u>x</u> e	d Models				_		
neti	<u>C</u> on	relate				_		
neti	<u>R</u> eg	ression	*			-		+
As	L <u>o</u> g	linear						+
As	Neu	iral Net <u>w</u> orks	*			-		+
As	Clas	ssify						-
As	Dim	ension Reduction						
As	Sca	le						
As	<u>N</u> on	parametric Tests	- F	A On	e Sample.			
iro	Fore	ecasting	•		iependent	Samp	les	
iros	Surv	ival	•	Re	lated Sam	ples		-
uo)	Mult	iple Response	•	Le	gacy Dialo	as		
iro	🕵 Miss	sing Value Anal <u>y</u> sis		=-	5,	<u></u>		-
_		inte Imputation				_		-

→ < ∃ →</p>

3

Kruskal-Wallis Test (SPSS), cont'd

< ロト < 同ト < ヨト < ヨト

Kruskal-Wallis Test (SPSS), cont'd

2,00-1,00indonethacin Aspin Process BW755C

Independent-Samples Kruskal-Wallis Test

Total N	24
Test Statistic	10,510
Degrees of Freedom	3
Asymptotic Sig. (2-sided test)	,015

1. The test statistic is adjusted for ties.

	Hypothesis Test Summary							
	Null Hypothesis $ ilde{=}$	Test	Sig.⇔	Decision				
1	The distribution of Lid Closure is the same across categories of Group.	Independent- Samples Kruskal- Wallis Test	,015	Reject the null hypothesis.				

Asymptotic significances are displayed. The significance level is ,05.

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non-parametric tests

Kruskal-Wallis Test (SPSS), cont'd

۷.				
	score	group	Rscore	var
1	2	Indomethacin	13,500	
2	3	Indomethacin	20,000	
3	3	Indomethacin	20,000	
4	3	Indomethacin	20,000	
5	3	Indomethacin	20,000	
6	0	Indomethacin	3,000	
7	1	Aspirin	8,500	
8	3	Aspirin	20,000	
9	1	Aspirin	8,500	
10	2	Aspirin	13,500	
11	2	Aspirin	13,500	
12	3	Aspirin	20,000	
13	3	Piroxicam	20,000	
14	1	Piroxicam	8,500	
15	2	Piroxicam	13,500	
16	1	Piroxicam	8,500	
17	3	Piroxicam	20,000	
18	3	Piroxicam	20,000	
19	1	BW755C	8,500	
20	0	BW755C	3,000	
21	0	BW755C	3,000	

E. Papageorgiou, G. Katsouleas (UniWA Chi-square & Non–parametric tests

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ