ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ

ΔΠΜΣ

«ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ ΜΕΣΩ ΚΑΙΝΟΤΟΜΩΝ ΤΕΧΝΟΛΟΓΙΩΝ

ΚΑΙ ΒΙΟΙΑΤΡΙΚΏΝ ΠΡΟΣΕΓΓΙΣΕΩΝ»

«Μεθοδολογία Εκπαιδευτικής Έρευνας και Στατιστική »

Σημειώσεις Εργαστηρίου SPSS

2° μέρος: «ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ»

ΕΥΣΤΑΘΙΑ ΠΑΠΑΓΕΩΡΓΙΟΥ - ΠΑΝΑΓΙΩΤΑ ΛΑΛΟΥ

2.1 Έλεγχοι Κανονικότητας

Για να αποφασιστεί εάν θα χρησιμοποιηθεί παραμετρικός ή μη παραμετρικός έλεγχος, αρχικά εξετάζουμε αν οι παρατηρήσεις μας ακολουθούν κανονική κατανομή.

Οι έλεγχοι που θα χρησιμοποιήσουμε για τον έλεγχο κανονικότητας είναι:

- Έλεγχος Kolmogorov-Smirnov
- Έλεγχος Shapiro Wilk

One-Sample Kolmogorov-Smirnov (K-S) Test

Το *κριτήριο K-S* είναι ένας μη παραμετρικός έλεγχος που χρησιμοποιείται για να εξετάσει την καλή προσαρμογή ενός τυχαίου δείγματος σε μία δεδομένη κατανομή, η οποία μπορεί να είναι Κανονική, Ομοιόμορφη, Poisson ή Εκθετική.

Για την επιλογή του κατάλληλου ελέγχου, μας ενδιαφέρει να εξετάσουμε αν το δείγμα έχει καλή προσαρμογή σε κανονική κατανομή. Η υπόθεση που εξετάζεται είναι εάν η κατανομή των δεδομένων είναι η κανονική κατανομή, ή όχι.

 $H_o: f(x) = N(\mu, \sigma^2)$ (Η μεταβλητή ακολουθεί κανονική κατανομή) $H_1: f(x) \neq N(\mu, \sigma^2)$ (Η μεταβλητή δεν ακολουθεί κανονική κατανομή)

Η διαδρομή που ακολουθείται είναι:

Analyze / Nonparametric tests / Legacy Dialogs / 1 sample K-S,

Έλεγχος Shapiro - Wilk

Το κριτήριο Shapiro-Wilk είναι ένας ακόμα πολύ γνωστός μη παραμετρικός έλεγχος για το αν οι παρατηρήσεις μίας μεταβλητής προέρχεται από κανονική κατανομή. Οι υποθέσεις του ελέγχου είναι: $H_o: f(x) = N(\mu, \sigma^2)$

$$H_{o}: f(x) = N(\mu, \sigma^{2})$$
$$H_{1}: f(x) \neq N(\mu, \sigma^{2})$$

Έλεγχος Shapiro-Wilk προτείνεται όταν το δείγμα μας είναι σχετικά μικρό, $n \leq 25$ Η διαδρομή που ακολουθείται είναι:

Analyze / Descriptive Statistics / Explore / Plots

Άσκηση 2.1 Να γίνει ο έλεγχος κανονικότητας στις μεταβλητές Βάρος και Αθηρωματικός δείκτης της άσκησης 1.4 με τους ελέγχους Kolmogorov-Smirnov (K-S) Test και Shapiro Wilk.

Λύση:

Θέλουμε να ελένξουμε την υπόθεση:

Η₀: Η μεταβλητή ακολουθεί κανονική κατανομή

έναντι της Η μεταβλητή δεν ακολουθεί κανονική κατανομή

α) Με τον έλεγχο K-S:

Analyze / Nonparametric tests / Legacy Dialogs / 1 sample K-S

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tensions	W	indow	<u>H</u> elp)				
					Repo	rts		•								
		13		· · · · · · · · · · · · · · · · · · ·	D <u>e</u> sci	riptive Stati	istics	•			1					
					<u>B</u> ayes	sian Statist	tics		•							
		Protein var Ta <u>b</u> les				•		va	r	var		var	var	var		
	1		10		Co <u>m</u> r	Co <u>m</u> pare Means										
1	2		9		<u>G</u> ene	ral Linear I	Model	*								
	3		7		Gene	ralized Lin	ear Models	•								
	4		19		Mi <u>x</u> ed	Models		•								
!	5		20		<u>C</u> orre	late		•								
(5		16		Regre	ession		*								
	7		8		L <u>o</u> glir	near		*								
8	3		9		Neura	al Network:	s	*								
	9		26		Class	ify —		*								
1	0		11		Dime	- nsion Red	uction	*								
	1		11		Scale											
	2		8		Nonp	arametric	Tests	•		One Sa	mnlo]		
	3		13		Forec	asting		•		<u>o</u> ne oai	dont O	amplea				
	4 C		70		Surviv	al -				indepen	aent 5	ampies				
	с С		02		 Multip	le Respon	ise			Related	Samp	les				
	7		92 87		Missir	na Value Ai	nalvsis			<u>L</u> egacy	Dialog	S		<u> </u>	square	-
1	8		73		Multin	le Imputat	ion							0/1 <u>B</u> ino	mial	
1	9		82		Comr	lex Samu	les							aaa <u>R</u> un	S	
2	0		99		E Simul	ation								<u> 1</u> -Sa	ample K-S	
2	1		44		Ouslie Ouslie	v Control								2 Inc	dependent Sa	mples
2	2		42					,						K Inc	dependent Sa	amples
2	3		62		Contin		an or ol Mada	ling b						2 Re	lated Sample	25
2	4		61		<u>S</u> patia Direct	arano rem Maskatia a	iporal Mode	iiiig P							lated Sample	00
2	5		47		Direct	mar <u>k</u> eting									sialeu <u>o</u> ailipi	co
	~		05													

Εργαστήριο SPSS - Παναγιώτα Λάλου – Ευσταθία Παπαγεωργίου Μεταφέρουμε με το μπλε βέλος στο δεξί πλαίσιο τις μεταβλητές 'Βάρος' και 'Ολική Χοληστερίνη' που θέλουμε να ελέγξουμε. ενώ η επιλογή *Normal* είναι προ-επιλεγμένη στην περιοχή *Test Distributio*.

🕼 One-Sample Kolmogorov	-Smirnov	Test	\times
 Οικογενειακή κατάστ Φύλο [GENDER] Ύψος [HEIGHT] Καλή Χοληστερίνη [H Κάπνισμα [SMOKING] Αθηρωματικός Δείκτ BMI 	*	<u>T</u> est Variable List:	E <u>x</u> act Options
Test Distribution Image: Normal Image: Degission Image: Poisson Image: Degission Image: Degission <th>al aste <u>F</u></th> <th>eset Cancel Help</th> <th></th>	al aste <u>F</u>	eset Cancel Help	

Πατώντας ΟΚ, εμφανίζεται ο πίνακας **One-Sample Kolmogorov-Smirnov Test** στον οποίον αναγράφονται τα αποτελέσματα του ελέγχου K-S:

- Το πλήθος (Ν) του δείγματος.
- Οι εκτιμήσεις των παραμέτρων της κανονικής κατανομής, Normal Parameters, η οποία προσεγγίζει τα δεδομένα μας δηλ. μέσο(Mean) και τυπική απόκλιση (Std. Deviation).
- Οι ακραίες διαφορές, Most Extreme Differences,
 μεταξύ της εμπειρικής συνάρτησης κατανομής
 και της εκτιμημένης κανονικής κατανομής
- Η τιμή της στατιστικής συνάρτησης,
- Το (δίπλευρο), Asymp. Sig. (2-tailed),
 δηλ. το *p*-value του ελέγχου όπου έχει γίνει
 διόρθωση σημαντικότητας του Lilliefors).

		Βάρος	Αθηρωματικό ς Δείκτης
N		20	20
Normal Parameters ^{a,b}	Mean	91,05	4,2774
	Std. Deviation	20,814	1,56437
Most Extreme Differences	Absolute	,118	,171
	Positive	,118	,171
	Negative	-,115	-,087
Test Statistic		,118	,171
Asymp. Sig. (2-tailed)		,200 ^{c.d}	,129°

a. Test distribution is Normal.

b. Calculated from data.

c. Lilliefors Significance Correction.

d. This is a lower bound of the true significance.

One-Sample Kolmogorov-Smirnov Test

Σύμφωνα με τη τιμή του *p-value*:

- Sig=0,2>0,05 για το βάρος και
- Sig=0,129>0,05 για τον αθηρωματικό δείκτη

Και στις δύο περιπτώσεις Sig>0,05 ,
άρα αποδεχόμαστε την υπόθεση H_0 και επομένως η κατανομή και στα δύο δε
ίγματα είναι κανονική

β) Με τον έλεγχο Shapiro – Wilk: Analyze / Descriptive Statistics / Explore

Στο παράθυρο που ανοίγει, τοποθετούμε τις δύο μεταβλητές Βάρος και Αθηρωματικός Δείκτης στο πλαίσο *Dependent List.* Στη συνέχεια πατάμε το κουμπί *Plots.* Στο παράθυρο Expore Plots που ανοίγει επιλέγουμε το *Normality plots with tests* . Πατάμε *Continue* και τέλος *OK.*

(Στο Display μπορούμε να αφήσουμε τη ήδη υπάρχουσα επιλογή , δηλαδή το Both ή να επιλέξουμε το Plots αν δεν μας ενδιαφέρει να δούμε τον πίνακα με τα περιγραφικά μέτρα. Το Statisics δεν μπορούμε να το επιλέξουμε διότι δεν μας δίνεται η δυνατότητα ελέγχου κανονικότητας)

Explore X	Explore: Plots X
 Οικογενειακή κατάστ Φύλο [GENDER] Υψος [HEIGHT] Καλή Χοληστερίνη [H 	Boxplots Descriptive Image: Descriptive Image: Descriptive Image: Descriptive
 Ολική Χοληστερίνη [Κάπνισμα [SMOKING] ΒΜΙ Καρδιοαγγειακος κίν Κατηγορία βάρους [Normality plots with tests Spread vs Level with Levene Test None Power estimation
■ Display ■ Both © Statistics © Plots	© <u>T</u> ransformed Po <u>w</u> er: Natural log
OK Paste Reset Cancel Help	Cancel Help
Εργαστήριο SPSS - Παναγιώτα Λάλου	- Ευσταθία

Παπαγεωργίου

Όπως έχουμε δει στο ά μέρος, με τη συγκεκριμένη διαδρομή προκύπτουν πίνακες με περιγραφικά μέτρα αλλά και γραφήματα όπως το θηκόγραμμα. Τα αποτελέσματα για τον έλεγχο κανονικότητας που μας ενδιαφέρουν βρίσκονται στον πίνακα Tests of Normality.

Tests of Normality										
	Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk						
	Statistic	df	Sig.	Statistic	df	Sig.				
Βάρος	,118	20	,200	,956	20	,474				
Αθηρωματικός Δείκτης	,171	20	,129	,948	20	,332				

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Στον πίνακα παρουσιάζονται τα αποτελέσματα και των δύο ελέγχων. Για το Shapiro Wilk: Si.g=0,474>0,05 για το βάρος

Sig=0,332>0,05 για το αθηρωματικό δείκτη.

Επομένως και με τον έλεγχο Shapiro Wilk τα δύο δείγματα ακολουθούν κανονική κατανομή

2.2 Παραμετρικοί Έλεγχοι

2.2.1 Independent Samples T-test

Άσκηση 2.2: Έχουμε δύο ομάδες ατόμων πουδύο ομάδες

πάσχουν από πολλαπλή σκλήρυνση. Η πρώτη ομάδα (10 άτομα) ακολουθούν μόνο φαρμακευτική αγωγή, ενώ οι υπόλοιποι (8 άτομα) εκτός από τη φαρμακευτική θεραπεία ακολουθούν και πρόγραμμα φυσιοθεραπειών. Όλοι οι ασθενείς υποβλήθηκαν σε τεστ αξιολόγησης κινητικότητας TUG (Timed Up and Go Test), και ο χρόνος ολοκλήρωσης της δοκιμασίας του test φαίνεται στον παρακάτω πίνακα.

α)Να εξεταστεί αν υπάρχει διαφορά στο μέσο χρόνο ολοκλήρωσης του TUG μεταξύ αυτών που κάνουν φυσικοθεραπείες κι αυτών που δεν κάνουν. α=0,05

β) Να βρεθεί 95% διάστημα εμπιστοσύνης για τη διαφορά των μέσων τιμών του χρόνου σπις Παναγιώτα Λάλου – Ευ Παπαγεωργίου

Φυσικοθ	εραπείες
ΟΧΙ	NAI
18	13
20	14
12	17
15	12
23	18
17	15
30	22
20	21
21	
υστα 15	

Λύση:

Στην άσκηση αυτή διερευνούμε τη σχέση μεταξύ φυσιοθεραπείας (διχοτόμος μεταβλητή με τιμές ναι – όχι) και του χρόνου ολοκλήρωσης του τεστ (ποσοτική συνεχής μεταβλητή)

Οι υποθέσεις του ελέγχου:

H₀ : Η μέση τιμή του χρόνου **δεν** διαφέρει μεταξύ αυτών που κάνουν φυσικοθεραπείες κι αυτών που δεν κάνουν

 H_1 : Η μέση τιμή του χρόνου διαφέρει μεταξύ αυτών που κάνουν φυσικοθεραπείες κι αυτών που δεν κάνουν

ή

Η₀: Δεν υπάρχει σχέση μεταξύ φυσικοθεραπείας και χρόνου ολοκλήρωσης του τεστ

 H_1 : Υπάρχει σχέση μεταξύ φυσικοθεραπείας και χρόνου ολοκλήρωσης του τεστ

Έχουμε κάνει τον έλεγχο κανονικότητας δείγμα. και τα δύο δείγματα ακολουθούν κανονική κατανομή, επομένως συνεχίζουμε με έλεγχο ισότητας μέσων τιμών για ανεξάρτητα δείγματα.

Για να εφαρμοστεί ο έλεγχος αυτός πρέπει οι τιμές και των δύο δειγμάτων να μπουν στην ίδια στήλη. Επομένως δημιουργούμε μια ποσοτική μεταβλητή (scale) στην οποία δίνουμε όνομα ΤΙΜΕ και μια δεύτερη ποιοτική μεταβλητή (nominal) την οποία ονομάζουμε INDEX. Η μεταβλητή INDEX παίρνει τιμές 1 και 2, Βάζουμε 1 όταν η αντίστοιχη τιμή της 1^{ης} στήλης ανήκει στο 1° δείγμα και 2 όταν ανήκει στο 2°

	TIME	INDEX	
1	18	1	
2	20	1	
3	12	1	
4	15	1	
5	23	1	
6	17	1	
7	30	1	
8	20	1	
9	21	1	
10	15	1	
11	13	2	
12	14	2	
13	17	2	
14	12	2	
15	18	2	
16	15	2	
17	22	2	
18	21	2	
19			

Η διαδρομή στο SPSS είναι:

Analyze / Compare Means / Independent Samples T-Test

Εργαστήριο SF

orm	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raph	s <u>U</u> tilities	Add- <u>o</u> ns	Window	<u>H</u> elp			
F.	Repo	orts	•	* 🖬			1			
-	D <u>e</u> so	criptive Statistics	•							
<u>}</u>	Ta <u>b</u> le	es	•	Ir	Ir	11	1			
Compare Means				Means						
	<u>G</u> ene	eral Linear Model	•	C One-Sa	ample T Te	st				
По	Gene	erali <u>z</u> ed Linear Mod	els 🕨	Indeper	ndent-Sam	ples T Test.				
Πρι	Mi <u>x</u> e	d Models	•	Paired-	- Samples T	Test	2			
Мат	<u>C</u> orre	elate	•							
Мет	<u>R</u> egr	ession	•			`				
Мат	L <u>o</u> gli	near	*							
Мат	Neur	al Net <u>w</u> orks	*							
	Clas	si <u>f</u> y	•							
	<u>D</u> ime	ension Reduction	•							
>	Sc <u>a</u> l	e	*							
	<u>N</u> onp	parametric Tests	*							
-	Fore	cas <u>t</u> ing	*							
	<u>S</u> urvi	val	•							
2	M <u>u</u> lti	ple Response	*							
<u>۶</u>	ジ Miss	ing Value Anal <u>v</u> sis								
	Mul <u>t</u> i	ple Imputation	•							
-	Com	p <u>l</u> ex Samples	•							
	<u>Q</u> ual	ity Control	*							
	ROC	Curve								
				<u></u>		<u>.</u>				

Στο **Test Variable(s)** τοποθετήστε την ποσοτική μεταβλητή (TIME) και στο **Grouping Variable** τοποθετήστε τη διχοτόμο μεταβλητή (INDEX)

Επιλέγουμε *Define Groups*, οπότε προκύπτει το πλαίσιο διαλόγου Define Groups. Βάζουμε τις τιμές 1 και 2 στα κελιά, πατάμε *Continue* και τέλος *OK.*

independent-Samples T Test		×	F	
	<u>T</u> est Variable(s): 🔗 Χρόνος ολοκλήρωση	Options Bootstrap		Define Groups X
*				Our Se specified values Group <u>1</u> : 1 Group <u>2</u> : 2
•	<u>G</u> rouping Variable: INDEX(? ?)		-	© <u>C</u> ut point:
OK Paste	Define Groups Reset Cancel Help			Cancel Help

Στον πίνακα Group Statistics παρουσιάζονται:

- Ο αριθμός των παρατηρήσεων (Ν) σε κάθε κατηγορία της διχοτόμου μεταβλητής.
- Ο μέσος (Mean) της ποσοτικής μεταβλητής σε κάθε κατηγορία της διχοτόμου μεταβλητής.
- Η τυπική απόκλιση (Std. Deviation) της ποσοτικής μεταβλητής σε κάθε κατηγορία της διχοτόμου μεταβλητής.
- Το τυπικό σφάλμα του μέσου (Std. Error Mean) της ποσοτικής μεταβλητής σε κάθε κατηγορία της διχοτόμου μεταβλητής

		Group Stati	stics		
	Δείκτης	Ν	Mean	Std. Deviation	Std. Error Mean
Χρόνος ολοκλήρωσης τεστ	1	10	19,10	5,043	1,595
	2	8	16,50	3,665	1,296

Τα αποτελέσματα του ελέγχου παρουσιάζονται στον 2° πίνακα: Independent Samples Test

Στον πίνακα αυτό παρουσιάζονται τα αποτελέσματα δύο ελέγχων:

Ελέγχου Levene και ελέγχου ισότητας μέσων τιμών (T-Test).

Α) Ελεγχος του Levene

Με τον έλεγχο αυτό, εξετάζεται η ισότητα ή όχι των διασπορών στους πληθυσμούς. Μας ενδιαφέρει το αποτέλεσμα του ελέγχου για να δούμε με ποια από τις δύο γραμμές του ελέγχου μέσων τιμών θα συνεχίσουμε.

Οι υποθέσεις του ελέγχου είναι:

H₀:
$$\sigma_1^2 = \sigma_2^2$$

H₁: $\sigma_1^2 \neq \sigma_2^2$

Εαν ισχύει η μηδενική υπόθεση (ισότητα διασπορών), τότε στον έλεγχο T-Test, ισχύουν τα αποτελέσματα της 1^{ης} γραμμής. Εάν ισχύει η εναλλακτική , τότε στο T-Test ισχύει η δεύτερη γραμμή. Το *p-value* του ελέγχου Levene είναι Sig=0,588>0,05. Επομένως δεχόμαστε την H_0 (ισότητα διασπορών) και άρα στομ έλεγχο t-test κοιτάμε το sig της $1^{\eta\varsigma}$ γραμμής:

Sig=0,24>0,05

Επομένως αποδεχόμαστε την H₀ δηλαδή την ισότητα μέσων τιμών. Άρα ΔΕΝ υπάρχει διαφορά στο μέσο χρόνο ολοκλήρωσης του TUG μεταξύ αυτών που κάνουν φυσικοθεραπείες κι αυτών που δεν κάνουν. Στην ίδια γραμμή βλέπουμε την τιμή της στατιστικής συνάρτησης: *t*=1,22 και το διάστημα εμπιστοσύνης για τη διαφορά των μέσων τιμών στους δυο πληθυσμούς:

[-1.917 , 7,117]

		Levene's Test Varia	t-test for Equality of Means							
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
ρόνος ολοκλήρωσης τεστ	Equal variances assumed	,306	,588	1,220	16	,240	2,600	2,131	-1,917	7,11
	Equal variances not assumed			1,265	15,897	,224	2,600	2,055	-1,758	6,95

Independent Samples Test

Άσκηση 2.3: Να εξεταστεί αν υπάρχει διαφορά στη μέση τιμή Δείκτη Μάζας Σώματος (BMI) μεταξύ ανδρών και γυναικών, χρησιμοποιώντας τα δεδομένα της άσκησης 1.4. Επιπλέον να βρεθεί 95% διάστημα εμπιστοσύνης για τη διαφορά των μέσων.

Άσκηση 2.4: Μετρήσαμε την αρτηριακή πίεση σε δυο ανεξάρτητες ομάδες παιδιών, αποτελούμενες από 8 και 10 παιδιά αντίστοιχα. Στην 1^η ομάδα τα παιδιά έχουν υπερτασικούς γονείς, ενώ οι γονείς των παιδιών της 2^{ης} ομάδας δεν παρουσιάζουν υπέρταση. Υπάρχει διαφορά στη μέση τιμή πίεσης παιδιών υπερτασικών και παιδιών μη υπερτασικών γονιών

ομασ	A								
100	102	96	106	110	120	112	90		
ΟΜΑΔΑ	В								
104	88	100	98	102	92	96	100	96	97

2.2.2 Paired Samples T-Test

Άσκηση 2.5: Η αρτηριακή πίεση 10 ασθενών πρίν (Χ) και μετά (Υ) τη χορήγηση φαρμάκου κατά της πίεσης είναι:

X	13	15	18	14	12	13	15	16	18	19
Y	12	13	15	15	14	13	13	14	14	13

Να ελεγχθεί σε επίπεδο σημαντικότητας 5%, εαν το συγκεκριμένο φάρμακο είναι αποτελεσματικό κατά της πίεσης.

Λύση

Εφαρμόζοντας έλεγχο κανονικότητας διαπιστώνουμε ότι και τα δύο δείγματα ακολουθούν κανονική κατανομή. Επομένως θα εφαρμόσουμε έλεγχο ισότητας μέσων τιμών για δείγματα κατά ζεύγη, (Paired Samples T-Test)

- Για την εφαρμογή του ελέγχου, πρέπει να καταχωρούμε τα δείγματα σε δύο διαφορετικές στήλες.
 Επομένως ορίζουμε δυο ποσοτικές μεταβλητές (scale) με name: ΠΙΕΣΗ_ΠΡΙΝ και ΠΙΕΣΗ_ΜΕΤΑ και καταχωρούμε τις τιμές στο Data View.
- Η διαδρομή στη συνέχεια είναι:
- Analyze / Compare Means /Paired Samples T-Test

ΠΙΕΣΗ_ΠΡΙΝ	ΠΙΕΣΗ_ΜΕ	var
13	12	
15	13	
18	15	
14	15	
12	14	
13	13	
15	13	
16	14	
18	14	
19	13	

- Στο πλαίσιο διαλόγου Paired Samples T Test,
- Στο Paired Variables, στη στήλη Variable 1 τοποθετούμε την ποσοτική μεταβλητή που αφορά στο πρώτο «δείγμα»(ΠΙΕΣΗ_ΠΡΙΝ) και στη στήλη Variable 2 τοποθετούμε την ποσοτική μεταβλητή που αφορά στο δεύτερο «δείγμα» (ΠΙΕΣΗ ΜΕΤΑ). Πατάμε *ΟΚ.*

Paired-Samples T Test			×
ΝΕΣΗ_ΠΡΙΝ	OK	Paired Variable1 Variable2 Pair Variable1 Variable2 1 Image: Cancel Help	Options Bootstrap ◆

Τα αποτελέσματα του ελέγχου φαίνονται στον 3° πίνακα: Paired Samples Test

Sig=0,049<0,05 οπότε απορρίπτεται η μηδενική υπόθεση κι επομένως συμπεραίνεται πως υπάρχει στατιστικά σημαντική σχέση μεταξύ φαρμακευτικής αγωγής και συστολικής αρτηριακής πίεσης. Δηλαδή το φάρμακο είναι αποτελεσματικό.

Στον ίδιο πίνακα μπορούμε να δουμε τη τιμή την στατιστικής συνάρτησης t=2,279., τους βαθμούς ελευθερίας *df* =9 καθώς και το 95% διάστημα εμπιστοσύνης.

				Paired Differen					
				95% Confidence Interval of the Difference					
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	ΠΙΕΣΗ_ΠΡΙΝ - ΠΙΕΣΗ_ΜΕΤΑ	1,700	2,359	,746	,012	3,388	2,279	9	,049

Paired Samples Test

Άσκηση 2.6: Θέλουμε να εξετάσουμε κατά πόσο ένα νέο πρόγραμμα ασκήσεων είναι αποτελεσματικό στην αντιμετώπιση χρόνιου πόνου στη μέση. Για το λόγο αυτό μοιράστηκε σε 10 ασθενείς που υποφέρουν από πόνο στη μέση ερωτηματολόγιο από το οποίο προέκυψε ο βαθμός στη κλίμακα πόνου, (0 έως 10). Το ίδιο ερωτηματολόγιο απαντήθηκε μετά το τέλος των συνεδριών. Τα απότελέσματα φαίνονται στον πίνακα:

ΠΡΙΝ ΤΟ ΠΡΟΓΡΑΜΜΑ	ΜΕΤΑ ΤΟ ΠΡΟΓΡΑΜΜΑ
9	7
10	5
5	3
8	5
8	4
6	3
9	4
7	5
9	6
9	4

2.2.4 One Way ANOVA

Άσκηση 2.7: Μια πολυεθνική εταιρεία για να προσλάβει τους υπαλλήλους της χρησιμοποιεί ψυχομετρικό τεστ. Στον παρακάτω πίνακα βλέπετε την επίδοση στο ιδιο τεστ, των υποψηφίων από 3 διαφορετικές χώρες: Ελβετία, Ελλάδα, Γερμανία. Υπάρχει διαφορά στην επίδοση των υποψηφίων μεταξύ των 3 χωρών;

ΕΛΒΕΤΙΑ	ελλάδα	ΓΕΡΜΑΝΙΑ
82	83	38
83	78	59
97	68	55
93	61	66
55	77	45
67	54	52
53	69	52
	51	61
	63	

Λύση:

Θέλουμε να κάνουμε τον έλεγχο:

 H_0 : Η μέσες τιμές επίδοσης είναι ίσες και στις 3 χώρες H_1 : Η μέσες τιμές επίδοσης **δεν** είναι ίσες και στις 3 χώρες **ή**

 $\mathbf{H}_{0}: \Delta$ εν υπάρχει σχέση μεταξύ επίδοσης και χώρας

 $\mathbf{H}_1: \mathbf{Y}$ πάρχει σχέση μεταξύ επίδοσης και χώρας

Τα τρία δείγματα ακολουθούν κανονική κατανομή (μετά από έλεγχο κανονικότητας) Επομένως θα γίνει Ανάλυση διασποράς μιας κατεύθυνσης (**One Way ANOVA**)

Για την εφαρμογή του ελέγχου πρέπει να καταχωρηθούν οι τιμές και των τριών δειγμάτων στην ίδια στήλη. Επομένως δημιουργούμε μια ποσοτική μεταβλητή (scale) στην οποία δίνουμε όνομα «επίδοση» και μια δεύτερη ποιοτική μεταβλητή (nominal) την οποία ονομάζουμε "index". Η μεταβλητή index παίρνει τιμές 1, 2 και 3. Προαιρετικά μπορούμε να βάλουμε ετικέτες στις τιμές με τη ρύθμιση values. Βάζουμε τις παρακατω ετικέτες:

1-Ελβετία

2-Ελλάδα

3-Γερμανία

	επιδοση	index	var
	82	Ελβετία	
	83	Ελβετία	
	97	Ελβετία	
	93	Ελβετία	
	55	Ελβετία	
	67	Ελβετία	
	53	Ελβετία	
	83	Ελλάδα	
	78	Ελλάδα	
	68	Ελλάδα	
	61	Ελλάδα	
Γ	77	Ελλάδα	
	54	Ελλάδα	
	69	Ελλάδα	
	51	Ελλάδα	
	63	Ελλάδα	
	38	Γερμανία	
	59	Γερμανία	
	55	Γερμανία	
	66	Γερμανία	
1	45	Econovia	

Η διαδρομή για τον έλεγχο είναι:

Analyze / Compare Means /One-Way ANOVA

1.55.	otatistics Da									
rm	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> til	lities	Add- <u>o</u> ns	s <u>W</u>	<u>/indow</u>	<u>H</u> elp	
2	Re <u>p</u> or	rts		۲	K.			5		
	D <u>e</u> scr	riptive Statistics		•						1.
	Custo	om Ta <u>b</u> les		۶.						
	Co <u>m</u> p	oare Means		۴.,	M	eans				vai
πία	<u>G</u> ener	ral Linear Model		•	1 0	ne- <u>S</u> amp	le T Te	st		
πία	Gener	rali <u>z</u> ed Linear Mode	ls	•	🚼 In	depende	nt-Sam	nples T	Test	
τία	Mi <u>x</u> ed	Models		•	Paired-Samples T Test					
τία	<u>C</u> orre	late		۶.						
τια	<u>R</u> egre	ession		۶.		ne-way A	NOVA.			
πα	L <u>o</u> glin	near		•						
πα	Neura	al Net <u>w</u> orks		•						
100	Class	si <u>f</u> y		•		_				
100	<u>D</u> imer	nsion Reduction		•	<u> </u>	_				
τοα	Sc <u>a</u> le			•						
δα	<u>N</u> onpa	arametric Tests		•	<u> </u>					
ίδα	Forec	asting		•						
ίδα	<u>S</u> urviv	al		•						
ίδα	M <u>u</u> ltip	le Response		•						
ίδα	ジ Missin	ng Value Anal <u>v</u> sis								
ινία	Mul <u>t</u> ip	le Imputation		•						
ινία	Complex Samples			•						

Στο **Dependent List** τοποθετήστε την ποσοτική μεταβλητή (επίδοση) και στο **Factor** τοποθετήστε την ονομαστική μεταβλητή index, και πατάμε **OK.**

Στο output λαμβάνουμε το αποτέλεσμα του ελέγχου στο πίνακα ANOVA., όπου βλέπουμε την τιμή του *p-value*:

Sig=0,00<0,05

από το οποίο διαπιστώνουμε ότι η μηδενική υπόθεση απορρίπτεται (p-value < 0,05), συνεπώς υπάρχει τουλάχιστον ένας μέσος που διαφέρει σημαντικά από τους υπόλοιπους.

ANOVA							
επιδοση							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	1901,516	2	950,758	5,896	,009		
Within Groups	3386,317	21	161,253				
Total	5287,833	23					

Ωστόσο, δεν μας δίνει την πληροφορία ποιος μέσος διαφέρει από τους υπόλοιπους. Για να προσδιοριστούν οι μέσοι που διαφέρουν μεταξύ τους, θα πρέπει να γίνουν πολλαπλές συγκρίσεις μεταξύ των ομάδων (ανά δύο). Αφού επαναλάβουμε τη διαδικασία:

Analyze / Compare Means /One-Way ANOVA

Επιλέγουμε **Post Hoc**, οπότε προκύπτει το πλαίσιο διαλόγου One-Way ANOVA: **Post Hoc Multiple Comparisons**:

🔁 One-Way ANOVA: Post Hoc Multiple Comparisons					
⊢Equal Variances A	ssumed				
LSD	🔲 <u>S</u> -N-K 📃 <u>W</u> aller-Dur	ncan			
Bonferroni	Type I/Type	Il Error Ratio: 100			
🔲 S <u>i</u> dak	🔲 Tu <u>k</u> ey's-b 📄 Dunn <u>e</u> tt				
Scheffe	Duncan Control Cat	egory: Last 🔻			
🔲 <u>R</u> -E-G-W F	E Hochberg's GT2				
📃 R-E-G-W <u>Q</u>	<u>Gabriel</u> <u>Q</u> -sided	d ⊚ < C <u>o</u> ntrol ⊚ > Co <u>n</u> trol			
-Equal Variances N	lot Assumed				
📃 Ta <u>m</u> hane's T2	📃 Dunnett's T <u>3</u> 📃 G <u>a</u> mes-Ho	well 📗 D <u>u</u> nnett's C			
Significance level: 0,05					
	Continue Cancel H	lelp			

Παπαγεωργίου

Στο πλαίσιο διαλόγου One-Way ANOVA: Post Hoc Multiple Comparisons, στο Equal Variance Assumed επιλέγουμε Bonferroni (για <10 συγκρίσεις) ή Tukey ή Scheffe (για ≥συγκρίσεις). Επιλέγουμε στη συγκεκριμένη περίπτωση **Bonferroni,** στη συνέχεια *Continue* και τέλος *OK.*

Στη στήλη (Ι) παρουσιάζεται η μια κατηγορία της ανεξάρτητης μεταβλητής που συμπεριλαμβάνεται στον επιμέρους έλεγχο της υπόθεσης. Στη στήλη (J) παρουσιάζεται η δεύτερη κατηγορία της ανεξάρτητης μεταβλητής που συμπεριλαμβάνεται στον επιμέρους έλεγχο της υπόθεσης. Στη στήλη Mean Difference (I-J) παρουσιάζεται η διαφορά των μέσων τιμών της ποσοτικής μεταβλητής στις 2 κατηγορίες της ανεξάρτητης μεταβλητής που συμπεριλήφθηκαν στον επιμέρους έλεγχο της υπόθεσης.

Dependent Variable: επιδοση

Bonferroni

		Mean Difference (I-			95% Confide	ence Interval
(I) index	(J) index	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Ελβετία	Ελλάδα	8,603	6,399	,580	-8,04	25,25
	Γερμανία	22,214	6,572	,008	5,12	39,31
Ελλάδα	Ελβετία	-8,603	6,399	,580	-25,25	8,04
	Γερμανία	13,611	6,170	,116	-2,44	29,66
Γερμανία	Ελβετία	-22,214	6,572	,008	-39,31	-5,12
	Ελλάδα	-13,611	6,170	,116	-29,66	2,44

Multiple Comparisons

*. The mean difference is significant at the 0.05 level.

Στη στήλη Std. Error παρουσιάζεται το τυπικό σφάλμα της διαφοράς των μέσων τιμών της ποσοτικής μεταβλητής στις 2 κατηγορίες της ανεξάρτητης μεταβλητής που συμπεριλήφθηκαν στον επιμέρους έλεγχο της υπόθεσης.

Στη στήλη Sig. παρουσιάζεται η τιμή *p-value* του επιμέρους ελέγχου της υπόθεσης και στις δυο τελευταίες στήλες έχουμε το διάστημα εμπιστοσύνης της διαφοράς των μέσων τιμών της ποσοτικής μεταβλητής στις 2 κατηγορίες.

Με βάση τα αποτελέσματα μας:

- Δεν υπάρχει διαφορά στην μέση επιδοση μεταξύ Ελλάδας Ελβετίας (Sig=0,58)
- Δεν υπάρχει διαφορά στην μέση επιδοση μεταξύ Ελλάδας Γερμανίας (Sig=0,116)
- Διαφέρει στατιστικά σημαντικά η μέση επίδοση στην Ελβετία σε σχέση με τη Γερμανία (Sig=0,008) με τη επίδοση στην Ελβετία να είναι μεγαλύτερη. (Η διαφορά των μέσων είναι 22,14)

2.3 Μη Παραμετρικοί Έλεγχοι

2.3.1 Έλεγχος Mann-Whitney

Άσκηση 2.8: Στο διπλανό πίνακα φαίνεται η κατανάλωση ενέργειας μέσα σε 24 ώρες μιας ομάδας γυναικών φυσιολογικού βάρους και μιας ομάδας παχύσαρκων γυναικών, Υπάρχει διαφορά στη κατανάλωση μεταξύ των δύο ομάδων;

Λύση

- Θέλουμε να ελέγξουμε τις υποθέσεις:
- ${\rm H}_0$ Η μέση τιμή κατανάλωσης ενέργειας δεν διαφέρει με ταξύ λεπτών κ παχύσαρκων
- Η₁ Η μέση τιμή κατανάλωσης ενέργειας διαφέρει μεταξύ λεπτών και παχύσαρκων

ή

- H0 Η κατανάλωση ενέργειας δεν σχετίζεται με τη παχυσαρκία
- Η1 Η κατανάλωση ενέργειας σχετιζεται με παχυσαριώτα Λάλου Ευσταθία

Λεπτές $(n=13)$	Παχύσαρκες $(n=9)$
6.13	8.79
7.05	9.19
7.48	9.21
7.48	9.68
7.53	9.69
7.58	9.97
7.90	11.51
8.08	11.85
8.09	12.79
8.11	
8.40	
10.15	
10.88	

Μετά από έλεγχο κανονικότητας συμπεράναμε ότι τα δείγματα δεν ακολουθούν κανονική κατανομή. Επομένως θα εφαρμόσουμε μη παραμετρικό έλεγχο. Τα δείγματα έχουν διαφορετικό μέγεθος, που σημαίνει ότι είναι σίγουρα 'ανεξάρτητα'. Επομένως ο κατάλληλος έλεγχος είναι Mann – Whitney.

Για να εφαρμοστεί ο έλεγχος αυτός πρέπει οι τιμές και των δύο δειγμάτων να μπουν στην ίδια στήλη. Επομένως δημιουργούμε μια ποσοτική μεταβλητή (scale) στην οποία δίνουμε όνομα Energy και μια δεύτερη ποιοτική μεταβλητή (nominal) την οποία ονομάζουμε INDEX. Η μεταβλητή INDEX παίρνει τιμές 1 και 2, Βάζουμε 1 όταν η αντίστοιχη τιμή της 1^{ης} στήλης ανήκει στο 1° δείγμα και 2 όταν ανήκει στο 2°

Προαιρετικά μπορούμε να βάλουμε ετικέτες με τη ρύθμιση values στις τιμές: 1: Λεπτή 2: Παχύσαρκη

2 			2 2
	Energy	INDEX	vai
1	6,13	Λεπτή	
2	7,05	Λεπτή	
3	7,48	Λεπτή	
4	7,48	Λεπτή	
5	7,53	Λεπτή	
6	7,58	Λεπτή	
7	7,90	Λεπτή	
8	8,08	Λεπτή	
9	8,09	Λεπτή	
10	8,11	Λεπτή	
11	8,40	Λεπτή	
12	10,15	Λεπτή	
13	10,88	Λεπτή	
14	8,79	Παχύσαρκη	
15	9,19	Παχύσαρκη	
16	9,21	Παχύσαρκη	
17	9,68	Παχύσαρκη	
18	9,69	Παχύσαρκη	
19	9,97	Παχύσαρκη	
20	11,51	Παχύσαρκη	
21	11 85	Παγώσαοκο	

Η διαδρομή είναι:

Analyze / Nonparametric Tests / Legacy Dialogs / 2 Independent Samples

n	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilities	Add- <u>o</u> ns <u>M</u>	<u>/indow H</u> el	p		
5	Repor	ts	,			47			ABC
	D <u>e</u> scr	iptive Statistics	•			~ © Ш	1.4		
	Custo	m Ta <u>b</u> les	•	·					
	Comp	are Means	•	var	var	var	var	var	var
rή	Gener	ral Linear Model	•	•					
ſή	Gene	alized Linear Models	•						
ſή	Mixed	Models	•	·					
rή	<u>C</u> orre	late	•	-					
ſή	Regre	ssion	•						
rή	Loglin	ear	•	•					
rή	Neura	I Networks	•	•					
rή	Class	i <u>f</u> y	•						
rή	Dime	nsion Reduction	•	•					
η	Sc <u>a</u> le		•	•					
m	Nonp	arametric Tests	•	A Re	lated Samples				
μ τά	Forec	asting	•		lenendent San	nles			
	Surviv	al	•		a Comple	10100		-	
m	Multip	le Response	•		e Sample				
m	🚮 Missin	g Value Analysis		Le	gacy Dialogs	r.	🛛 🎦 <u>C</u> hi-squ	lare	
in a	Multip	le Imputation	•				0/1 <u>B</u> inomi	al	
in a	Comp	lex Samples	•	•			1000 <u>R</u> uns		
ŋ	Simul:	ation					A 1-Samp	ole K-S	
ιη	Qualit	v Control					2 Indep	endent Samp	les
'n		Curve					K Indep	endent Samp	les
	Snotic	and Temporal Mode		_		***	2 Relat	ed Samples	
	Spalla		anny						

37

Στο Test Variable List τοποθετήστε την ποσοτική μεταβλητή (Energy) και στο Grouping Variable τοποθετήστε τη διχοτόμο μεταβλητή (INDEX)

Επιλέγουμε *Define Groups*, οπότε προκύπτει το πλαίσιο διαλόγου Define Groups. Βάζουμε τις τιμές 1 και 2 στα κελιά, πατάμε Continue και τέλος OK.

 \times

38

Help

Cancel

Τα αποτελέσματα του ελέγχου φαίνονται στον πίνακα Test Statistics

Στη γραμμή Ζ αναγράφεται η τιμή της στατιστικής συνάρτησης του ελέγχου Mann-Whitney.

Στη γραμμή Exact. Sig. [2*(1-tailed Sig.)] αναγράφεται η ακριβής τιμή του p-value αυτού (0,001) για το οποίο, όπως αναγράφεται στην υποσημείωση του πίνακα, δεν έχει γίνει διόρθωση για τις ισοπαλίες (ties).

Στη γραμμή Asymp. Sig. (2-tailed Sig.) αναγράφεται η ασυμπτωτική στατιστική σημαντικότητα του αμφίπλευρου ελέγχου (0,002), η οποία είναι πολύ κοντά στην (προηγούμενη) ακριβή τιμή της σημαντικότητας.

Παρατηρούμε ότι p-value = 0,001 < 0,05 οπότε

απορρίπτουμε τη μηδενική υπόθεση

(της ισότητας των πληθυσμιακών μέσων)

και συμπεραίνουμε ότι διαφέρει η κατανάλωση ενέργειας

Μεταξύ λεπτών και παχύσαρκων γυναικών

Test Statistics^a

	Energy
Mann-Whitney U	12,000
Wilcoxon W	103,000
Z	-3,106
Asymp. Sig. (2-tailed)	,002
Exact Sig. [2*(1-tailed Sig.)]	,001 ⁶

a. Grouping Variable: INDEX

b Not corrected for ties

2.3.2 Έλεγχος Wilcoxon

Άσκηση 2.9: Σε 10 ασθενείς με κινητικά προβλήματα λόγω εγκεφαλικού επεισοδίου, εφαρμόστηκε ένα νέο πρόγραμμα φυσικοθεραπειών. Μετρήθηκε ο χρόνος (σε δευτερόλεπτα)που χρειάστηκε ο κάθε ασθενής να μεταφέρει ένα αντικείμενο από μία θέση σε μία άλλη. Εφαρμόστηκε το νέο πρόγραμμα και μετά την ολοκλήρωση του ξαναέγινε η ίδια μέτρηση. Στον πίνακα που ακολουθεί βλέπετε το χρόνο του κάθε ασθενή πριν και μετά τις φυσικοθεραπείες. Είναι αποτελεσματικό το πρόγραμμα;

Χρόνος πριν	Χρόνος μετά
10	5,2
15	8
8,2	4
7,6	4,7
6,5	5,3
8,4	5,4
6,9	4,2
6,7	6
7,4	3,8
Εργαστήριο SPSS - Πανα 5,8 Παπαγε	ιώτα Λάλου – Ευσταθία ωργίου

- Εφαρμόζοντας έλεγχο κανονικότητας διαπιστώνουμε ότι και τα δύο δείγματα δεν ακολουθούν κανονική κατανομή. Επιπλέον δείγματα είναι εξαρτημένα, αφού αφορούν μετρήσεις από τον ίδιο ασθενή. Επομένως θα εφαρμόσουμε έλεγχο Wilcoxon
- Για την εφαρμογή του ελέγχου, πρέπει να καταχωρούμε τα δείγματα σε δύο διαφορετικές στήλες.
 Επομένως ορίζουμε δυο ποσοτικές μεταβλητές (scale) με name: before και after και καταχωρούμε τις τιμές στο Data View.

<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyz
		Ĩ.		1
	befo	re	after	var
		10,0	5,2	
		15,0	8,0	
		8,2	4,0	
		7,6	4,7	
		6,5	5,3	
		8,4	5,4	
		6,9	4,2	
		6,7	6,0	
		7,4	3,8	
		5,8	6,0	
1				

Η διαδρομή στη συνέχεια είναι:

Analyze / Nonparametric Tests / Legacy Dialogs / 2 Related Samples

ata Editor									
<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tili	ties	Extensions	<u>W</u> indow	<u>H</u> elp		
Re <u>p</u> or	ts					🗠 🗰	A (ABC
Descri	ptive Statistics			THÝ I		=⊖ ⊞	<u>1</u> 4		
Ta <u>b</u> les	5								
Co <u>m</u> p	are Means			ar -	var	var	var	var	var
Gener	al Linear Model								
Gener	ali <u>z</u> ed Linear Mode	Is	•						
Mixed	Models		•						
<u>C</u> orrel	ate								
Regre	ssion								
Loglin	ear								
Classi	ſy								
Dimer	sion Reduction								
Sc <u>a</u> le			•						
Nonpa	rametric Tests			💧 On	e Sample		— —		
Foreca	asting			A Ind	lependent Sar	noles			
<u>S</u> urviv:	al			A Re	lated Samples				
Multipl	e Response			1.0	nacy Dialoge	·	Mil and an		
🗒 S <u>i</u> mula	ition		ļ	Ē	gaoy braibge		<u>Ka</u> chi-so	juare	-
<u>Q</u> uality	Control						<u>Binom</u>	ial	-
ROCO	urve						IIII <u>R</u> uns.		_
Spatial and Temporal Modeling		•				🛕 <u>1</u> -Sam	ple K-S		
						10 <u>2</u> 10 mile	pendent Sam	ples	
							🔣 <u>K</u> inde	pendent Sam	ples
							📉 2 Re <u>l</u> a	ted Samples.	
					11027	ιανεωρνιο			

- Στο πλαίσιο διαλόγου Paired Samples T Test,
- Στο Test Pairs, στη στήλη Variable 1 τοποθετούμε την ποσοτική μεταβλητή που αφορά στο πρώτο «δείγμα» (before) και στη στήλη Variable 2 τοποθετούμε την ποσοτική μεταβλητή που αφορά στο δεύτερο «δείγμα» (after). Πατάμε OK.

Two-Related-Samples Tes	ts					×
before after	ск	Test Pair 1 2 Test Ty <u>Wild</u> <u>Sigr</u> <u>McN</u> Mary	rs: Variable1 (before) (pe coxon n Nemar ginal <u>H</u> omoger <u>R</u> eset Car	Variable2 (after) neity ncel Help	 ★ ↓ ↓ 	E <u>x</u> act Options

Το αποτέλεσμα του ελέγχου φαίνεται στον πίνακα Test Statistics, στον οποίο βλέπουμε τη τιμή της στατιστικής συνάρτησης Z=-2,7 και την τιμή του *p-value:* Sig=0,007<0,05

Επομένως, απορρίπτουμε τη Μηδενική υπόθεση κι επομένως η μέση τιμή χρόνου διαφέρει πριν και μετά τις φυσικοθεραπείες. Δηλαδή το πρόγραμμα φυσικοθεραπειών είναι αποτελεσματικό

	after - before
Z	-2,701 ⁶
Asymp. Sig. (2-tailed)	,007

Test Statistics^a

a. Wilcoxon Signed Ranks Test

b. Based on positive ranks.

2.4 Έλεγχος X² - Έλεγχος Ανεξαρτησίας δυο κατηγορικών μεταβλητών

Ο έλεγχος ανεξαρτησίας X² εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών, αν δηλαδή οι δύο μεταβλητές ενός πίνακα διασταύρωσης είναι ανεξάρτητες μεταξύ τους (αν οι μεταβολές στις τιμές της μιας δεν προκαλούν μεταβολές στις τιμές της άλλης).

Οι υποθέσεις που ελέγχουμε είναι οι εξής:

- Η₀: Δεν υπάρχει σχέση ανάμεσα στις δύο μεταβλητές και ως εκ τούτου είναι ανεξάρτητες
- H_1 : Υπάρχει σχέση ανάμεσα στις δύο μεταβλητές και άρα ΔΕΝ είναι ανεξάρτητες

Η πραγματοποίηση του ελέγχου στο SPSS, γίνεται με ταυτόχρονη κατασκευή του πίνακα διασταύρωσης (Crosstab).

Analyze / Descriptive Statistics / Crosstabs / Statistics / Chi-square

Άσκηση 2.10: Ο παρακάτω πίνακας παρουσιάζει την κατανομή 80 καρκινοπαθών (με καρκίνο του μαστού) και 160 "υγειών" κατά οικογενειακή κατάσταση. Σχετίζεται ο καρκίνος του μαστού με την οικογενειακή κατάσταση;

	Οικογενειακή κατάσταση						
Καρκίνος του	Ανύπαντρες	Παντρεμένες	Άλλα				
μαστού							
Ναι	30	44	6				
Όχι	30	106	24				

Λύση

Θέλουμε να εξετάσουμε αν σχετίζονυαι δυο ποιοτικές μεταβλητές επομένως θα εφαρμόσουμε έλεγχο X². Οι υποθέσεις:

- H_0 : Ο καρκίνος μαστού και η οικογ. Κατάσταση δεν σχετίζονται
- H_1 : Ο καρκίνος μαστού και η οικογ. Κατάσταση σχετίζονται

Στο Variable View δημιουργούμε 2 ordinal μεταβλητές με ονόματα *Status* και *Cancer*.και μία ποσοτική με το όνομα *Women* η οποία περιέχει τη συχνότητα του κάθε κελιού. Με το values δίνουμε ετικέτες στις τιμές των ποιοτικών : Στο Status:

1-Ανύπαντρη, 2-Παντρεμένη 3-Άλλο

ενώ στο Canser:

1- Ναι, 2-Όχι

Στη συνέχεια στο Data View καταχωρούμε τις τιμές. Κάθε οριζόντια γραμμή αναφέρεται σε ένα κελί του πίνακα. Π.χ η πρώτη γραμμή αναφέρεται στο κελί της 1^{ης} γραμμής και 1^{ης} στήλης του πίνακα. Οπότε καταχωρούμε τις τιμές :

Status: 1, Canser 1, Women: 30

Συνεχίζουμε για όλα τα κελιά του πίνακα,

οπότε στυο Data View συμπληρώνονται 6 γραμμές

(αφου ο πίνακας έχει 6 κελιά).

Status	Canser	Women					
Ανύπαντρη	Yes	30					
Παντρεμένη	Yes	44					
Άλλο	Yes	6					
Ανύπαντρη	No	30					
Παντρεμένη	No	106					
Άλλο	No	24					

Στη συνέχεια επιλέγουμε: Data / Weight Cases

Στο εμφανιζόμενο παράθυρο διαλέγουμε την ενέργεια *Weight cases by* και στη θέση *Frequency Variable* τοποθετούμε τη ποσοτική μεταβλητή *Women*. Επικυρώνουμε τις επιλογές μας με **ΟΚ**.

• Στη συνέχεια, Analyze → Descriptive Statistics → Crosstabs

Μεταφέρουμε στο Rows τη μία ποιοτική μεταβλητή (π.χ Canser) και στο Columns την άλλη (Status) και από το **Statistics** επιλέγουμε **Chi-square.** Πατάμε *Continue* και τέλος *OK.*

Crosstabs	×	var	var	var	va
Crosstabs	Exact Statistics Cells Eormat Style Bootstrap ext	Var Crosstabs: Stati Chi-square Nominal Contingency Phi and Cran Lambda Uncertainty c Nominal by Inter Eta	var stics coefficient ner's V oefficient val	Var Correlation Ordinal Gamma Somers' of Kendall's Kendall's Kendall's Risk Risk Risk	va × is tau- <u>b</u> tau- <u>c</u>
Display layer variables in table Display clustered <u>b</u> ar charts Suppress tables OK Paste Reset Cancel Hele Eovgornous SPSS - Do	le layers Ρ νανιώτα Λάλου – Ευσταθί	Cochr <u>a</u> n's and <u>T</u> est common <u>Continue</u> α	d Mantel-Haer odds ratio eo Cancel	nszel statistics quals: 1 Help]

Παπαγεωργίου

Στα αποτελέσματα, ο $2^{0\varsigma}$ πίνακας είναι ο διασταυρωμένος πίνακας (Crosstab)

Status * Canser Crosstabulation						
Count						
	Canser					
		Yes	No	Total		
Status	Ανύπαντρη	30	30	60		
	Παντρεμένη	44	106	150		
	Άλλο	6	24	30		
Total		80	160	240		

Τα αποτελέσματα του ελέγχου φαίνονται στον 3° πίνακα: Chi – Square Tests

Αυτό που μας ενδιαφέρει είναι η τιμή του **Pearson Chi-Square**, ενώ στο κάτω μέρος του πίνακα υπάρχει μία υποσημείωση που αφορά στις προϋποθέσεις εφαρμογής του τεστ. Επίσης στο Value φαίνεται η τιμή της στατιστικής συνάρτησης: $X^2 = 10,980$ ενώ το df =2 είναι οι βαθμοί ελευθερίας.

Η τιμή του *p-value* φαίνεται στη

3η στήλη. Εδώ έχουμε :

Asymptotic Significance = 0,004<0,05

Επομένως απορρίπτουμε την Η₀ και Άρα οι μεταβλητές **δεν είναι ανεξάρτητες.** Δηλαδη ο καρκίνος μαστού σχετίζεται με την οικογενειακή κατάσταση.

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	10,980ª	2	,004
Likelihood Ratio	10,792	2	,005
Linear-by-Linear Association	10,183	1	,001
N of Valid Cases	240		

a. 0 cells (0,0%) have expected count less than 5. The minimum expected count is 10,00.

Chi-Square Tests

Άσκηση 2.11: Στον διπλανό πίνακα βλέπετε την επιλογή θεραπείας 20 ασθενών με πόνο στο γόνατο (1=φαρμακευτική αγωγή, 2=εγχείρηση, 3=φυσικοθεραπείες) και το μορφωτικό τους επίπεδο (1=Λύκειο, 2=Τριτοβάθμια, 3= Μεταπτυχιακο/Διδακτορικο). Σχετίζεται η επιλογή θεραπείας με το μορφωτικό επίπεδο;

Εργαστήριο SPSS - Παναγιώτα Λάλου

Παπαγεωργίου

ΜΟΡΦΩΤΙΚΟ ΕΠΙΠΕΔΟ	ΘΕΡΑΠΕΙΑ
1	1
3	3
2	2
2	2
2	1
1	3
1	3
2	3
2	1
2	2
3	3
1	3
2	2
1	3
2	2
1	1
3	3
2	3
2	2
2	2

• Λύση

Στο Variable View δημιουργώ τις μεταβλητές EDUCATION και THERAPY (και οι δύο scale) Με τη ρύθμιση Values βάζω ετικέτες στις Μεταβλητές: Για την EDUCATION: 1=Λύκειο, 2=Τριτοβάθμια, 3= Μεταπτυχιακο/Διδακτορικο Και για τη THERAPY: 1=φαρμακευτική αγωγή 2=εγχείρηση 3=φυσικοθεραπείες

1	🗎 🛄 🗠 🗅	
П	ON	
	EDUCATION	THERAPY
Ī	ΜΕΤΑΠΤΥΧΙΑΚΟ/ΔΙΔΑΚΤΟΡΙ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΕΓΧΕΙΡΗΣΗ
	TPITOBAOMIA	ΕΓΧΕΙΡΗΣΗ
	TPITOBAOMIA	ΦΑΡΜΑΚΟ
	ΛΥΚΕΙΟ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	ΛΥΚΕΙΟ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΦΑΡΜΑΚΟ
	TPITOBAΘMIA	ΕΓΧΕΙΡΗΣΗ
	ΜΕΤΑΠΤΥΧΙΑΚΟ/ΔΙΔΑΚΤΟΡΙ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	ΛΥΚΕΙΟ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΕΓΧΕΙΡΗΣΗ
	ΛΥΚΕΙΟ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΕΓΧΕΙΡΗΣΗ
	ΛΥΚΕΙΟ	ΦΑΡΜΑΚΟ
	ΜΕΤΑΠΤΥΧΙΑΚΟ/ΔΙΔΑΚΤΟΡΙ	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΦΥΣΙΚΟΘΕΡΑΠΕΙΕΣ
	TPITOBAOMIA	ΕΓΧΕΙΡΗΣΗ
	TPITOBAOMIA	ΕΓΧΕΙΡΗΣΗ

Όπως βλέπουμε, έχουμε διαφορετικό τρόπο καταχώρησης των δεδομένων σε σχέση με τη προηγούμενη άσκηση. Με αυτό τον τρόπο εισαγωγής δεδομένων παραλείπουμε το βήμα στάθμισης: Data / Weight Cases

Πηγαίνουμε κατευθείαν: Analyze \rightarrow Descriptive Statistics \rightarrow Crosstabs

Μεταφέρουμε στο Rows τη μία ποιοτική μεταβλητή (π.χ EDUCATION) και στο Columns την άλλη (THERAPY) και από το **Statistics** επιλέγουμε **Chi-square.** Πατάμε **Continue** και τέλος **OK.**

Το αποτέλεσμα του ελέγχου φαίνεται στον 3° πίνακα : Chi – Square Tests

Chi-Square Tests					
	Value	df	Asymptotic Significance (2-sided)		
Pearson Chi-Square	11,279 ^a	4	,024		
Likelihood Ratio	14,342	4	,006		
Linear-by-Linear Association	,579	1	,447		
N of Valid Cases	20				

a. 9 cells (100,0%) have expected count less than 5. The minimum expected count is ,60.

Η τιμή του *p-value* είναι: 0,024 <0,05

Επομένως απορρίπτεται η Μηδενική υπόθεση κι άρα η θεραπεία σχετίζεται με το μορφωτικό επίπεδο.

Παρατήρηση: Η υποσημείωση κάτω απ τον πίνακα, μας λέει ότι δεν ληρούνται οι προυποθέσεις εφαρμογής του ελέγχου.

2.5 Γραμμική συσχέτιση δύο ποσοτικών μεταβλητών

Η υπαρξη γραμμικής σχέσης μεταξύ δύο ποσοτικών μεταβλητών, εξακριβώνεται με τους ελέγχους υπόθεσης :

- του συντελεστή συσχέτισης Pearson (για κανονικά δεδομένα)
- του συντελεστή συσχέτισης Spearman (για ποσοτικές που τουλάχιστον μία δεν ακολουθεί κανονική κατανομή ή για την περίπτωση που μια ή και οι δυο μεταβλητές είναι σε διατεταγμένη κλίμακα
- Οι υποθέσεις του ελέγχου είναι:
- Η₀: Οι μεταβλητές μας δεν συσχετίζονται γραμμικά
- Η₁: Οι μεταβλητές μας συσχετίζονται γραμμικά

Για να υπολογίσετε τους συντελεστές συσχέτισης του Pearson, του Spearman από την μπάρα με τις βασικές επιλογές του SPSS επιλέξτε:

Analyze / Correlate /Bivariate

Άσκηση 2.12: Να εξετάσετε αν συσχετίζονται γραμμικά το 'Βάρος' και ο 'Αθηρωματικός Δείκτης' χρησιμοποιώντας τα δείγματα της άσκησης 1.4. **Λύση:**

Εξετάζουμε τα δύο δείγματα ως προς τη κανονικότητα και ο έλεγχος K-S δείχνει ότι και οι δύο ακολουθούν κανονική κατανομή. Επομένως ο κατάλληλος έλεγχος είναι ο Pearson.

Ακολουθούμε τη διαδρομή:

Analyze / Correlate /Bivariate

11] - IBM S	SPSS Statist	ics Data Editor						
Insform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> ti	lities	Add- <u>o</u> ns <u>V</u>		dow
\sim	Reports		•				5	
	Descriptive Statistics			•				-6
	Custom Ta <u>b</u> les							
NDER	Co <u>m</u> pare Means		•	OL	SMOKING			
1	General Linear Model		•	201		1		
1	Generalized Linear Models		•	197	2			
1	Mixed	Mixed Models		•	193		1	
1	<u>C</u> orre	late		•	Bivariate 2		2	
1	1 <u>R</u> egression 1 L <u>o</u> glinear 1 Neural Net <u>w</u> orks			۶.	Partial			
1				•	Distances		2	
1			•		2			
1	Class	sify		•	278		1	
1 Dimension Reduction			•	254		2		
2 =			230		2			

Στο Variables τοποθετούμε τις μεταβλητές για τις οποίες θέλουμε να υπολογίσουμε τους συντελεστές συσχέτισης, ενώ στο Correlation Coefficients επιλέγουμε τους συντελεστές συσχέτισης που θέλουμε να υπολογίσουμε. Επομένως επιλέγουμε Pearson

Έπειτα, επιλέγουμε **ΟΚ**, οπότε προκύπτει ο πίνακας Correlations:

Ο πίνακας των αποτελεσμάτων είναι ο ίδιος και στην περίπτωση του συντελεστή συσχέτισης του Spearman.

Στη σειρά Pearson Correlation παρουσιάζεται ο συντελεστής συσχέτισης του Pearson και στη σειρά Sig. (2 tailed) παρουσιάζεται η τιμή *p-value*

	Correlations		
		Αθηρωματικό ς Δείκτης	Βάρος
Αθηρωματικός Δείκτης	Pearson Correlation	1	,692
	Sig. (2-tailed)		,001
	Ν	20	20
Βάρος	Pearson Correlation	,692	1
	Sig. (2-tailed)	,001	
	Ν	20	20

**. Correlation is significant at the 0.01 level (2-tailed).

Σύμφωνα με τ' αποτελέσματα, η τιμή του *p-value* είναι: Sig=0,001<0,05

Επομένως απορρίπτεται η μηδενική υπόθεση , δηλαδή το βάρος και ο αθηρωματικος δείκτης συσχετίζονται.

Η τιμή του συντελεστή συσχέτισης Pearson είναι 0,692, γεγονός που σημαίνει ότι έχουν θετική γραμμική συσχέτιση.