Optics of Ageing Emmetropic Eyes

David A. Atchison

School of Optometry & Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane, Australia

Introduction

- Based on a recent study of the optics of emmetropic eyes as a function of age.
- Includes some other information on accommodation and pupil miosis

Methodology

Subjects of study

- Emmetropes (-0.88 D to +0.75 D spherical equivalent)
- Age groups: 20-29 years, 30-39 yrs, 40-49 years, 50-59 yrs, 60-69 yrs. Approximately 10 males and 10 females in each group (106 total)
- Good ocular & general health
- Refractive astigmatism $\leq 0.50 \text{ D}$
- R eyes (unless outside Rx range, amblyopic)

Measurements

 central and peripheral refraction, central aberrations, videokeratography (Medmont), ultrasound, magnetic resonance imaging, Scheimpflug photography (Pentacam), Purkinje image analysis

Anterior cornea – radius of curvature

Referenced to the pupil centre for aberration measurements Not significantly affected by age

Anterior cornea – asphericity

Not significantly affected by age

Cornea – central thickness

Not significantly affected by age

Posterior cornea – radius of curvature

Not significantly affected by age

Anterior chamber - depth

Reduces significantly with age

Lens - radii of curvature

Unaccommodated Eye

Accommodated Eye

Lens - radii of curvature

- Purkinje technique
- Anterior radius of curvature
 ↓ as age↑
- Posterior radius of curvature unaffected by age
- Lens paradox

Lens

- equivalent refractive index

Reduces significantly with age

Lens - refractive index distribution

Lens

- refractive index distribution

Young vs Old (Unaccommodated Axial)

Lens - centre thickness

ultrasound thickness 1 as age1

Lens - equivalent power

Determined from surface radii and equivalent refractive index

No change with age

Anterior segment

- Add corneal thickness, anterior chamber and lens thickness with ultrasound
 Add corneal thickness,
- Not previously reported
- Similar to anterior chamber depth ↓
- Half the lens thickness 1

Vitreous chamber depth

■ No change with age

Length of eye

↑ as age ↑
Predicts eye length ↑ as you get older??
Similar to anterior segment ↑ (0.0112mm/year v 0.0128 mm/year)

Parameters that change with age

- Anterior chamber depth
- Lens thickness
- Anterior segment length
- Total length
- Anterior lens radius of curvature
- Equivalent lens refractive index

-0.011mm/year +0.024 mm/year +0.013 mm/year +0.011 mm/year >0.5 mm or >1.5 D in 50 yrs

 $n \downarrow$

ASL

TL1

- -0.044 mm/year
- -0.0003/year

What might be happening?

Young emmetropes will tend to be hypermetropes when older? Older emmetropes were low myopes when younger?

Gender differences

anterior cornea radius of curvature M > F by 0.17 mm (~1.0 D)
vitreous and total length M > F by 0.6 mm (~1.8 D)

Amplitude of accommodation

Push-up study of Ungerer

- Overestimates amplitudes depth-of-focus
- Hamasaki et al, Sun studies using stigmatoscopy
 - Accommodation ceases after mid 50s

Higher order aberrations

- 5 mm pupil, COAS (Wavefront Sciences) relative pupil centre
- 4th and 5th order rms aberrations 1 sig as age 1
- Total HO rms p= 0.054

Higher order aberrations

Pupil miosis

 Interaction with aberrations

Summary of age related changes in emmetropic eyes

Anterior chamber depth

Lens thickness

Anterior segment length

Total length

Anterior lens radius of curvature

Equivalent lens refractive index

Central RI plateau 1

0.5mm \downarrow over 50 year period 1.2 mm \uparrow 0.6 mm \uparrow 0.6 mm \uparrow 2.2 mm \downarrow 0.015 \downarrow

Young emmetropic eyes to become older hypermetropic eyes? Older emmetropic eyes were young myopic eyes?

Summary of age related changes in emmetropic eyes (cont.)

Central aberrations \uparrow as age \uparrow Peripheral aberrations ? Pupil size \downarrow as age \uparrow - interaction with aberrations Amplitude of accommodation \downarrow as age \uparrow - lost by mid 50s