Table 1: EC8 rules for detailing and dimensioning of primary beams (secondary beams: as in DCL)

	DC H	DCM	DCL
"critical region" length	$1.5 \mathrm{~h}_{\mathrm{w}}$	$\mathrm{h}_{\text {w }}$	
Longitudinal bars (L):			
$\rho_{\text {min }}$, tension side	$0.5 \mathrm{f}_{\mathrm{ctm}} / \mathrm{f}_{\mathrm{yk}}$		$0.26 \mathrm{f}_{\text {ctm }} / \mathrm{f}_{\mathrm{yk}}, 0.13 \%{ }^{(0)}$
$\rho_{\text {max }}$, critical regions ${ }^{(1)}$	$\rho^{\prime}+0.0018 \mathrm{f}_{\mathrm{cd}} /\left(\mu_{\phi} \varepsilon_{\mathrm{sy}, \mathrm{d}} \mathrm{f}_{\mathrm{yd}}\right)^{(1)}$		0.04
$\mathrm{A}_{\mathrm{s}, \mathrm{min},}$ top \& bottom	$2 \Phi 14$ ($328 \mathrm{~mm}^{2}$)	- -	
$\mathrm{A}_{\mathrm{s} \text {, min }}$, top-span	$\mathrm{A}_{\text {s,top-supports }} / 4$	(2) -	
$\mathrm{A}_{\mathrm{s}, \text { min }}$, critical regions bottom	$0.5 \mathrm{~A}_{\mathrm{s}, \text { top }}{ }^{(2)}$		-
$\mathrm{A}_{\mathrm{s}, \mathrm{min}}$, supports bottom	$\mathrm{A}_{\text {s, botom-span }} / 4^{(0)}$		
$\mathrm{d}_{\mathrm{bL}} / \mathrm{h}_{\mathrm{c}}$ - bar crossing interior joint ${ }^{(3)}$	$\leq \frac{6.25\left(1+0.8 v_{d}\right)}{\left(1+0.75 \frac{\rho^{\prime}}{\rho_{\mathrm{max}}}\right)} \frac{f_{c t m}}{f_{y d}}$	$\leq \frac{7.5\left(1+0.8 v_{d}\right)}{\left(1+0.5 \frac{\rho^{\prime}}{\rho_{\max }}\right)} \frac{f_{c t m}}{f_{y d}}$	-
$\mathrm{d}_{\mathrm{b}} / \mathrm{h}_{\mathrm{c}}$ - bar anchored at exterior joint ${ }^{(3)}$	$\leq 6.25\left(1+0.8 v_{d}\right) \frac{f_{c t m}}{f_{y d}}$	$\leq 7.5\left(1+0.8 v_{d}\right) \frac{f_{c t m}}{f_{y d}}$	-
Transverse bars (w):			
(i) outside critical regions			
spacing $\mathrm{s}_{\mathrm{w}} \leq$	0.75d		
$\rho_{\text {w }} \geq$	$0.08 \sqrt{ }\left(\mathrm{f}_{\text {ck }}(\mathrm{MPa}) / \mathrm{f}_{\mathrm{yk}}(\mathrm{MPa})^{(0)}\right.$		
(ii) in critical regions:			
$\mathrm{d}_{\mathrm{bw}} \geq$	6 mm		
spacing $\mathrm{s}_{\mathrm{w}} \leq$	$6 \mathrm{~d}_{\mathrm{bL}}, \frac{h_{w}}{4}, 24 \mathrm{~d}_{\mathrm{bw}}, 175 \mathrm{~mm}$	$8 \mathrm{~d}_{\mathrm{bL}}, \frac{h_{w}}{4}, 24 \mathrm{~d}_{\mathrm{bw}}, 225 \mathrm{~mm}$	-
Shear design:			
V_{Ed}, seismic $^{(4)}$	$1.2 \frac{\sum M_{R b}}{l_{c l}} \pm V_{o, g+\psi_{2} q}{ }^{(4)}$	$\frac{\sum M_{R b}}{l_{c l}} \pm V_{o, g+\psi_{2} q}{ }^{(4)}$	From the analysis for the "seismic design situation"
$\mathrm{V}_{\text {Rd,max }}$ Seismic $^{(5)}$	As in EC2: $\mathrm{V}_{\mathrm{Rd}, \text { max }}=0.3\left(1-\mathrm{f}_{\mathrm{ck}}(\mathrm{MPa}) / 250\right) \mathrm{b}_{\mathrm{wo}} \mathrm{zf} \mathrm{f}_{\mathrm{cd}} \sin 2 \delta^{(5)}$, with $1 \leq \cot \delta \leq 2.5$		
$\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}$, outside critical regions ${ }^{(5)}$	As in $\mathrm{EC} 2: \mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{b}_{\mathrm{w}} \mathrm{z} \rho_{\mathrm{w}} \mathrm{f}_{\mathrm{ywd}} \cot \delta{ }^{(5)}$, with $1 \leq \cot \delta \leq 2.5$		
$\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}$, critical regions ${ }^{(5)}$	$\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{b}_{\mathrm{w}} \mathrm{z} \rho_{\mathrm{w}} \mathrm{f}_{\mathrm{ywd}}\left(\delta=45^{\circ}\right)$	As in $\mathrm{EC} 2: \mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{b}_{\mathrm{w}} \mathrm{Z} \rho_{\mathrm{w}} \mathrm{f}_{\mathrm{ywd}} \cot \delta$, with $1 \leq \cot \delta \leq 2.5$	
If $\zeta \equiv \mathrm{V}_{\text {Emin }} / \mathrm{V}_{\text {Emax }}{ }^{(6)}<-0.5$: inclined bars at angle $\pm \alpha$ to beam axis, with cross-section $\mathrm{A}_{\mathrm{s}} /$ direction	$\begin{aligned} & \text { If } \mathrm{V}_{\mathrm{Emax}} /(2+\zeta) \mathrm{f}_{\mathrm{ctd}} \mathrm{~b}_{\mathrm{w}} \mathrm{~d}>1: \\ & \mathrm{A}_{\mathrm{s}}=0.5 \mathrm{~V}_{\mathrm{Emax}} / \mathrm{f}_{\mathrm{yd}} \sin \alpha \end{aligned}$ $\& \text { stirrups for } 0.5 \mathrm{~V}_{\mathrm{Em}}$	-	

(0) NDP (Nationally Determined Parameter) according to Eurocode 2. The Table gives the value recommended in Eurocode 2.
(1) $\quad \mu_{\phi}$ is the value of the curvature ductility factor that corresponds to the basic value, q_{0}, of the behaviour factor used in the design.
(2) The minimum area of bottom steel, $\mathrm{A}_{\mathrm{s}, \min }$, is in addition to any compression steel that may be needed for the verification of the end section for the ULS in bending under the (absolutely) maximum negative (hogging) moment from the analysis for the "seismic design situation", M_{Ed} -
(3) $\quad h_{c}$ is the column depth in the direction of the bar, $v_{d}=N_{E d} / A_{c} f_{c d}$ is the column axial load ratio, for the algebraically minimum value of the axial load in the "seismic design situation", with compression taken as positive.
(4) At a member end where the moment capacities around the joint satisfy: $\sum \mathrm{M}_{\mathrm{Rb}}>\sum \mathrm{M}_{\mathrm{Rc}}, \mathrm{M}_{\mathrm{Rb}}$ is replaced in the calculation of the design shear force, V_{Ed}, by $\mathrm{M}_{\mathrm{Rb}}\left(\sum \mathrm{M}_{\mathrm{Rc}} / \sum \mathrm{M}_{\mathrm{Rb}}\right)$
(5) $\quad \mathrm{z}$ is the internal lever arm, taken equal to 0.9 d or to the distance between the tension and the compression reinforcement, $\mathrm{d}-\mathrm{d}_{1}$.
(6) $\quad \mathrm{V}_{\mathrm{Emax}}, \mathrm{V}_{\mathrm{E}, \min }$ are the algebraically maximum and minimum values of V_{Ed} resulting from the \pm sign;
$\mathrm{V}_{\text {Emax }}$ is the absolutely largest of the two values, and is taken positive in the calculation of ζ; the sign of $\mathrm{V}_{\mathrm{Emin}}$ is determined according to whether it is the same as that of $\mathrm{V}_{\mathrm{Emax}}$ or not.

Table 2: EC8 rules for detailing and dimensioning of primary columns (secondary columns as in DCL)

	DCH	DCM	DCL
Cross-section sides, $\mathrm{h}_{\mathrm{c}}, \mathrm{b}_{\mathrm{c}} \geq$	$\begin{gathered} 0.25 \mathrm{~m} ; \\ \mathrm{h}_{\mathrm{v}} / 10 \text { if } \theta=\mathrm{P} \delta / \mathrm{Vh}>0.1^{(1)} \end{gathered}$	-	
"critical region" length ${ }^{(1)} \geq$	$1.5 \mathrm{~h}_{\mathrm{c}}, 1.5 \mathrm{~b}_{\mathrm{c}}, 0.6 \mathrm{~m}, \mathrm{l}_{\mathrm{c}} / 5$	$\mathrm{h}_{\mathrm{c}}, \mathrm{b}_{\mathrm{c}}, 0.45 \mathrm{~m}, \mathrm{l}_{\mathrm{c}} / 5$	$\mathrm{h}_{\mathrm{c}}, \mathrm{b}_{\mathrm{c}}$
Longitudinal bars (L):			
$\rho_{\text {min }}$	1\%		$0.1 \mathrm{~N}_{\mathrm{d}} / \mathrm{A}_{\mathrm{c}} \mathrm{f}_{\mathrm{yd}}, 0.2 \%^{(0)}$
$\rho_{\text {max }}$	4\%		$4 \%{ }^{(0)}$
$\mathrm{d}_{\mathrm{bL}} \geq$	8 mm		
bars per side \geq	3		2
Spacing between restrained bars	$\leq 150 \mathrm{~mm}$	$\leq 200 \mathrm{~mm}$	-
distance of unrestrained bar from nearest restrained bar	$\leq 150 \mathrm{~mm}$		
Transverse bars (w):			
Outside critical regions:			
$\mathrm{d}_{\mathrm{bw}} \geq$	$6 \mathrm{~mm}, \mathrm{~d}_{\mathrm{bL}} / 4$		
spacing $\mathrm{s}_{\mathrm{w}} \leq$	$20 \mathrm{~d}_{\mathrm{bL}}, \mathrm{h}_{\mathrm{c}}, \mathrm{b}_{\mathrm{c}}, 400 \mathrm{mmm}$		$\begin{gathered} \hline 12 \mathrm{~d}_{\mathrm{bL}}, 0.6 \mathrm{~h}_{\mathrm{c}}, 0.6 \mathrm{~b}_{\mathrm{c}}, \\ 240 \mathrm{~mm} \end{gathered}$
at lap splices, if $\mathrm{d}_{\mathrm{bL}}>14 \mathrm{~mm}: \mathrm{s}_{\mathrm{w}} \leq$	$12 \mathrm{~d}_{\mathrm{bL}}, 0.6 \mathrm{~h}_{\mathrm{c}}, 0.6 \mathrm{~b}_{\mathrm{c}}, 240 \mathrm{~mm}$		
$\mathrm{d}_{\mathrm{bw}} \geq{ }^{(3)}$	6mm, 0.4($\left.\mathrm{f}_{\mathrm{yd}} / \mathrm{f}_{\mathrm{ywd}}\right)^{1 / 2} \mathrm{~d}_{\mathrm{bL}}$	$6 \mathrm{~mm}, \mathrm{~d}_{\mathrm{bL}} / 4$	
$\mathrm{s}_{\mathrm{w}} \leq{ }^{(3),(4)}$	$6 \mathrm{~d}_{\mathrm{bL}}, \mathrm{b}_{\mathrm{o}} / 3,125 \mathrm{~mm}$	$8 \mathrm{~d}_{\mathrm{bL}}, \mathrm{b}_{\mathrm{o}} / 2,175 \mathrm{~mm}$	-
$\omega_{\mathrm{wd}} \geq^{(5)}$	0.08	-	
$\alpha \omega_{\mathrm{wd}} \geq^{(4),(5),(6),(7)}$	$30 \mu_{\phi}{ }^{*} v_{\mathrm{d}} \varepsilon_{\text {sy,d }} \mathrm{b}_{\mathrm{c}} / \mathrm{b}_{0}-0.035$	-	
In critical region at column base:			
$\omega_{\text {wd }} \geq$	0.12	0.08	-
$\alpha \omega_{\mathrm{wd}} \geq^{(4),(5),(6),(8),(9)}$	$30 \mu_{\phi} v_{d} \varepsilon_{\text {sy }, \mathrm{d}} \mathrm{b}_{\mathrm{c}} / \mathrm{b}_{0}-0.035$		-
Capacity design check at beam-column joints: ${ }^{(10)}$	$1.3 \sum \mathrm{M}_{\mathrm{Rb}} \leq \sum \mathrm{M}_{\mathrm{Rc}}$ No moment in transverse direction of column		-
Verification for $\mathrm{M}_{\mathrm{x}}-\mathrm{M}_{\mathrm{y}}-\mathrm{N}$:	Truly biaxial, or uniaxial with $\left(\mathrm{M}_{\mathrm{z}} / 0.7, \mathrm{~N}\right),\left(\mathrm{M}_{\mathrm{y}} / 0.7, \mathrm{~N}\right)$		
Axial load ratio $\mathrm{v}_{\mathrm{d}}=\mathrm{N}_{\mathrm{Ed}} / \mathrm{A}_{\mathrm{c}} \mathrm{f}_{\mathrm{cd}}$	≤ 0.55	≤ 0.65	-
Shear design:			
$\mathrm{V}_{\text {Ed }}$ seismic $^{(11)}$	$1.3 \frac{\sum M_{R c}^{e n d s}}{l_{c l}}{ }^{(11)}$	$1.1 \frac{\sum M_{R c}^{e n d s}}{l_{c l}}$	From the analysis for the "seismic design situation"
$\mathrm{V}_{\text {Rd,max }}$ seismic ${ }^{(12),(13)}$	As in EC2:$\mathrm{V}_{\text {Rd, max }}=0.3\left(1-\mathrm{f}_{\mathrm{ck}}(\mathrm{MPa}) / 250\right) \mathrm{b}_{\mathrm{wo}} \mathrm{zf} \mathrm{f}_{\mathrm{cd}} \sin 2 \delta$, with $1 \leq \cot \delta \leq 2.5$		
$\mathrm{V}_{\text {Rd.s }}$ seismic ${ }^{(12),(13),(14)}$	As in EC2: $\mathrm{V}_{\text {Rd, }}=\mathrm{b}_{\mathrm{w}} \mathrm{Z} \rho_{\mathrm{w}} \mathrm{f}_{\mathrm{ywd}} \cot \delta+\mathrm{N}_{\mathrm{Ed}}(\mathrm{h}-\mathrm{x}) / /_{\mathrm{cl}}{ }^{(13)}$ with $1 \leq \cot \delta \leq 2.5$		

(0) \quad Note (0) of Table 1 applies.
(1) $\quad \mathrm{h}_{\mathrm{v}}$ is the distance of the inflection point to the column end further away, for bending within a plane parallel to the side of interest; 1_{c} is the column clear length.
(2) For DCM: If a value of q not greater than 2 is used for the design, the transverse reinforcement in critical regions of columns with axial load ratio v_{d} not greater than 0.2 may just follow the rules applying to DCL columns.
(3) For DCH: In the two lower storeys of the building, the requirements on $d_{b w}, s_{w}$ apply over a distance from the end section not less than 1.5 times the critical region length.
(4) Index c denotes the full concrete section and index o the confined core to the centreline of the hoops; b_{0} is the smaller side of this core.
(5) $\quad \omega_{\mathrm{wd}}$ is the ratio of the volume of confining hoops to that of the confined core to the centreline of the hoops, times $\mathrm{f}_{\mathrm{yd}} / \mathrm{f}_{\mathrm{cd}}$.
(6) $\quad \alpha$ is the "confinement effectiveness" factor, computed as $\alpha=\alpha_{s} \alpha_{n}$; where: $\alpha_{s}=\left(1-s / 2 b_{o}\right)\left(1-s / 2 h_{o}\right)$ for hoops and $\alpha_{s}=\left(1-\mathrm{s} / 2 \mathrm{~b}_{\mathrm{o}}\right)$ for spirals; $\alpha_{\mathrm{n}}=1$ for circular hoops and $\alpha_{\mathrm{n}}=1-\left\{\mathrm{b}_{\mathrm{o}} /\left(\left(\mathrm{n}_{\mathrm{h}}-1\right) \mathrm{h}_{\mathrm{o}}\right)+\mathrm{h}_{\mathrm{o}} /\left(\left(\mathrm{n}_{\mathrm{b}}-1\right) \mathrm{b}_{\mathrm{o}}\right)\right\} / 3$ for rectangular hoops with n_{b} legs parallel to the side of the core with length b_{o} and n_{h} legs parallel to the one with length h_{0}.
(7) For DCH: at column ends protected from plastic hinging through the capacity design check at beamcolumn joints, μ_{ϕ}^{*} is the value of the curvature ductility factor that corresponds to $2 / 3$ of the basic value,
q_{o}, of the behaviour factor used in the design; at the ends of columns where plastic hinging is not prevented because of the exemptions listed in Note (10) below, $\mu_{\phi}{ }^{*}$ is taken equal to μ_{ϕ} defined in Note (1) of Table 1 (see also Note (9) below); $\varepsilon_{\mathrm{sy}, \mathrm{d}}=\mathrm{f}_{\mathrm{yd}} / \mathrm{E}_{\mathrm{s}}$.
(8) Note (1) of Table 1 applies.
(9) For DCH: The requirement applies also in the critical regions at the ends of columns where plastic hinging is not prevented, because of the waivers listed in Note (10) below.
(10) The capacity design check does not need to be fulfilled at beam-column joints: (a) of the top floor, (b) of the ground storey in two-storey buildings with axial load ratio v_{d} not greater than 0.3 in all columns, (c) if shear walls resist at least 50% of the base shear parallel to the plane of the frame (wall buildings or wall-equivalent dual buildings), and (d) in one-out-of-four columns of plane frames with columns of similar size.
(11) At a member end where the moment capacities around the joint satisfy: $\sum \mathrm{M}_{\mathrm{Rb}}<\sum \mathrm{M}_{\mathrm{Rc}}, \mathrm{M}_{\mathrm{Rc}}$ is replaced by $\mathrm{M}_{\mathrm{Rc}}\left(\sum \mathrm{M}_{\mathrm{Rb}} / \sum \mathrm{M}_{\mathrm{Rc}}\right)$.
(12) z is the internal lever arm, taken equal to 0.9 d or to the distance between the tension and the compression reinforcement, $\mathrm{d}-\mathrm{d}_{1}$.
(13) The axial load, N_{Ed}, and its normalized value, v_{d}, are taken with their most unfavourable value in the seismic design situation for the shear verification (considering both the demand, V_{Ed}, and the capacity, V_{Rd}).
(14) x is the compression zone depth at the end section in the ULS of bending with axial load.

Table 3: EC8 rules for the detailing and dimensioning of ductile walls

$\mathrm{V}_{\text {Rd,max }}$ in critical region	40\% of EC2 value	As in EC2
$\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}$ outside critical region	As in EC2: $\quad \mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{b}_{\mathrm{wo}}(0.81 \mathrm{w}) \rho_{\mathrm{h}} \mathrm{f}_{\mathrm{ywd}} \cot \delta$ with $1 \leq \cot \delta \leq 2.5$	
$\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}$ in critical region; web reinforcement ratios. $\rho_{\mathrm{h}}, \rho_{v}$		
(i) if $\alpha_{\mathrm{s}}=\mathrm{M}_{\mathrm{Ed}} / \mathrm{V}_{\mathrm{Ed}} \mathrm{l}_{\mathrm{w}} \geq 2$: $\rho_{\mathrm{v}}=\rho_{\mathrm{v}, \text { min }}, \rho_{\mathrm{h}}$ from $\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}$:	As in EC2: $\quad \mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{b}_{\mathrm{wo}}\left(0.811_{\mathrm{w}}\right) \rho_{\mathrm{h}} \mathrm{f}_{\mathrm{ywd}} \cot \delta$ with $1 \leq \cot \delta \leq 2.5$	
(ii) if $\alpha_{\mathrm{s}}<2: \quad \rho_{\mathrm{h}}$ from $\mathrm{V}_{\text {Rd, } \mathrm{s}}{ }^{(8)}$	$\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{V}_{\text {Rd, }}+\mathrm{b}_{\mathrm{wo}} \alpha_{\mathrm{s}}\left(0.751_{\mathrm{w}}\right) \rho_{\mathrm{h}} \mathrm{f}_{\mathrm{yhd}}$	As in EC2: $\mathrm{V}_{\mathrm{Rd}, \mathrm{s}}=\mathrm{b}_{\mathrm{wo}}\left(0.81_{\mathrm{w}}\right) \rho_{\mathrm{h}} \mathrm{f}_{\mathrm{ywd}} \mathrm{cot} \delta$ with $1 \leq \cot \delta \leq 2.5$
ρ_{v} from: ${ }^{(9)}$	$\rho_{\mathrm{v}} \mathrm{f}_{\mathrm{yvd}} \geq \rho_{\mathrm{h}} \mathrm{f}_{\mathrm{yhd}}-\mathrm{N}_{\mathrm{Ed}} /\left(0.81 \mathrm{w}_{\mathrm{w}} \mathrm{b}_{\mathrm{wo}}\right)$	
Resistance to sliding shear: via bars with total area A_{si} at angle $\pm \phi$ to the horizontal ${ }^{(10)}$	$\begin{gathered} \mathrm{V}_{\mathrm{Rd}, \mathrm{~s}}=\mathrm{A}_{\mathrm{si}} \mathrm{f}_{\mathrm{yd}} \cos \phi^{+} \\ \mathrm{A}_{\mathrm{sv}} \min \left(0.25 \mathrm{f}_{\mathrm{y}}, 1.3 \sqrt{ }\left(\mathrm{f}_{\mathrm{yd}} \mathrm{f}_{\mathrm{cd}}\right)\right)+ \\ 0.3\left(1-\mathrm{f}_{\mathrm{ck}}(\mathrm{MPa}) / 250\right) \mathrm{b}_{\mathrm{wo}} \mathrm{xf} \mathrm{f}_{\mathrm{cd}} \end{gathered}$	
$\rho_{\mathrm{v}, \text { min }}$ at construction joints ${ }^{(9),(11)}$	$0.0025, \frac{1.3 f_{c t d}-\frac{N_{E d}}{A_{c}}}{f_{y d}+1.5 \sqrt{f_{c d} f_{y d}}}$	-

(0) Note (0) of Tables 1 and 2 applies.
(1) $\quad 1_{w}$ is the long side of the rectangular wall section or rectangular part thereof; H_{w} is the total height of the wall; $\mathrm{h}_{\text {storey }}$ is the storey height.
(2) For DC M: If for the maximum value of axial force in the wall from the analysis for the "seismic design situation" the wall axial load ratio $v_{d}=N_{E d} / A_{c} f_{c d}$ satisfies $v_{d} \leq 0.15$, the DCL rules may be applied for the confining reinforcement of boundary elements; these DCL rules apply also if this value of the wall axial load ratio is $v_{d} \leq 0.2$ but the value of q used in the design of the building is not greater than 85% of the q-value allowed when the DC M confining reinforcement is used in boundary elements.
(3) Notes (4), (5), (6) of Table 2 apply for the confined core of boundary elements.
(4) $\quad \mu_{\phi}$ is the value of the curvature ductility factor that corresponds to the product of the basic value q_{0} of the behaviour factor times the value of the ratio $\mathrm{M}_{\mathrm{Edo}} / \mathrm{M}_{\text {Rdo }}$ at the base of the wall (see Note (5)); $\varepsilon_{\mathrm{sy}, \mathrm{d}}=$ $\mathrm{f}_{\mathrm{yd}} / \mathrm{E}_{\mathrm{s}}, \omega_{\mathrm{vd}}$ is the mechanical ratio of the vertical web reinforcement.
(5) $\quad \mathrm{M}_{\text {Edo }}$ is the moment at the wall base from the analysis for the "seismic design situation"; $\mathrm{M}_{\text {Rdo }}$ is the design value of the flexural capacity at the wall base for the axial force N_{Ed} from the analysis for the same "seismic design situation".
(6) $\quad \mathrm{S}_{\mathrm{e}}\left(\mathrm{T}_{1}\right)$ is the value of the elastic spectral acceleration at the period of the fundamental mode in the horizontal direction (closest to that) of the wall shear force multiplied by $\varepsilon ; \mathrm{S}_{\mathrm{e}}\left(\mathrm{T}_{\mathrm{c}}\right)$ is the spectral acceleration at the corner period T_{C} of the elastic spectrum.
(7) A dual structural system is one in which walls resist between 35 and 65% of the seismic base shear in the direction of the wall shear force considered; z is distance from the base of the wall.
(8) For b_{w} and d in $\mathrm{m}, \mathrm{f}_{\mathrm{ck}}$ in $\mathrm{MPa}, \rho_{\mathrm{L}}$ denoting the tensile reinforcement ratio, N_{Ed} in $\mathrm{kN}, \mathrm{V}_{\mathrm{Rd}, \mathrm{c}}$ (in kN) is given by:
$V_{R, c}=\left\{\max \left[180\left(100 \rho_{1}\right)^{1 / 3}, 35 \sqrt{1+\sqrt{\frac{0.2}{d}}} f_{c}^{1 / 6}\right]\left(1+\sqrt{\frac{0.2}{d}}\right) f_{c}^{1 / 3}+0.15 \frac{N}{A_{c}}\right\} b_{w} d$
N_{Ed} is positive for compression and its minimum value from the analysis for the "seismic design situation" is used; if the minimum value is negative (tension), $\mathrm{V}_{\mathrm{Rd}, \mathrm{c}}=0$.
(9) The minimum value of the axial force from the analysis for the "seismic design situation" is used as N_{Ed} (positive for compression).
(10) $\quad \mathrm{A}_{\mathrm{sv}}$ is the total area of web vertical bars and of any additional vertical bars placed in boundary elements against shear sliding; x is the depth of the compression zone.
(11) $\mathrm{f}_{\text {ctd-fctk }, 0.05} / \gamma_{\mathrm{c}}$ is the design value of the $(5 \%$-fractile) tensile strength of concrete.

